Engineering Letters, 27:2, EL._27 2 01

Permanence of a Delayed Biological System with
Stage Structure and Density-dependent Juvenile
Birth Rate

Qin Yue

Abstract—A delayed biological system with stage structure harvesting plays crucial role on the dynamic behaviors of the
and density-dependent juvenile birth rate is revisited in this system.
paper. By establishing a new lemma and using the comparison |, some stage-structured populations, the intraspecific and

theorem of the differential equation, a new set of sufficient con- . ¢ ii it ithi h st t
dition which ensure the permanence of the system is obtained. Interspecinc compeutions occur within each stage struc-

Our result supplements and complements some known results. ture. In two-stage single-species population, Abrams and
Quince[33] have demonstrated that adult population com-

petition makes a low birth rate of juvenile population. They

Index Terms—Stage structure, Predator-prey, Permanence X ; )
proposed the following single species stage structured model:

dN-
I. INTRODUCTION aNy - _ Bs(1 — asNa)Na — di Ny — G(1 — ay Ny)NY,

HE dynamic behaviors of the stage structured ecosys-dt
tem has recently studied by many scholars, see [1]dN2

[22] and the references cited therein. The most simple singegz G(1 - a1 N1 )Ny — da N

species stage structure model takes the form: (1.3)
For a range of parameter values, the authors declared that the
dzy = axy— Br1 — 6121, model (1.3) possesses two locally stable equilibria. Hence,
dt (1.1) compared with system (1.1), by introducing the nonlinear
dry By — a2 birth rate term, the system admits the quite different dynam-

dt ics behaviors. Obviously, in this case, it is impossible for
wherea, 3,51, 55 and~ are all positive constants (t) and the system to admits a unique globally asymptotically stable

25 (t) are the densities of the immature and mature speciedggitive equilibrium. . .
time ¢. The per capita birth rate of the immature population is Based on model (1.1), many scholars invested the dynamic

a > 0; The per capita death rate of the immature populatid¥ghaviors of the stage structured predator prey model. For ex-
is &, > 0; B > 0 denotes the surviving rate of immaturity to®MPle, Yang, Li and Bai[20] proposed the following model:

reach maturity; The mature species is density dependent with ;..

the parametety > 0. Cui, Chen and Wang([31] had showed ~ —= = a(t)z2(t) = b(t)z1(t)
that above system admits a unique positive equilibrium,
which is globally asymptotically stable, which means that —dy (t)(x1(t))2 — M,
the dynamic behaviors of the system (1.1) is similarly to the m(t) + a3 (t)
traditional Logistic model.
J W2 e (t) — da(t)ad(t), (1.4)

Xiao and Lei[21] argued that a suitable model should g
considered the influence of the harvesting, and they proposed

the following single species stage structure system incorpo- — = y(t)( —ds(t) + cQ(t)xl(Qt —7)
rating partial closure for the populations and non-selective (t) +21(t =)
harvesting: —q(t)y(t)) _
dl’l o o .
o 0% — Br1 — 6171 — 1 Emay, Sufficient and necessary conditions are obtained for the
p (1.2) permanence of the system.
% = Bx1— 0wy — y23 — @2Emas, We mention here that in the study of biomathematics,
such topics as the extinction, persistent and stability of the

where all the other coefficients has the same meaning as é}’d;@system are the most important study area, and they were
system, andd, represents the per capita death rate of th&tensively studied by many scholars, see [1]-[40] and the
mature populationF is the combined fishing effort used toreferences cited therein.

harvest andn(0 < m < 1) is the fraction of the stock

available for harvesting. They showed that the birth rate of

the immature species and the fraction of the stocks for the
Il. MODEL
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the following delayed biological system with stage structuteas a unique positive equilibriut(1, 2), which is globally
and density-dependent juvenile birth rate asymptotically stable, and

day _ co(t)ai(t —7)
I OPO)EORLIO0 or (= 60+ i ) (2.6)
1 1 1 '
Hri(t)y(t) = 4 ——=2>0
—d.(t )2 — 01(7 .
1(8) (@1(t)) )+ 2200 3 1+1 6
That is, the condition of Theorem A holds, however, numeric
dxy 9 (2 1) . . . . .
i b(t)x1(t) — da(t)x5(1), : simulation (Fig. 1) shows that in this case, the predator
species will be driven to extinction.
dy B ca(t)zi(t —7) Above example shows that although the conditions of
= y(@) —ds(t) + 5
dt (t) +zi(t —71)
0.7
—a(t)y(t)), ‘
wherezy (t), z2(t) andy(t) represent the density of immature 067
prey, mature prey and predator species, respectively. The
coefficients in system (2.1) are all continuous positive 051
periodic functions. The parametgl(t) is the proportional
rate of decrease in per capita births with increased mature 0al
prey density and takes a value betwdkeand 1. For more ¥3(1)
background of system (2.1), one could refer to [22].
Concerned with the persistent property of the system (2.1), 03
the authors obtained the following result.
0.2
Theorem A.System (2.1) is uniformly persistent and has at
least onel" periodic solution provided that
0.1 ’\
ca(t)xi(t —7) —
Ap( —ds(t > 0, 2.2 ; ‘ ‘
T( 3( )+m(t)+($>{(t77_))2) ( ) 0 5 1[0 15 20
where (x (), z5(t)) is the unique positive periodic solution
of the following system Fig. 1.  Dynamics behaviors of the third com-

ponent of system (2.4), the initial condition-

dxy s (21(0),z2(0),y5(0)= (1,2,0.7),(2,1,0.3) and
P t t) — b(t t) — da(t t27 wl()a‘TQ()vy()) (av')v(av')
dt a(t)zz() = b(t)z1(t) = dr(t) (@1 (1)) (2.3) (0.5,0.2,0.1), t € [0, 20], respectively.
dx '
=5 = bn(t) — da(D)a3(1). _
dt Theorem A holds, the result of Theorem A may still not
Now let's consider the following example. hold, Hence, the conclusior_1 of Theorem A may not be hqld,
) . indeed, by carefully checking the proof of Theorem A in
Example 2.1.Consider the following system [22], we found that the authors directly applying Lemma
da 2.2 to the system (2.9) and (2.14) in [22], however, this is
—L = (1-0.6wa(t)za(t) — 21 (t) incorrect. That is to say, the persistent property of the system
dt (2.1) need to be revisited.
B s 2w (Dy(t) . . . - .
(z1(t)) 1 205 The aim of this paper is to revisit the persistent property
+ai(t) of system (2.1).
dx 1
d_2 z1(t) — Zz%(t), (2.4)
¢ 1. M AIN RESULT
% y(t)( _ % + 1_10 cos(t) We adopt the following notations through this paper:
1 T
n(t) Arlg) = 7 [ gat
e Y0): TJo
g" = sup g(t), (3.1)
Here, we assume thaft) = b(t) = di(t) = m(t) = c2(t) = t€[0,T]
1,c1(t) = 2,d3(t) = 1, 8(t) = 0.6,da(t) = ;. Then gt = inf g(t),
t€[0,T)
d:r . . _ . B A
d_tl = ao(t) — 21 (t) — (z1(1))2, whereg(t) is a continuous-periodic function.
p . (2.5) We first introduce several Lemmas.
X2
Pl z1(t) — ng(t) Lemma 3.1.(see[30))If a(t) andb(t) are all continuousl’
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periodic functions for alt € R, and Ar(a(t)) > 0,b(t) > 0, uniquez;. Thatis, the system (3.4) admits a unique positive
then the system equilibrium E(z7, z3).

. The Jacobian matrix af(x3, x3) is

#(t) = (t)(a(t) — b(t)2(t)) (3:2) (@i 75)

: o . L —2dz} —c¢  —2bx}
has a uniquel’ periodic solution which is globally asymp- (27, 23) = F1mce Ty ta . (3.10)
totically stable. e —2fz3

Lemma 3.2. (see [31])f a(t),b(t),d:(t) and dy(t) are all From the factz; satisfies (2.9), it immediately follows that

positive and continuoug' periodic functions for allt € R, tr(J(z3, 23))
then the system (3.11)
d = 2dx} —c—2fx4 <.
% = a(t)aa(t) — b()a (t) — dy (£) (a1 ()2, e 2o
) (3.3) det(J (27, 23))
T = bom) — da(0)3).

1
= Z(4df?(x%)3 + 2cefas + 2be®xh — ea? 3.12
has aT periodic solution(x7 (t), z5(¢)), which is globally 6< (r2) 2 2 ) (812)

asymptotically stable with respect t82 = {(x,y)lz > 1 . . .
0.y > 0). + = : <3df2(:r2)3 ¥ cefah+ b62z2) > 0.
Lemma 3.3.The system Hence,J(z%,23) has two negative characteristic root, and
dzy E(x7,x3%) is locally asymptotically stable.
ol ara(t) — ba3(t) — cxi(t) Now, to ensure E(z%,z3) is globally asymptotically .
stable, it is enough to show that system (3.4) has no limit
—d(x1(t))? def Py(x1,29), (3.4) cycle. We consider the Dulac functiar{z1,x2) = 1, then
O(uPy)  O(uPe)
dx def 1 = — — —
d_152 = exi(t) — fr3(t) = Po(z1,22) 0x1 + 75 2dwy = 2fws — e < 0.

admits a unique positive equilibriunt(z},23), which is BY Befdixson-Dulac.principle, there is no closed orbit in
globally asymptotically stable, where, b, c,d, e, f are all areaky. SoE(z1, z3) is globally asymptotically stable. This

positive constants. completes the proof of Lemma 3.3.
Proof. Since Lemma 3.4. There exists positive constanid;, and M,
diy such that
- < ara(t) — co1(t) — d(a1(t))?, limsup x;(t) < Miz,i=1,2;
i (3.5) t=too
% = em(t) — fa3(t), Also, if ()M
Ap( —ds(t) + 22522) > 0 3.13
while from Lemma 2.2 the system T( 3(t) + m(t) ) ’ (3.13)
dup aus(t) — cur(t) — d(ua (£))? where My, is defined in (3.16). Then
ddt (3.6) l;lfm supy(t) < M,. (3.14)
— 400
=2 = eu(t) - fud(t) N
dt Proof. In Proposition 2.1 of Zhang and Zhang[22], the

has an positive equilibriunk(z}*, 3*), which is globally authors had proved that
asymptotically stable, it then follows from the comparison

. ; ) . i(t) < ar i=1,2, t>1T, 1
theorem of the differential equation that the solution of (3.4) zilt) S 7 (t) e t ! (3.15)
are all uniformly bounded. where(z; (t), z3(t)) is the uniquel-periodic solution of the
The equilibrium of system (3.4) is determined by system (3.3). Lef\/;, = max {xj(t) + 5},1 =1,2, then
te[0,T
To — bx% —cxry — dx% = 0, <o)
(3.7) 1imsupxi(t) < Mig,i=1,2. (3.16)
exy — fx% = 0. e
) From the third equation of system (2.1) and (3.16), for all
From the second equation of (3.7), one has +> T, we have
fz3 d £)M-
T = =2, (3.8) Wy (= ds() + 2B 1
e 7 SvO( =)+ ZEE —ay),  Ga7)

Substituting (3.8) into the first equation of (3.7) leads to Consider the following auxiliary equation:

H(xzs) = de:ES + bexy + cefry —ae? = 0. (3.9) do

Cg(t)le
. / — =v(t)| —ds(t ——— —q(t)v(?) ). 3.18
Since H(0) = —ae? < 0, and H (x2) = 3df?23 + be? + dt o )( 3(t) + m(t) att)l )) (3.18)
cef > 0, it follows that H(z2) is a strictly increasing |
function for allz; > 0 and so, there exists a unique positive ca(t) M1z
solution z%, consequently, from (3.8), we can obtain the AT(_d3(ﬁ) + m(t) ) >0, (3.19)
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then by Lemma 3.1, we obtain that system (3.17) h&om the third equation of system (2.1) and (3.29), for all

a wique positiveT periodic solutiony*(t) > 0, which

t > T3, we have

is globally asymptotically stable. Similarly to the above

analysis, for the above, there exists &5 > 77, such that

y(t) <y*(t) +e t > Ty (3.20)
SetM, = tlg?go; {y*(t) + 5}, then
limsupy(t) < M,. (3.21)

t— o0

Lemma 3.5.There exists positive constanis, such that

liminf z;(t) > zi,i =1, 2.
t— o0

(3.22)

where (1., z2.) is the unique positive equilibrium of the

system (3.24).

Proof. For t > T,, from Lemma 3.4 and the first two Setm, =

equation of system (2.1), one has

B> aba(n) - a5 ()
U
—(bU + %)ml(t) —d¥ (21 (1)?, (3.23)
m
dx
—5 = blai() - dfa3 ().
Consider the following auxiliary equation:
W~ abus(t) — a8V (a(1))?
U
(0 + LYo a2, (320)
m
dv
d_t2 = brui(t) — dv3(t).

It follows from Lemma 3.3 that system (3.24) admits a dt

unique positive equilibrium (z1., z2.), which is globally

asymptotically stable. By applying the comparison theorem _

of differential equation, it immediately follows that

ltlgl_&glof zi(t) > . (3.25)
This ends the proof of Lemma 3.5.
Lemma 3.6.Assume that
ca(t)r1x
Ar| —ds(t) + ————F—— 2
r(-d0+ i) 2 620

then there exists positive constantg, which is independent

of the solution of system (2.1), such that

lim inf y(t) > my,. (3.27)

t—+oo

Proof. Condition (3.26) implies that for enough small

positive constant, the inequality
ca(t)(21x —€)
> 0.
m(t) + (M, + 5)2)

It follows from Lemma 3.4 and 3.5 that there exist§-a>
T5 such that

AT( —ds(t) + (3.28)

$Z(t)<Mm+€, $Z(t) > X —€, 1=1,2. (329)

dy c2(t)(z1 —€)

= y(t)( — B0+ o )y((tg)g,o)
Consider the following auxiliary equation: -

dv ca(t)(x1s —€)

=0~ ds(0) + () + (M +2)? Q(t)“(g)g'l)

From (3.26) and Lemma 3.1, we obtain that system (3.31)
has a unique positivé periodic solutiorw*(¢) > 0, which is
globally asymptotically stable. Hence, for the abaye¢here
exists aT; > T3, such that

y(t) >v*(t) —e, t > Ty (3.32)
télr[l()l%] {’U (t) — 5}, then
lim inf y(t) > my,. (3.33)

t—+o00
This ends the proof of Lemma 3.6.

Noting that under the assumption (3.26) holds, then (3.13)
always holds. As a direct corollary of Lemma 3.4-3.6, we
have

Theorem 3.1Assume that (3.26) holds, then system (2.1) is
permanent.

IV. NUMERIC SIMULATIONS

Example 4.1. Consider the following stage structure
predator prey system

dxy

= (1=0.6z2(t)22(t) — 21 (t) — (2:1(2))?
(5 + 5 cos(t))z1 (t)y(t)
14 22(t) ’
= ) - 530
dy 1 x1(t)
2 - ym(fﬁ5+115§5—y@)
(4.1)
Here, we assume thatt) = b(t) = di(t) = m(t) = ca(?)

Lea(t) = 3 + 4 coslt), () = ., B(6) = 0.6,da(t) = 1.

Then
dxl 2
= w2t —2i() - (@1(1),
(4.2)
d$2 - ﬁ)—ll’Q(f)
dt i 47

has a unique positive equilibriudii(1, 2), which is globally
asymptotically stable. From the third equation of (4.1), we

have
< (1-ve).

dy

and so,

limsup y(t) < 1. (4.3)

t——+o0
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From (4.3) and the first and second equation we have

% > (1= 0.6w5(t)aa(t) — a1 (1)
—(21(8))? = 221(1), (4.4)
d:ZTQ 1 2
e x(t) — 15172(15)-
Noting that the system
dvl
— = (1= 06ua(D)ea(t) — v (t)
—(v1(£))% = 201(2), (4.5)
dvo Lo
prl v1(t) — sz(t)-

admits a unique positive equilibriunt;(0.065,0.509),
which is globally asymptotically stable. also,
= f0.01+—2 >0.02 > 0.

(4.6)
That is, the condition of Theorem 2.1 holds, consequently,
system (4.1) is permanent. Fig. 2-4 also supports this asser-
tion.

CQ(t)Iﬂl* 0065

Azw(*dg(t)+—m s (AT

1.0]

0.91
0.8 1
0.7 1
0.6
xI(t)
0.5

0.4

0.3

0.24

0.1
0

20

Fig. 2. Dynamics behaviors of the first com-
ponent of system (4.1), the initial condition-
s (x1(0),z2(0),y(0))= (1,2,0.1),(0.2,1,0.3) and
(0.1,1,0.5), t € [0, 20], respectively.

x2(1)

20

Fig. 3. Dynamics behaviors of the second com-
ponent of system (4.1), the initial condition-
s (z1(0),22(0),y(0))= (1,2,0.1),(0.2,1,0.3) and

(0.1,1,0.5), t € [0, 20], respectively.

045“
0.4
»1) 03
0.24
0.1 - T )
0 10 20 30
t
Fig. 4. Dynamics behaviors of the third com-

ponent of system (4.1), the initial condition-
s (x1(0),22(0),y(0)) (1,2,0.1),(0.2,1,0.3) and
(0.1,1,0.5), t € [0, 30], respectively.

ACKNOWLEDGMENT

The authors would like to thank Dr.Liang Zhao for
useful discussion about the mathematical modeling. The

V. CONCLUSION

research was supported by the Key projects for supporting

o _ outstanding young talents in Universities in Anhui under
By numeric simulations, we found that one of the maiGrant(gxyqzD2016240) and the Natural Science Foundation
results of Zhang and Zhang[22] is incorrect. By introducingf Anhui Province(1808085MG224).

a new lemma (Lemma 2.3) and applying the comparison
theorem of the differential equation, we finally obtain a set
of sufficient conditions which ensure the permanence of tl[lﬁ
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