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Abstract—In this paper, a guidance problem with attack 

angle when missile attacks ground target is investigated. On the 

basis of high-order guidance model including the second-order 

autopilot dynamic lag, a nonsingular terminal sliding mode 

guidance law with attack angle constraint is proposed. In the 

design, nonsingular terminal sliding mode certifies that the 

line-of-sight (LOS) angle rate could converge to zero and the 

attack angle could reach the desired value within a finite time. 

Besides, the derivatives of virtual control variables and 

disturbance terms are estimated together by the extended state 

observer (ESO) with improved nonlinear feedback function, 

and the estimates are applied to compensate the control 

quantities, which could help the law resist the disturbances. 

Dynamic surface control plays a major role in completing the 

control law for a high-order system. According to the Lyapunov 

stability theory, all states in the closed loop system are proved to 

ultimately converge into a little neighborhood of the origin. 

Simulation results demonstrate that the proposed guidance law 

can obtain more accurate terminal LOS angle and smaller 

miss-distance. 

 
Index Terms—guidance law, dynamic surface control, 

extended state observer, autopilot dynamic lag compensation, 

attack angle constraint, finite-time convergence 

 

I. INTRODUCTION 

certain type of homing anti-tank missile is configured 

for top attack to destroy targets. In order to raise the 

lethality of warhead, small miss distance and desired attack 

angle are expected. Under different application backgrounds, 

many scholars have studied a variety of guidance laws with 

angle constraints on the basis of different theories, such as 

optimal guidance law[1-2], biased proportional guidance 

law[3-4], differential game guidance law[5], and so on. 

However, the guidance laws above are limited by 

assumptions, their demands on precision of target motion 

model and accuracy of status information are higher, and 
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disturbance rejection capabilities are not strong. The sliding 

mode variable structure control is not strictly dependent on 

precise target motion model, which can compensate system 

uncertainties by the discontinuous switching term. It has 

strong robustness and stability to external disturbances and 

system parameter uncertainties, and is extensively used in the 

guidance law design.  

The guidance law with attack angle constraint can be 

easily obtained via introducing attack angle constraint in 

sliding mode surface design. Linear sliding hyperplane[6-7] 

is normally chosen in the traditional sliding mode design. The 

tracking errors of system states on traditional sliding mode 

surface gradually converges to zero, and the convergent 

speed is regulated via the parameter matrix of sliding mode 

surface. Obviously, this design method cannot meet the 

requirement of finite-time convergence. To enforce system 

states converge in finite time, nonlinear term was introduced 

to construct terminal sliding mode surface[8-9], which can 

achieve the finite-time convergence of tracking error on the 

sliding mode surface. While, the derivative of terminal 

sliding mode surface has a negative exponent term that may 

cause singularity problem due to improper parameter 

selection or system state value. Hence, in practical 

applications, non-singular terminal sliding mode surface is 

more often used[10-12].  

The autopilot dynamic is an important factor influencing 

the guidance accuracy. The guidance law considering 

autopilot dynamics can achieve seamless integration between 

the guidance law and the control law, which is helpful for 

improving the performance of overall system. The control 

instructions generated by the guidance law are tracked by the 

autopilot via adjusting the actuator, such as steering gears. 

According to the characteristics of aerodynamic control 

surfaces, the process from deflecting rudder surface to 

building a new projectile posture is influenced by the 

autopilot dynamics and the hardware of missile, which 

causes the delay from guidance instruction to actual 

acceleration. For the light homing anti-tank missile, due to 

the limitations of seeker performance, missile structure size, 

engine thrust and other factors, its range is short, and the 

terminal guidance time is finite. In order to hit the target 

accurately at a desired attack angle, a high-precision 

guidance law is required to drive the LOS angle rate to zero 

in finite time. However, the delay mentioned above will lead 

to a decrease in guidance accuracy. Generally, in the design 

process of sliding mode guidance law, the missile autopilot 

dynamics is considered as an ideal link without delay. In fact, 
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introducing autopilot dynamics in the design of guidance law 

can help to cope with the mentioned delay effect. 

Considering the autopilot dynamics will add the order of 

guidance system state equations. The backstepping method is 

usually applied to design control law for the high-order 

system, but it can easily lead to a problem of “differentiation 

expansion” after multiple derivations of virtual variables. In 

order to solve the problem, the dynamic surface control 

method was proposed by Swaroop[13], which combined the 

advantages of integral backstepping and multi-sliding mode 

control. Considering the autopilot dynamic lag,  Y. Zhang[14] 

designed a global non-linear integral sliding mode guidance 

law(SMGL) with attack angle constraint by the dynamic 

surface control. P. P. Qu[15] proposed a guidance law with 

autopilot dynamic lag compensation by dynamic surface 

control, which had a well adaptability for changes of target 

maneuvering. Nevertheless, the attack angle constraint was 

not considered when the law was designed. J. Yang[16] took 

the autopilot second-order dynamic lag into account, used 

integral sliding mode to design the dynamic surface, and 

estimated the target maneuvering disturbance through the 

observer. But each step of dynamic surface design was 

asymptotically convergent, and the closed-loop system also 

asymptotically converged to the bound of steady-state error. 

Considering the autopilot first-order dynamic lag, H. J. Wang 

[17] designed a sliding mode guidance law by estimating 

guidance information through the ESO with a filter. But 

sliding mode surface of the law was linear and the system 

stability was not proved. Besides, via estimating target 

maneuvering by the ESO, S. F. Xiong[18]  presented a 

guidance law by nonsingular terminal sliding mode and 

dynamic surface control, while, the law only took the 

first-order autopilot dynamic lag into consideration. 

Along the technology mentioned above, in this paper, in 

consideration of the autopilot second-order dynamic lag, 

dynamic surface control is applied to construct a guidance 

law with attack angle constraint. The first dynamic surface of 

the law is designed with nonsingular terminal sliding mode 

surface, which could drive the states to converge into a little 

neighborhood of the origin. In order to avoid the problem of 

“differentiation expansion”, the improved ESO with better 

convergence speed is applied to estimate disturbance terms 

and virtual control quantities. Besides, fast power reaching 

law is used to obtain the  finite-time convergence stability. A 

kind of optimal discrete tracking differentiator (ODTD) is 

applied to estimate the derivation of missile acceleration. 

Finally, the closed-loop system is proved to be globally 

finite-time stable and simulation results illustrate the 

effectiveness of the method. 

 

II. PROBLEM DESCRIPTION 

A. Stage Missile-Target Relative Motion Equations 

The skid-to-turn missile has axially symmetrical shape roll 

stabilized, thus the three channels can be decomposed into 

vertical plane motion and lateral plane motion. In flights at 

little angles of attack and side slip angles, the design method 

of vertical plane motion is similar to the lateral plane motion, 

therefore, this paper takes missile-target motion process in 

vertical plane as an example to analyze, which is shown in 

Fig.1. 

mV

tV

m q

ma

taT

M

t

R

tqa

mqa

Fig.1. Missile-target relative motion in vertical plane 

In Fig.1, the kinematic engagement equations are 

 t t m mcos( ) cos( )R V q V q      (1) 

 t t m msin( ) sin( )Rq V q V q       (2) 

M  is the center of mass in missile and T is the target. The 

missile-target relative distance is denoted as R , and R  is 

missile-target relative distance change rate. tV and mV  

represent the speeds of target and missile respectively. The 

LOS angle is represented as q , and its derivative is LOS 

angle rate q . The flight-path angles of target and missile are 

written by t and m respectively. 

Note that RV R  and q
V Rq  , get the first order 

derivatives of RV  and q
V  with respect to time as follow 

 
2

t mR q R RV V R a a    (3) 

 t mq R q q qV V V R a a     (4) 

where tRa and mRa respectively are components of the target 

acceleration and missile acceleration in LOS direction, 

tqa and mqa are respectively used to represent the components 

of missile acceleration and target acceleration in normal 

direction of LOS. 

The relative two-degree dynamics between the control 

input mqa and the LOS angle q  is given by 

 
m t

2 1 1
q q

R
q q a a

R R R
   


   (5) 

In the terminal guidance process, the relative velocity 

0R   is essential to satisfy the condition for missile-target 

approach. In the mean while, considering that the target has a 

certain size, the following inequalities are established[19] 

 0R  , min maxR R R   (6) 

where maxR is the maximum missile-target distance, minR is 

the minimum missile-target distance formed by the target 

size. 

The axial velocity is not controllable in the terminal 

guidance section, so the key of the guidance law design is to 

control the LOS angle rate q by mqa , drive it approach a 
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small neighborhood near zero[15]. 

B. Autopilot Model 

The acceleration instruction generated by the guidance 

loop needs to be tracked by the autopilot. In order to avoid 

the impact of high-frequency un-modeled dynamics, the 

bandwidth of the autopilot is generally not high, so its 

dynamics may cause a certain dynamic lag for the execution 

of acceleration instruction and affect the guidance 

performance. Hence, the autopilot dynamics should be 

incorporated into the guidance law. Simplify the missile 

autopilot dynamics as a second-order link given by 

 

2
m n

2 2

n n2

qa

u s s



 


 
 (7) 

where   and n respectively are the relative damping 

coefficient and natural frequency of the missile autopilot, 
u is the normal acceleration instruction for the missile 

autopilot. Formula (7) can be expressed as a differential 

equation given by 

 
2 2

m n m n m n2q q qa a a u        (8) 

C. Description of Terminal Attack Angle 

 Generally, the attack angle is defined as the angle between 

the velocity vectors of missile and target at the time of 

interception. Ignoring the smaller incident angle, attack angle 

also can be regarded as the included angle between missile 

attitude angle and target attitude angle[20]. Denote the 

guidance end time as ft , the expected attack angle as d , and 

the expected LOS angle as dq . In order to improve the 

damage effect, attack angle constraint is the key to design the 

guidance law. 

 
f

lim ( ) ( ) 0
t t

R t q t


  (9) 

 m t df f( ) ( )t t     (10) 

 m f d
( ) π/2t q    (11) 

The inequality in (11) ensures that the missile can capture 

the target, in other words, the target is within the seeker's 

field of view during guidance process. It can be obtained 

from (2) and (9) that 

 m d m t d tsin( ) sin( ) 0V q V q      (12) 

Substituting  (10) into (12) yields 

 m d t f d t d t fsin( ( ) ) sin( ( )) 0V q t V q t        (13) 

By using (13) and applying trigonometric algebra, 

following equation can be written 

 
1 d

d t f

d t m

sin
( ) tan ( )

cos
q t

V V






 


 (14) 

where t m/ 1V V  . Formula (14) shows that for the given 

t f( )t  and d , there is an unique desired LOS angle dq  

corresponding to them, so the attack angle constraint problem 

can be converted to a LOS angle tracking problem. 

Accordingly,  The goal of guidance law design translates into 

driving 0q  and dq q . 

D. Establishment of Guidance Equations 

Define the state variables 1 dx q q  , 2x q  , 

3 mqx a and 4 mqx a  . Considering that the target 

acceleration is difficult to measure by the on-board device, its 

normal component on the LOS, denoted by tqa , is regarded 

as an external disturbance 1d . At the same time, taking the 

uncertainty nd caused by the autopilot model simplification 

error and aerodynamic parameter change into 

consideration[21], the guidance equations taking the 

second-order autopilot dynamics into account are given by 

 

1 2

2 2 3 1

3 4

2 2

4 n 3 n 4 n n

2 1 1

2

x x

R
x x x d

R R R

x x

x x x u d  



    

 


    










 (15) 

There are physical limitations of energy and response 

speed in the target motion process[22], so it is assumed that 

the disturbances 1d  and nd  are differentiable and have 

upper bounds. 

To achieve the attack angle constraint and hit the target, we 

need to design a control law to drive 1 0x  and 2 0x   in 

finite time. 

 

III. PRELIMINARY CONCEPTS  

Before the guidance law design, the finite-time stability 

criteria and some lemmas are introduced to provide a 

theoretical basis for the subsequent proof. 

Lemma 1[23]: Consider the following nonlinear system 

 ( , )x f x t , (0, ) 0f t  , nxR  (16) 

where
0

U
n

f  R R：  is continuous on 0U R , and 0U  

is an open neighborhood of the origin 0x  . Suppose there 

is a 1
C  smooth and positive definite function ( , )V x t  

defined at nU R , which is the neighborhood of the origin, 

and exist real numbers 0   and 0 1  , making ( , )V x t  

be positive definite on U  and ( , ) ( , )V x t V x t


  be 

negative semi-definite on U , then the system origin is 

finite-time stable. If nU R  and ( , )V x t  is radially 

unbounded, then the system origin is globally finite-time 

stable. The convergence time, denoted by rt , depends on the 

initial value 0x , the following inequality holds 

 

1

0
r

( ,0)

(1 )

V x
t



 






 (17) 

where 0x  is any point in the open neighborhood of the 

origin. 

Lemma 2[24]: For 1 0  , 2 0  , (0,1) , the 

smooth and positive definite Lyapunov function ( )V x  that 

defines on nU R  satisfies 

 1 2( ) ( ) ( ) 0V x V x V x     (18) 

then the system state x  can converge to the origin in the 

finite time rt , and 
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r 0

1 2

1
ln[1 ( )]

(1 )
t V x

  

 


 (19) 

where 0( )V x  is the initial value of ( )V x . 

Lemma 3[25]: For  ix R （ 1,2, ,i n  ） , 

and 0 1p  , the following inequality holds 

  1 2 1 2

p p p p

n nx x x x x x         (20) 

 

IV. GUIDANCE LAW DESIGN 

Considering the linear time-varying system in (15), this 

paper adopts dynamic surface control and reaching law 

method to design a finite-time convergence guidance law 

with terminal attack angle constraint. The disturbance term 

and derivative of virtual control of each subsystem are 

combined to be a total disturbance term, which can be 

estimated by the improved ESO. Through the method above, 

the first-order filter common in dynamic surface control is no 

longer needed to obtain the differential of virtual control. 

A. The Improved ESO 

ESO is first proposed by J. Q. Han[26-28]. It extends the 

uncertainty part of the system to be a new first-order state, 

and feedback errors via specific non-smooth and nonlinear 

function[29]. By selecting suitable parameters of ESO, the 

system states and disturbance terms will be estimated. It is a 

kind of generic and practical nonlinear disturbance observer, 

which does not rely on the concrete mathematical model. The 

stability of ESO has  been proved by B.Z. Guo[30]. 

The second-order system to be observed is given as 

 
1 1 2

2

( )y f y y

y w

 







 (21) 

where 1( )f y  is the modeled dynamic part of the system, 2y  

is the total of unmodeled dynamics and external disturbance, 
w  is the derivative of disturbance. Based on (21), the ESO is 

designed as follow 

 

1 1

1 01 1 2

2 02 1 2

( )

( , , , , )

e z y

z e f y z

z fal e



    

 


   
  





 (22) 

where, 1y  is the awaiting observation signal, 1z  is the 

estimation of 1y , 2z  is the estimation of 2y , 01 and 02  

are the adjustable gain, 1 2( , , , , )fal e      is the 

non-smooth and nonlinear feedback function. Selecting the 

suitable parameters (i.e.: 01 , 02 ,  ,  , 1 , 2 ) , it is easy 

to estimate the system state 
1

y  and disturbance 2y via 

tracking the system state 
1

y . ( )fal   function is defined as 

 

1 2

1

1 1

1 2

2 2

( , , , , )

sgn( )

sgn( )

fal e

e e

e e e

e e e





 

   

 

 

 





 


  




 (23) 

where, 0 1  , 1  , and 2 1 0   are the error 

threshold. The curve of ( )fal   is shown in Fig. 2. 
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 Fig.2. Curves of the ( )fal  functions 

As shown in Fig.2, when the tracking error keeps away 

from the balance point (i.e. 2e  ), 
2 sgn( )e e

    can 

accelerate the approach process to balance point, which 

effectively avoids the condition that the control quantity 

cannot increase quickly to reduce tracking error when the 

error is large. Taking the property of control quantity, error 

range and gain magnitude into consideration, 1  and 2  can 

be adjusted to meet different demands. 

B. Guidance Law Design by Dynamic Surface Control 

(1) Design the virtual control quantity 3x  of 3x  

The first subsystem in (24) is given as 

 

1 2

2 2 3 1

2 1 1

x x

R
x x x d

R R R





   







 (24) 

At the end of flight, R rapidly decreases, which leads to 

the increasing of 1d R . The condition above requires that 

the ESO should deal with the variables varying in a large 

range. To reduce the design difficulty of ESO, (25) can be 

derived from (4) as follow 

 2 3 1qV Rx x d      (25) 

Adopt the ESO to observe q
V , and then estimate 1d . 1d  is 

expanded into a new state, then (25) is extended to be a 

second-order system as 

 
2 3 1

1 1( )

qV Rx x d

d w t

    




 


 (26) 

where, 1( )w t  is the derivatives of 1d , 1 1
( )w t L , and 

1 0L   are the upper bound of 1( )w t . Based on (26), the 

second-order ESO is designed as (27). 1d  is restructured by 

12z  in a limited time. 

 

11 11

11 11 11 2 3 12

12 12 11 1 11 1 12( , , , , )

qe z V

z e Rx x z

z fal e



    

 


    
  






 (27) 

In order to satisfy the requirement that attack angle 

constraint and LOS angle rate simultaneously converge to 

zero in finite time, the first dynamic surface 1s  is defined as a 
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non-singular terminal sliding surface in the form below 

 
/

1 1 2 1

m ns x x    (28) 

where 1 0   is a constant, m  and n  are positive odd 

numbers, which satisfy 1 / 2m n  . 

The derivative of 1s  is given as 

 

/ 1

1 2 2 2

1

/ 1

2 2 2 3 1

1

2 1 1
( )

m n

m n

m
s x x x

n

m R
x x x x d

n R R R









 

    

 

  (29) 

The adaptive fast power reaching law is designed as 

 1
1 1 1 1 1sgn( )

R
s k s s s

R R


  


  (30) 

where 1 0k  , 1 0  and 0 1  . The performance of 

reaching law is mainly affected by 1k and 1 . Increasing 1k  

and 1 can improve the approaching speed. However, the 

larger 1k  will enlarge control instruction and required 

overload; the larger 1  can magnify the system chattering. 

Therefore, a few corrections are needed to get suitable 

parameters. 

By the constructed disturbance term 12z , in order to make 

the system states reach the sliding mode surface 1s  and 

satisfy 1 0s   in a finite time, which make 1 0x  and 

2 0x  , 3x  is designed as 

2 /

3 2 1 2 1 1 1 1 1

12

2 sgn( )m nn
x Rx R x k R s s s

m

z


     



 
(31) 

(2) Design the virtual control quantity  4x  of 4x  

The error surface is defined as 2 3 3s x x  , with the 

derivative of 2s , there is 
2 4 3s x x   . 

3x   is regarded as 

disturbance (i.e. 2d ), and 2d  is extended to be a new state, 

which is given as 

 
2 4 2

2 2 ( )

s x d

d w t

 






  (32) 

where 2 ( )w t  is the derivative of 2d . Because 
3x  is a 

bounded physical quantity, it satisfies 2 2( )w t L , where 

2 0L   is the upper bound of 2 ( )w t . 

Through the second order ESO in (33), 2d  is 

reconstructed by 22z  in finite time. 

 

21 21 2

21 21 21 4 22

22 22 21 2 21 2 22( , , , , )

e z s

z e x z

z fal e



    

 


   
  





 (33) 

To make 2 0s  , and then 3 3x x , with 22z  and 

2 2 2 2 2 2sgn( )s k s s s


   ( 2 0k  , 2 0  , 0 1  ), 

4x  is designed as 

 
4 2 2 2 2 2 22sgn( )x k s s s z


     (34) 

(3) Design actual control quantity u  

The error surface is defined as 3 4 4s x x  , with the 

derivative of 3s  , there is 

2 2

3 n 4 n 3 n n 42s x x u d x         . 
n 4d x   is regarded 

as disturbance (i.e. 3d ), and 3d  is extended to be a new state, 

which is given as 

 

2 2

3 n 4 n 3 n 3

3 3

2

( )

s x x u d

d w t

       







 (35) 

where, 3( )w t  is the derivative of 3d . Because 
n 4

d x   is the 

bounded physical quantity, it satisfies 3 3( )w t L , where 

3 0L   is the upper bound of  3( )w t . 

Via the second order ESO in (36), in a finite time, 3d is 

reconstructed by 32z . 

 

31 31 3

2 2

31 31 31 n 4 n 3 n 32

32 32 31 3 31 3 32

2

( , , , , )

e z s

z e x x u z

z fal e

   

    

 


     
  





 (36) 

To make 3 0s  , and then 4 4x x , with 31z  and 

3 3 3 3 3 3sgn( )s k s s s


   ( 3 0k  , 3 0  , 0 1  ）, u  

is designed as 

 
2

n 3 n 4 3 3 3 3 3 322

n

1
( 2 sgn( ) )u x x k s s s z


  


     (37) 

C. Stability Analysis of Closed-loop System 

The closed-loop system can be expressed as 

 

1 2
1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

( )
( sgn( ) )

sgn( )

sgn( )

x
s k R s s s

R

s k s s s

s k s s s















    


     

     







 (38) 

In (38), 
/ 1

1 2 2 1( ) ( )m nx mx n  , and by the values of m  

and n , there is 1 2( ) 0x  , besides, the 1 1 12d z   , 

2 2 22d z    and 3 3 32d z    are estimation errors of 

disturbance observers. The second-order ESO is convergent 

in finite time[31] and its estimation error is small enough by 

selecting suitable parameters[32]. Note that the convergence 

of the observer is independent, which has no connection with 

the convergence of guidance system. 

A positive definite and differentiable Lyapunov function 

for the closed-loop system is defined as 

 1 2 3V V V V    (39) 

where
2

1 1 2V s ,
2

2 2 2V s and 
2

3 3 2V s .  

Take the derivative of time with respect toV along the 

system in (38), there is 

 

1 2 3 1 1 2 2 3 3

121 2
1 1 1 1 1 1

12

2 2 2 2 2 2

12

3 3 3 3 3 3

( )
( )

( )

( )

V V V V s s s s s s

x
k R s s s

R

k s s s

k s s s




















     

    

    

    

      


 (40) 
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Considering that 
1

V ,
2

V  and 
3

V  have the same form, 
1

V  is 

analyzed for example, and its conclusion is also applied to 

2
V and

3
V . 

 

121 2
1 1 1 1 1 1 1

121 2
1 1 1 1 1 1

max

( )
( )

( )
( )

x
V k R s s s

R

x
k R s s s

R















    

    

 


 (41) 

The analysis shows that when 0s  , formula (41) can be 

converted into the following two cases 

 
2 11 2

1 1 1 1 1 1 1

max

( )
[ ( ) ]

x
V k R s s s

R





       (42) 

and 

 
2 11 2

1 1 1 1 1 1 1

max

( )
[ ( ) ]

x
V k R s s s

R

 



       (43) 

When 1 0s  , due to 1 2( ) 0x  , there is 1 0V   if 1k  

and 1  are chosen appropriately. It can be proved that 

2 0x  and 1 0x  are not a stable state and the state of 

1 0V  cannot be maintained, therefore, the system state can 

reach the sliding surface in a certain time. 

For (42), when 1 1 1( )s k R   , there is 

 

2 11 2
1 1 1 1 1

max

1 1

1 2 2 2
1 1 1 1

max

( )
( )

( )
( 2 2 )

x
V k s s

R

x
k V V

R



 









 

  

  



 (44) 

where 1 1 1 1 0k k R s    . 

From lemma 2, the sliding surface 1s  converges in a finite 

time, and  1 1 1 1 1| ( )s s k R      is the convergence 

domain. At the boundary of the convergence domain 

1 1 1( )s k R   , 
1V  satisfies 

 
1

1 1 2 1 1 1 max( ) ( ) 0V x k R R


 


      (45) 

According to LaSalle’s invariant theory, 1  is an 

invariant set of subsystem. Therefore, if 1 1 1( )s t   at 

time 1t , then for 1t t  , there is 1 1( )s t  . 

For  
1/

1 1 1s


  , 
1V  in (43) is described by 

 

2 11 2
1 1 1 1 1

max

1 1

1 2 2 2
1 1 1 1

max

( )
( )

( )
( 2 2 )

x
V k R s s

R

x
k R V V

R



 









 

  

  

 


 (46) 

where 
1 1 1 1s


    . Similarly, it can be proved that 

1s  can enter the convergence domain 

  1

2 1 1 1 1|s s


    in a finite time. 

In summary, within a finite time, 1s can be stable in a small 

neighborhood 1  containing the origin.  

      1

1 1 1 1 1 1 1min ,s s k R


      (47) 

Outside the 1 , there is 

 

1 1

1 2 2 2
1 1 1 1 1 1

max

( )
( 2min( , ) 2 )

x
V k k R V V

R

 


 

     (48) 

Similarly, the analysis of 
2V 、

3V  shows that 2s and 3s  

can be stable within neighborhood 2 and 3 in finite time. 

    1

2 2 2 2 2 2 2min ,s s k


      (49) 

    1

3 3 3 3 3 3 3min ,s s k


      (50) 

Outside the 2  and 3 , 
2V  and 

3V  satisfy (51) and (52)

respectively. 

 
1 1

2 2
2 2 2 2 22 2V k V V

 


 

    (51) 

 
1 1

2 2
3 3 3 3 32 2V k V V

 


 

    (52) 

where 2 0k  , 2 0  , 3 0k  and 3 0  . If the observation 

errors are small enough, by properly selecting the parameters 

1k , 1 , 2k , 2 , 3k  and 3 , each neighborhood domain can 

be sufficiently small to ensure that the system states are as 

close to zero as possible. 

Introduce a new vector 
T

1 2 3[ , , ]s s ss  for the 

closed-loop system, when 

s (  1 1 2 2 3 3and ands s s    s ), in 

combination with Lemma 3, there is 

 

1 2 1 1

1 2 2 3 3
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V V V
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R

x
V

R

c V c V
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     

 



   

  

  
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  

 
  

 

  





(53) 

where  1 1 2 1 1 max 2 32min ( )min( , ) , ,c x k k R R k k  ,

 ( 1) 2

2 1 2 max 1 2 32 min ( ) , , ,c x R     . 

In terms of Lemma 1 and Lemma 2, the closed-loop system 

is globally finite-time stable, and the system state s can 

converge into a small neighborhood near zero in finite time. 

According to the finite time convergence characteristic of 

nonsingular terminal sliding mode surface 1s , the system 

states 1x and 2x  can also converge into a small 

neighborhood near zero in a finite time. 

D. Acquisition of Missile Acceleration Derivative 

In order to obtain the accurate derivative information of 

missile acceleration component, an optimal discrete-time 
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tracking differentiator (ODTD) in [33] is used. The 

expressions of ODTD are 

 

2

1 1 2

2 2

c 1 2

( 1) ( ) ( ) 0.5

( 1) ( )

( ( ) ( ), ( ), , )

x k x k hx k uh
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u f x k v k x k r h
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 (54) 
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(55) 

where h  is the integral step, r  is a parameter adjusting the 

tracking speed, sgn( ) is the symbol function, ( )fix   is the 

integral function rounding towards zero, and sat( ) is 

saturation function, which is expressed as 

 
sgn( )

sat( , )=
x

x
x








x

x








 (56) 

 

V. SIMULATION VERIFICATION 

To verify the validity of guidance law designed in this 

paper, this section conducts mathematical simulation. In the 

simulation, the missile and target are both moving in the pitch 

plane, and the guidance period is 10ms. The initial values of 

various parameters used in simulation are chosen to 

be m0X =0, m0Y =200m, mV =110m/s, m0 =5º,  =0.7, 

n =8rad/s, t0X =1200m, t0Y =0, t0V =2m/s, t0 =0°. 

According to design indicator, the desired attack angle dq is 

selected to be -35º. The design parameters of guidance law 

are chosen as 5m  , 3n  , 1  0.09, 1k =3, 1 =0.5, 

2k =10, 2 =0.5, 3k =10, 3 =0.5 and 0.5  . Parameters 

of the second-order ESO are set to be 0.5i  , 1i  , 

1 0.5i  , 2 1i  , 1 100i  and 2 500i  , 

where 1,2,3i  . The parameters of tracking differentiator 

are set as 0.01h  and 1500r  . A technique that has been 

used to reduce chattering is to adopt a continuous 

approximation of the discontinuous control. Following this 

technique, the discontinuous function sgn( )s is 

approximated by the high-gain continuous function as 

( ) / ( )s s s   , where is a small positive number and 

set to be 0.001. 

In combination with the requirements of design indexes 

and the actual situation on the battlefield, the ground moving 

target cannot make complex motion form because of the 

battlefield environment limitation, so three kinds of typical 

situations suitable for ground targets are set up in simulation: 

(1) Stationary target; (2) The target is evenly accelerated 

from 0m/s to 15m/s with the acceleration of 4m/s2, and then it 

moves at a constant speed; (3) The target is accelerated from 

2m/s to 15m/s with a varying acceleration t 4 sin( )xa t  

m/s2, and then it moves at a constant speed. Simulation 

results are given in Table I and shown in Fig.3-6. In Table I, 

ft is the end time of guidance process. 

TABLE I 

f
( )R t AND

f
( )q t  UNDER THREE TARGET MOTION SITUATIONS 

Motion Situation 
f

( )R t (m) 
f

( )q t (  ) 

Situation 1 0.0787 -34.98 

Situation 2 0.2717 -34.97 

Situation 3 0.1066 -34.94 

 

As shown in Table I, the guidance law adapts well to 

different target motion situations. In situation 1, because the 

target is still, the miss distance is minimal. In situation 2, this 

distance is the largest because of the maximal acceleration of 

the target. But, the miss distances in three situations are all 

less than 0.3m. The terminal LOS angle is very close to the 

desired value of -35º, and the angle deviation is less than 

0.1°. 
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As can be seen in Fig.3, in order to obtain a larger terminal 

LOS angle, a higher trajectory occurs. The terminal 

trajectories are relatively straight after satisfying the LOS 

angle rate and LOS angle constraints, which is advantageous 

to the flight stability of missile and improvement of guidance 

precision. 

From Fig.4 to Fig.6, it can be observed that, the 

nonsingular terminal sliding mode surface 1s converges to 

near zero in a finite time, which makes the LOS angle rate 

also approach zero and the LOS angle reaches the desired 

value. As shown in Fig.4, 1s  in both laws converge to the 

interval (-0.01, 0.01) after the 7th second. It can be seen from 

Fig.5, the LOS angles converge into the interval (-35º, -34.8

º) after the 10th second. The LOS angle rates converge to the 

interval (-0.05, 0.05) after the 9.5th second, as shown in 

Fig.6. 

Taking the guidance process in situation 3 as an example, 

the improved ESO can quickly track q
V  and the target 

maneuvering acceleration in normal direction of  LOS can be 

effectively estimated in a short time. The estimation effects 

are shown in Fig.7-8. 
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At the same time, in simulation process, the ODTD can 

effectively estimate 4x , as shown in Fig.9-10. 
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Fig.10. Estimation effect of 
4x  

Good tracking effect is a guarantee of effective estimation. 

As shown in Fig.9, ODTD can quickly track the dramatic 

changes in 3x . In Fig.10, 4x  increases rapidly when 3x  has 

a rapid rise. Then 3x  increases with a slower speed, at the 

same time, 4x  decreases quickly but it is still positive. When 

3x  decreases quickly, 4x  changes from a positive value to a 

negative value and its absolute value increases rapidly. At 

last, after the change magnitude of 3x decreases, 4x  also 

decreases accordingly. It can be seen from the above analysis 

that ODTD can effectively obtain variable differentiation and 

provide strong support for algorithm implementation. 

In this subsection, in order to further verify the guidance 

performance, the attack effect of the missile with a shorter 

initial missile-target distance of 800m is investigated under 

three kinds of target motion situations, as shown in Table Ⅱ 

and Fig.11-14. 

 
TABLE Ⅱ 

f
( )R t AND

f
( )q t  UNDER THREE TARGET MOTION SITUATIONS  

Motion Situation 
f

( )R t (m) 
f

( )q t (  ) 

Situation 1 -0.0768 -35.03 

Situation 2 -0.3519 -35.03 

Situation 3 -0.1001 -35.02 

 

It can be seen from Table Ⅱ that when the initial 

missile-target distance is shortened, the designed guidance 

law adapts well to different target motion situations, and the 

miss distance is less than 0.5m. At the same time, the terminal 

LOS angle is very close to the desired LOS angle of -35°, and 

the angle deviation is less than 0.1°. 
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Fig.11. Curves of missile trajectories 
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Fig.12. Curves of nonsingular terminal sliding mode surface 
1s  
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Fig.13. Curves of LOS angles  
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Fig.14. Curves of LOS angle rates  

It can be seen from Fig.11 to Fig.14 that the nonsingular 

terminal sliding mode surface 1s  converges to near zero in a 

finite time, so that the LOS angle rate approaches zero and 

the LOS angle converges to the desired angle before hitting 

the target. 

In this subsection, a comparison of the guidance law 

proposed in this paper is done with a nonsingular terminal 

sliding mode guidance law in [12], which is shown as 

 d( )s q q q     (57) 
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where 5 3  , 10  and 80M  . The function 

sgmf ( )s  is applied to instead symbol function sgn( )s . The 

expression of sgmf ( )s  is 
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 (59) 

where  is the boundary layer, and the constant 0a  is 

inversely proportional to . is assigned to 0.6 and 8a  .  

For ease of differentiation, the guidance law proposed by 

Kumar is denoted as “NTSM”, and the guidance law derived 

in this paper is called “ESODSC”. After carefully adjusting 

the parameters, the simulation results under situation 3 are 

shown in Fig.15-19, and also tabulated in Table Ⅲ-Ⅳ. 
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TABLE Ⅲ 

THE MOMENTS THAT DIFFERENT INDICATORS ENTER CONVERGENCE AREAS 

OF GUIDANCE LAWS  

Guidance 

Law 

The Moments That Indicators Below Firstly Enter Into The 

Convergence Ranges (s) 

Sliding 

Mode 

0.02s   

LOS Angle 

Rate (rad/s) 

0.1q   

LOS Angle(  ) 

d
0.5q q   

Overload 

0.3N   

NTSM 4.27 8.64 7.69 8.78 

ESODSC 5.25 9.17 7.96 9.12 

 
TABLE Ⅳ 

f
( )R t AND

f
( )q t  UNDER THREE TARGET MOTION SITUATIONS 

Guidance Law 
f

( )R t (m) 
f

( )q t (  ) 

NTSM 0.6103 -33.58 

ESODSC 0.1066 -34.97 

 

In order to compare performances of the two laws more 

directly, adjust parameters to make the missiles using the two 

laws have similar flight trajectories. In simulation, the 

landing times of missiles are both 14.03s. As can be observed 

in Fig.15-19, both guidance laws can enforce the LOS angles 

and LOS angle rates to approach zero in a finite time to 

satisfy the attack angle constraint. Similarly, the terminal 

overload requirements of these two guidance laws are both 

small and close to zero in the end. It can be easily observed 

that the convergence rates of sliding mode surface, LOS 

angle, LOS angle rate, and overload of ESODSC are all 

slower than those of NTSM. However, the convergence 

stability of ESODSC is better than NTSM, and the 

parameters variation of ESODSC is smaller than NTSM. 

In the first half of simulation, drawing a comparison 

between ESODSC and NTSM, the convergence rates of 

sliding mode surface and missile-target LOS angle in 

ESODSC are faster. Besides, missile-target LOS angle rate 

and overload of ESODSC are larger. After a period of time, 

the convergence rates of the above indices of NTSM exceed 

the ESODSC. The reason for these phenomena is that the 

ESODSC is designed with a fast power reaching law. When 

the tracking error of system state is large, the exponential 

reaching term of ESODSC is dominant, then, the rapid 

increase of the control quantity not only improves the 

convergence rate, but also reduces the tracking error. At this 

time, the exponential reaching term of ESODSC is better than 

the constant reaching term of NTSM in terms of reaching 

speed. With the decrease of tracking error, the power 

reaching term of ESODSC takes the leading role, which leads 

to the diminution of control quantity and the slow 

convergence rate. In the mean while, the constant reaching 

term of NTSM is larger, which results in that the control 

quantity and convergence rate of NTSM exceed those of 

ESODSC. Along with the further decrease of tracking error, 

the system states converge to the sliding mode surface and 

approach near zero. Since the two kinds of guidance laws 

adopt the same non-singular terminal sliding mode surface in 

the form and parameter setting, the convergence performance 

is almost the same in the end. 

However, the miss distance and terminal attacking angle 

are the two critical indices, which directly determine the 

attacking effect. As can be seen from Table Ⅲ , the 

convergence times of sliding mode surface, LOS angle rate 

and LOS angle of NTSM are smaller than those of ESODSC. 

The reason for these phenomena is that the value of constant 

reaching term of NTSM is larger. However, because the 

NTSM does not consider the autopilot dynamic lag, the 

above indices will fluctuate after convergence, and 

divergence will occur before hitting the target, which may 

cause the large miss distance and angle error. In Table Ⅳ, the 

miss distances of NTSM and ESODSC are 0.6103m and 

0.1066m, respectively, and the LOS angle errors of NTSM 

and ESODSC are -1.42º and 0.03º, respectively. The above 

analysis shows that compared with traditional nonsingular 

terminal sliding mode, the guidance law presented in this 

paper can get smaller miss distance and more precise preset 

attack angle, which has a better attack effect on the target. 

VI. CONCLUSION 

Considering autopilot dynamic lag, a guidance law with 

attack angle constraint is proposed by nonsingular terminal 

sliding mode control and dynamic surface control. The ESO 

with improved fal function is applied for estimating the 

derivatives of virtual control quantities and disturbance terms. 

According to Lyapunov stability theory, it is proved that all 

states in the closed-loop system converge into a little 

neighborhood near zero in finite time. Accordingly, 

simulation results indicate that the proposed guidance law is 

able to intercept stationary and maneuvering targets at 

desired attack angle within a finite time. 
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