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Abstract—An approach to extract distinctive statistical fea-
tures embedded in current and power signatures of different
electrical appliances to substantiate efficacious classification
for non-intrusive load monitoring (NILM) is presented in this
letter. Supervised classifiers - naı̈ve Bayes, multi-class support
vector machine (SVM), ensemble, binary decision tree (DT) and
discriminant analysis are employed for performance evaluation
based on the extracted feature values. The testbed is COOLL
NILM public dataset constituted by 42 devices of different
power ratings. The training and testing accuracies along with
cross-validation losses associated with each classification algo-
rithm are determined. As a comparative analysis, binary DT
classifier produces the best results. Performance assessment
corroborates the reliability of the proposed framework for
NILM applications.

Index Terms—Current and power signatures, load disaggre-
gation, NILM, statistical features, supervised classifiers

I. INTRODUCTION

NON-intrusive load monitoring (NILM) determines indi-
vidual energy consumption profile of different electrical

appliances of a residential or commercial building without
accessing to the individual components. Using a single-
point sensor, this technique discerns the individual loads by
disaggregating the accumulated energy consumption data on
the basis of some methodological approaches. In the age of
emerging smart grid technologies, sophisticated home energy
management systems and efficacious utility infrastructures,
NILM yields to be a crucial tool for reliable and inexpensive
smart metering systems.

The concept of non-intrusive appliance load monitoring
(NIALM) or NILM was first introduced by George W. Hart
[1]. In recent years several novel methodologies have been
proposed, which can significantly contribute in regard to non-
intrusively load disaggregation [2] - [18]. In this letter, a
novel approach to extract inherent statistical features of real-
time load signatures is articulated. Then these feature values
are applied for classification of different types of loads.
Comparative analysis is conducted for classification perfor-
mance of naı̈ve Bayes, multi-class support vector machine
(SVM), ensemble, binary decision tree (DT) and discriminant
analysis methods.
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Fig. 1. Device instances present in COOLL NILM public domain dataset

The testbed is the controlled on/off loads library (COOLL)
NILM public domain dataset [19]. There are 42 devices of
different brands and power ratings in total. Each device has
20 instances of data sets; hence there are 840 datasets in
the entire database. Current and voltage data of 6 s with
100k samples per second are present in every set. This work
focuses on current and power datasets, where power data are
obtained by multiplying corresponding voltage and current
data. The devices are of major residential load types. Fig.
1 presents the device types and number of device instances,
those constitute the test database.

This work analyzes the current and power signals of
the devices and extracts six distinctive statistical features-
interquartile range (IQR), crest factor (CF), variance, kurto-
sis, 6th order moment and mean absolute deviation (MAD).
Based on these feature values, a classification model com-
prising 42 classes is developed and tested in MATLAB R© .
Five supervised machine learning classification algorithms
are applied for comparative premises of the model perfor-
mance. 90 % of the database is employed as the training data,
whereas 10 % is employed as the testing data for both current
and power signatures classification. However, binary DT
classifier generates the best classification accuracy for both
current and power data among the applied algorithms. For
current data, the best classification accuracy obtained from
the proposed 6-feature test system is 92.2619 % with the
least cross-validation loss of 0.1132. For power data, the best
classification accuracy obtained from the proposed 6-feature
test system is 86.9048 % with the least cross-validation loss
of 0.1825. However, the best training accuracies for both
current and power data obtained from the 6-feature system
are 97.2039 % and 95.5026 % respectively.

This letter reports extraction of potential statistical feature
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TABLE I
EXTRACTED FEATURE COMPONENTS

Index Features

1 Interquartile Range (IQR)

2 Crest Factor (CF)

3 Variance

4 Kurtosis

5 6th Order Moment

6 Mean Absolute Deviation (MAD)

components from COOLL NILM dataset for both current
and power data, which is not reported in the previous NILM
works. However, the features are determined by intricate
experiments and analysis of the load signatures. This letter
presents performance comparisons of different supervised
classifiers for NILM applications. The classification model
is a multi-class system, which produces very considerable
classification accuracies for both types of load signatures.
The device classification accuracies obtained here are very
comparable with and most cases are superior to those re-
ported in the earlier NILM frameworks.

The remainder of the manuscript is organized as follows.
Section II describes the extracted statistical feature compo-
nents. Section III explains the supervised classifiers, the de-
veloped classification model and the performance evaluation
of the applied classifiers for both current and power data.
Finally, Section IV concludes the letter.

II. STATISTICAL FEATURES EXTRACTION AND ANALYSIS

Statistical analysis is employed to determine potential
features from the current and power signatures of the device
samples. Table I shows the extracted feature components.
The proposed features are described in this section.

Interquartile Range (IQR):
IQR refers to the difference between the value below which
lie 25 % of the total data, and that below which lie 75
% of the total data. IQR is a measure of variability, based
on dividing a distribution (dataset) into quartiles. Quartiles
divide the distribution into four equal parts. The values that
divide each part are called the first (Q1), second (Q2) and
third (Q3) quartiles. Q1 is the middle value of the first half
of the distribution. Q2 is the median value and Q3 is the
middle value of the second half of the distribution. IQR is
equal to Q3 −Q1.

Crest Factor (CF):
For a waveform, CF is defined as the ratio of the peak value
to the effective value. In case of electrical current signal, CF
is measured by the ratio of the instantaneous peak current to
the root mean square (rms) current.

Variance:
Variance is a measure of how widely the points in a distribu-
tion (dataset) are spread about the mean value. Summation
of the squared terms denoting arithmetic differences between
each of the data points and the mean value of the distribu-
tion is divided by one less than the total number of data
points in the distribution to measure variance. For a sample
distribution, variance can be mathematically expressed as
σ2 = (s−µ)2

N−1 ; here σ2 is the variance, s denotes data points

of the distribution, µ is the mean value and N denotes the
total number of the data points or the size of the distribution.

Kurtosis:
According to statistical viewpoint, kurtosis is defined as a
measure of the combined weight of the tails relative to
the rest of a distribution (dataset). Thereby, for a normal
distribution kurtosis is found to be zero. The tail heaviness
of a sample distribution can be determined by kurtosis which
is mathematically expressed as k =

∑
(si−µ)4
Nσ4 ; here k is

the kurtosis, si denotes the ith value of s in the sample
distribution, µ is the mean value, N denotes the total number
of the data points or the size of the distribution and σ is the
standard deviation.

6th Order Moment:
The 6th order moment determines a similar measure like
the 2nd order moment (variance) but it focuses more on the
outliers (tails) of a sample distribution than the 4th order
moment (kurtosis). 6th order moment can be mathematically
expressed as o6 =

∑
(si−µ)6
Nσ6 ; here o6 is the 6th order mo-

ment, si denotes the ith value of s in the sample distribution,
µ is the mean value, N denotes the total number of the data
points or the size of the distribution and σ is the standard
deviation.

Mean Absolute Deviation (MAD):
The mean absolute deviation (MAD) of a sample distribution
(dataset) is the average distance between each value and the
mean value. It is mathematically expressed as m =

∑
|si−µ|
N ;

here m is the MAD, si denotes the ith value of s in the
sample dataset, µ is the mean value and N denotes the total
number of the data points. MAD measures the variability in
a dataset.

The ability of extracted features to discern different device
samples can be verified by analyzing the corresponding
feature values determined from the respective current and
power data. Then scatter plots of the feature values can be
generated taking a number of device instances in each plot.
Thereby, the quality of the proposed feature components
is verified and a good basis for an efficient classification
model is ensured. In this work, several scatter feature plots
considering different device samples are derived, and a few
of those are reported in this article. Figs. 2 - 7 present
scatter plots of extracted feature values from current and

Fig. 2. Feature values extracted from current data of ten device instances
(features 6, 4 and 3)
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Fig. 3. Feature values extracted from power data of ten device instances
(features 6, 3 and 2)

Fig. 4. Feature values extracted from current data of eleven device instances
(features 1, 5 and 2)

power data of a number of device instances. In each of these
scatter plots, three features are selected empirically. Figs. 2,
3 and 6 show feature values of the selected candidates for
ten device instances. Figs. 4 and 5 show feature values for
eleven device samples, whereas Fig. 7 shows feature values
for seven device samples. However, the device instances
considered for each figure are empirically chosen. Figs. 2,
4 and 6 present scatter feature plots for current data, and
Figs. 3, 5 and 7 present scatter feature plots for power data.

III. CLASSIFICATION MODEL AND PERFORMANCE
ANALYSIS

The developed classification model has 42 classes with a
training dataset constituting 90 % of the entire database and a
testing dataset constituting 10 % of the entire database. This
work studies five supervised classification algorithms and
evaluates their performance based on the extracted features.

A. Supervised Classifiers

The investigated supervised classification algorithms are
briefly explained as follows -

Naı̈ve Bayes:
Naı̈ve Bayes methods are a set of supervised learning algo-
rithms based on applying Bayes theorem with the “naı̈ve”

Fig. 5. Feature values extracted from power data of eleven device instances
(features 6, 3 and 2)

Fig. 6. Feature values extracted from current data of ten device instances
(features 6,4 and 3)

Fig. 7. Feature values extracted from power data of seven device instances
(features 6, 3 and 2)

assumption of conditional independence between every pair
of features given the value of the class variable [20]. Ac-
cording to [20], for a given class variable Y and dependent
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feature vector X1 through Xp Bayes theorem states that

P (Y |X1, ..., Xp) =
P (Y )P (X1, ..., Xp|Y )

P (X1, ..., Xp)
(1)

Applying the conditional independence assumption which
implies that

P (Xj |Y,X1, ..., Xj−1, Xj+1..., Xp) = P (Xj |Y ) (2)

For all j, the relationship can be simplified as

P (Y |X1, ..., Xp) =
P (Y )

∏p
j=1 P (Xj |Y )

P (X1, ..., Xp)
(3)

Naı̈ve Bayes classifiers tend to yield posterior distributions
that are robust to biased class density estimates, particularly
where the posterior is 0.5 (the decision boundary) [21]. Naı̈ve
Bayes classifiers assign observations to the most probable
class and the algorithm can be explicitly described as follows
[21]:

a. Estimates the densities of the predictors within each
class.

b. Models posterior probabilities according to Bayes rule.
For all k = 1, ....,K, it can be mathematically expressed as:

P̂ (Y = k|X1, ..., Xp) =
π(Y = k)

∏p
j=1 P (Xj |Y = k)

K∑
k=1

π(Y = k)
∏p
j=1 P (Xj |Y = k)

(4)
here Y denotes the class index of an observation, X1, ..., Xp

are the random predictors of an observation and π(Y = k)
represents the prior probability that a class index is k.

c. Classifies an observation by estimating the posterior
probability for each class, and then assigns the observation
to the class yielding the maximum posterior probability.

If the predictors constitute a multinomial distribution, then
the posterior probability P̂ (Y = k|X1, ..., Xp) ∝ π(Y =
k)Pmn(X1, ..., Xp|Y = k), where Pmn(X1, ..., Xp|Y = k)
is defined as the probability mass function [21]. Naı̈ve Bayes
classifiers require a small amount of training data to estimate
the necessary parameters [20]. These classifiers can be ex-
tremely fast compared to more sophisticated methods, since
the decoupling of the class conditional feature distributions
means that each distribution can be independently estimated
as a one dimensional distribution [20]. Thereby the problems
associated with dimensionality can be alleviated.

Multi-Class SVM:
Support vector machines (SVMs) are a set of supervised
learning methods used for classification, regression and
outliers detection, which are effective in high dimensional
space [20]. SVMs are versatile as regards of different Kernel
functions - linear, polynomial, radial basis function (RBF)
and sigmoid [20]. However, SVMs do not generate prob-
ability estimates directly and if the number of features is
much greater than the number of data samples, over-fitting
in selecting Kernel functions must be avoided [20]. An SVM
constructs a hyper-plane or set of hyper-planes in a high (or
infinite) dimensional space in where a good separation is
achieved by the hyper-plane that has the largest distance to
the nearest training data points of any class, called functional
margin. Generally the larger the functional margin is, the
lower the generalization error of the classifier becomes.
According to [20], [22] and [23], the mathematical formula-
tion to implement “one-versus-one” approach for multi-class

classification implies that for given training vectors xi ∈ Rp,
i = 1, 2, ..., n and y ∈ [1,−1]n, the primal problem can be
solved as:

min(
1

2
βTβ + C

n∑
i=1

ζi) (5a)

subject to, yi(βTφ(xi) + b) ≥ 1− ζi (5b)

the dual is: min(
1

2
αTQα− eTα) (5c)

subject to, yTα = 0 (5d)

here β ∈ Rp, C ≥ 0 is the penalty parameter (or regu-
larization parameter), ζi ≥ 0 denotes slack variables, φ(xi)
is the hyperplane equation, b is a real number, αi denotes
a parameter implying 0 ≤ αi ≤ C, Q is an n × n
positive semidefinite matrix and e is the vector of all ones.
Qij = yiyjK(xi, xj), where K(xi, xj) = φ(xi)

Tφ(xj) is
the Kernel [20], [22], [23]. Training vectors are implicitly
mapped into a higher dimensional space by the function φ.
According to [20], [22] and [23], the decision function is
expressed as:

sgn(
n∑
i=1

yiαiK(xi, x) + ρ) (6)

here ρ denotes intercepts. The Kernel chosen in this work is
RBF. According to [24], for a class of functions G(x1, x2)
with a property - G(x1, x2) =< φ(x1), φ(x2) >, where φ is
a function mapping x into a higher dimensional space; RBF
Kernel can be defined as:

G(x1, x2) = exp(−||x1 − x2||2) (7)

Ensemble:
Ensemble methods combine the predictions of several base
estimators built with a given learning algorithm in order
to improve robustness over a single estimator [20]. There
are two families of ensemble methods - averaging methods
and boosting methods [20]. The basic principle of averaging
methods is to develop several estimators independently and
then to average their predictions [20]. In this work an
averaging method named random forest (RF) classifier is
applied. RF is a classifier consisting of a collection of
tree-structured classifiers [h(x, θk), k = 1, 2, ...] where [θk]
denotes independent identically distributed random vectors
and each tree casts a unit vote for the most popular class at
input x [25]. In RF algorithm each tree in the ensemble is
built from a sample drawn with replacement from the training
set [20], [25]. In addition, when splitting a node during the
construction of the tree, the split that is chosen is no longer
the best split among all features whereas the split that is
picked is the best split among a random subset of the features
[20], [25]. As a consequence of this randomness, the bias of
the forest usually slightly increases but, due to averaging, its
variance also decreases, usually more than compensating for
the increase in bias, hence yielding an overall better model,
[20], [25].

According to [25], for an ensemble of classifiers
h1(x), ..., hK(x) and with a training set of random vectors
Y,X , the margin function can be defined as:

f(X,Y ) = akI(hk(X) = Y )−maxj 6=Y akI(hk(X) = j)
(8)
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TABLE II
TRAINING ACCURACIES (%) OF THE SUPERVISED CLASSIFIERS FOR THE INDIVIDUAL FEATURES FOR CURRENT DATA

Features Naı̈ve Bayes Multi-class SVM Ensemble Binary DT Discriminant analy-
sis

IQR 56.3988 44.3690 55.4643 54.5521 47.9167
CF 54.5714 51.7857 56.3988 58.2137 46.6845
Variance 51.4881 40.6190 53.3810 51.5669 46.2798
Kurtosis 58.1845 56.2500 55.3571 53.2417 54.0179
6th order moment 49.8810 39.1702 51.2798 52.1098 47.3512
MAD 53.1250 42.3567 53.2798 55.6667 47.5357

TABLE III
TESTING ACCURACIES (%) AND CROSS-VALIDATION LOSSES OF THE SUPERVISED CLASSIFIERS FOR THE INDIVIDUAL FEATURES FOR CURRENT

DATA

Features Naı̈ve Bayes Multi-class SVM Ensemble Binary DT Discriminant analysis
Features Testing

accuracy
(%)

Cross-
validation
loss

Testing
accuracy
(%)

Cross-
validation
loss

Testing
accuracy
(%)

Cross-
validation
loss

Testing
accuracy
(%)

Cross-
validation
loss

Testing
accuracy
(%)

Cross-
validation
loss

IQR 50.5952 0.4688 40.6905 0.6667 48.0476 0.5134 50.0134 0.4897 46.6190 0.5327
CF 47.8333 0.4926 42.2619 0.5283 48.6667 0.4998 47.7566 0.4902 44.0476 0.5506
Variance 50.0000 0.5104 33.6130 0.7105 51.8095 0.4993 53.3346 0.4719 46.4286 0.5565
Kurtosis 56.5476 0.4449 53.5714 0.4747 52.5952 0.4896 53.6767 0.4623 51.7857 0.5045
6th order
moment

40.5000 0.6810 31.3095 0.8201 44.5238 0.5827 47.5698 0.5567 35.9286 0.6518

MAD 50.1095 0.4697 42.3335 0.6602 49.9322 0.5034 50.2667 0.4898 45.6667 0.5517

here ak denotes the average number of votes at X,Y and
I(·) is the indicator function. The larger the margin is, the
more confidence lies in the classification. According to [25],
the generalization error is determined as:

δ = PX,Y (f(X,Y ) < 0) (9)

here PX,Y is the probability over X,Y space. For RF
classifiers, hk(X) = hk(X, θk) and according to [25], with
the increase in tree numbers it becomes converges to

PX,Y (Pθ(h(X, θ) = Y )−maxj 6=Y Pθ(h(X, θ) = j) < 0)
(10)

Binary Decision Tree:
Decision trees (DTs) are a non-parametric supervised learn-
ing method which creates a model that predicts the value of
a target variable by learning simple decision rules inferred
from the data features [20]. The premier advantages of
DTs are: they require little data preparation, they are able
to handle both numerical and categorical data, the cost of
predicting data is logarithmic in the number of data points
used to train the tree model, and they can handle multi-
output problems [20]. However, there are a few disadvantages
of DTs: they can create over-complex trees that do not
generalize the data effectively, they can be unstable due to
small variations in the data, and they create biased trees if
some classes dominate [20].

Binary DT classifier is capable of multi-class classifica-
tion on a sample distribution. The detailed mathematical
formulation of DT learning method is articulated in [20]. To
characterize the classification criteria, if the outcome takes
on values 0, 1, ...K−1, for node m representing a region Rm
with Nm observations and given training vectors xi ∈ Rm
and a label vector y, let us consider

Pmk = 1/Nm
∑

xi∈Rm

I(yi = k) (11)

be the proportion of class k observations in node m. Com-
mon measures of impurity are defined as -

Gini:

H(Xm) =
∑
k

Pmk(1− Pmk) (12)

Entropy:

H(Xm) = −
∑
k

Pmklog(Pmk) (13)

and Misclassification:

H(Xm) = 1−max(Pmk) (14)

where H(·) is an impunity function and Xm is the training
data in node m [20].

Discriminant Analysis:
Linear discriminant analysis (LDA) and quadratic discrimi-
nant analysis (QDA) are two classic methods of classification
for multi-class systems having closed form solutions, which
can be easily computed [20]. In this work, LDA is applied.
According to [20], LDA can be mathematically formulated
from probabilistic models, which characterize the class con-
ditional distribution of a sample data P (X|y = k) for each
class k. Using Bayes theorem,

P (y = k|X) =
P (X|y = k)P (y = k)

P (X)

=
P (X|y = k)P (y = k)∑
n P (X|y = n)P (y = n)

(15)

here class k is selected, which maximizes this conditional
probability. According to [20], for a more specific application
of LDA, P (X|y) is modeled as a multivariate Gaussian
distribution with density, which can be expressed as:

P (X|y = k) =
1

(2π)d/2|
∑
k |1/2

exp(−1

2
(X − µk)T

(
∑
k

)−1(X − µk))
(16)
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TABLE IV
PERFORMANCE ANALYSIS OF THE SUPERVISED CLASSIFIERS FOR THE PROPOSED 6-FEATURE SYSTEM FOR CURRENT DATA

Classifiers Training accuracy (%) Testing accuracy (%) Cross-validation loss

Naı̈ve Bayes 87.2024 85.1190 0.1607

Multi-class SVM 74.7024 67.2619 0.2961

Ensemble 93.1548 91.0714 0.1205

Binary DT 97.2039 92.2619 0.1132

Discriminant analysis 78.5714 76.7857 0.2649

TABLE V
TRAINING ACCURACIES (%) OF THE SUPERVISED CLASSIFIERS FOR THE INDIVIDUAL FEATURES FOR POWER DATA

Features Naı̈ve Bayes Multi-class SVM Ensemble Binary DT Discriminant analy-
sis

IQR 53.3898 44.3346 55.1079 55.2257 45.8847
CF 54.1023 50.6767 55.2286 56.3334 46.4387
Variance 49.5791 43.2556 51.0991 50.8883 45.1198
Kurtosis 52.0667 48.3838 53.6990 54.1212 53.5511
6th order moment 47.3367 41.0334 49.6667 51.6565 42.3890
MAD 50.8889 45.1274 53.5778 54.6559 47.0511

TABLE VI
TESTING ACCURACIES (%) AND CROSS-VALIDATION LOSSES OF THE SUPERVISED CLASSIFIERS FOR THE INDIVIDUAL FEATURES FOR POWER DATA

Features Naı̈ve Bayes Multi-class SVM Ensemble Binary DT Discriminant analysis
Features Testing

accuracy
(%)

Cross-
validation
loss

Testing
accuracy
(%)

Cross-
validation
loss

Testing
accuracy
(%)

Cross-
validation
loss

Testing
accuracy
(%)

Cross-
validation
loss

Testing
accuracy
(%)

Cross-
validation
loss

IQR 48.6643 0.4695 41.8732 0.6132 49.0556 0.5077 49.7566 0.4792 44.6313 0.5509
CF 48.1122 0.4899 41.3335 0.5376 50.0375 0.4391 50.2626 0.4388 44.3437 0.5167
Variance 48.9595 0.5202 36.6103 0.6801 50.8532 0.4995 51.1117 0.4533 42.7788 0.5675
Kurtosis 51.6334 0.4650 50.0778 0.4912 51.2432 0.4995 54.4467 0.4370 50.0059 0.4998
6th order
moment

39.1667 0.7033 39.2207 0.6988 43.7612 0.6035 47.0509 0.5611 34.9987 0.7266

MAD 49.1250 0.4808 40.6690 0.6931 48.5888 0.5067 50.1094 0.4933 45.5012 0.5549

TABLE VII
PERFORMANCE ANALYSIS OF THE SUPERVISED CLASSIFIERS FOR THE PROPOSED 6-FEATURE SYSTEM FOR POWER DATA

Classifiers Training accuracy (%) Testing accuracy (%) Cross-validation loss

Naı̈ve Bayes 81.7460 76.1905 0.2103

Multi-class SVM 71.2963 67.8571 0.3333

Ensemble 91.6488 80.5714 0.2085

Binary DT 95.5026 86.9048 0.1825

Discriminant analysis 73.6772 72.6109 0.2632

here d is the number of features and µk denotes the class
means. For LDA, the Gaussians for each class are assumed
to share the same covariance matrix:

∑
k =

∑
[20].

B. Performance Analysis for Current Data

Table II presents the training accuracy (%) of each su-
pervised classification algorithm obtained for the extracted
features for current data. It can be observed that for individ-
ual feature performance in case of training accuracy, naı̈ve
Bayes, multi-class SVM and discriminant analysis show
their most accurate classification performance for kurtosis,
whereas ensemble and binary DT show their most accurate
performance for CF. However, Table III presents the testing
accuracy (%) and cross-validation loss of each of the su-
pervised classification algorithms obtained for the features
extracted from current data. From the testing performance
analysis, it can be observed that the classifiers show their

most accurate performance with the least cross-validation
loss for kurtosis.

Table IV presents the performance analysis of the applied
supervised classifiers for the proposed 6-feature system for
current data. Based on the extracted statistical feature val-
ues, the most accurate results are obtained for binary DT
algorithm in where the training accuracy is 97.2039 %, the
testing accuracy is 92.2619 % and the cross-validation loss
is 0.1132. The least accurate results are obtained for multi-
class SVM in where the training accuracy is 74.7024 %, the
testing accuracy is 67.2619 % and the cross-validation loss
is 0.2961. In this work, 10-fold cross-validation losses are
measured for each testing case. The performance evaluations
are carried out in MATLAB R© .

C. Performance Analysis for Power Data

Table V presents the training accuracy (%) of each su-
pervised classifier obtained for the feature components for
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power data. It can be implied that for individual feature
performance in case of training accuracy, naı̈ve Bayes, multi-
class SVM, ensemble and binary DT show their most accu-
rate classification performance for CF, whereas discriminant
analysis shows its most accurate performance for kurtosis.
However, Table VI presents the testing accuracy (%) and
cross-validation loss of the classification algorithms obtained
for each feature derived from power data. From the testing
performance analysis, it can be observed that all of the
classifiers show their best performance for kurtosis.

Table VII presents the performance analysis of the applied
classifiers for the proposed 6-feature test system for power
data. Based on the extracted feature components, the most ac-
curate results are obtained for binary DT algorithm in where
the training accuracy is 95.5026 %, the testing accuracy is
86.9048 % and the cross-validation loss is 0.1825. The least
accurate results are obtained for multi-class SVM in where
the training accuracy is 71.2963 %, the testing accuracy is
67.8571 % and the cross-validation loss is 0.3333. Akin
to the current data analysis, 10-fold cross-validation losses
are measured for testing power data and the performance
evaluations are carried out in MATLAB R© .

IV. CONCLUSION

Non-intrusive load monitoring (NILM) is a significant
tool of modern smart grid systems and smart load metering
devices. Instead of using multiple sensors for measuring
load quantities (voltage, current and power) of multiple
electrical appliances, single-point sensor measurement yields
more efficient and cost-effective solutions. Therefore, NILM
emerges as a very important concept for recognizing indi-
vidual appliances from the accumulated energy data.

This letter proposes salient and discernible statistical fea-
tures extraction and performance evaluation of a classifi-
cation model developed based on the feature values for
NILM applications. The classification model comprises five
supervised algorithms - naı̈ve Bayes, multi-class support
vector machine (SVM), ensemble, binary decision tree (DT)
and discriminant analysis, which classify devices present in
COOLL NILM public domain dataset to disaggregate loads
in an effective way. The current and power signals recorded
from the devices are analyzed in this work. The extracted
features are - interquartile range, crest factor, variance, kur-
tosis, 6th order moment and mean absolute deviation, which
are applied to develop a 42-class classification model. From
a comparative analysis, it is observed that the binary DT
classifier performs most accurately with a testing accuracy
of more than 92 % for current data and a testing accuracy of
more than 86 % for power data. The performance evaluations
underscore the efficacy of the presented work for efficient
load disaggregation as regards of NILM applications.

The novelty of the presented NILM framework is the
statistical features based multi-class classification model for
current and power signatures recorded from different elec-
trical devices in COOLL dataset. The statistical features
are determined experimentally and comparative analysis of
several supervised classification algorithms are reported in
this letter, which have not been presented in the earlier NILM
works.
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