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ABSTRACT —  High uncertainty is one of the 

challenges faced by wartime spare parts supply because of the 

diversity of combat scenarios, the fluctuation of spare parts 

demands and the supply risk. Considering the uncertainty of 

scenarios and such parameters, a robust optimization model 

of wartime spare parts supply is constructed. In the model, the 

shortest lead time and the minimum shortage costs are 

considered simultaneously, which is formulated as a 

multi-objective optimization problem. The adaptive penalty 

function method is used for the unconstrained processing. A 

multi-objective differential evolution algorithm with improved 

evolution strategy is used to solve the model. The results of the 

example show that, on the one hand, the improved evolution 

strategy improves the performance of the algorithm to some 

extent. On the other hand, the optimal solution of the robust 

optimization model can guarantee the feasible of wartime 

spare parts supply in the "worst case", that is, the model has a 

good robustness. 

 

Index Terms— wartime, spare parts supply, uncertainty, 

robust optimization, multi-objective optimization, 

 

I. INTRODUCTION 

N the modern war, how to overcome the uncertainty in 

battlefield condition and send spare parts to the front line 

quickly and accurately is an important issue. There are 

many differences between spare parts supply in wartime 

and peacetime. In the peacetime, the factors, such as 

demands of spare parts and the risk of disruption, could be 

known by analysis and prediction. In the wartime, it is 

difficult to accurately predict the demands of spare parts. 

That is because that, first of all, the diversity of combat 

patterns lead to the regulation of equipment usage and 

damage are different in different combat scenarios. 

Secondly, the loss of spare parts in wartime is a competitive 

failure under both the action of degradation and battle 

damage [1]. 

There are lots of works focus on the spare parts supply 

in peacetime, but just few of researches have been done to 

deal with the spare parts supply in wartime. Ren et.al. 

assumed that the demands rate of spare parts obeyed a 

known probability distribution, and studied the spare parts 

supply optimization problem under the uncertain demand 

by using stochastic optimization [2]. Liu established a 

stochastic programming model of irreparable spare parts 

supply in wartime by chance constrained programming [3]. 
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It can be seen that, in terms of optimizing the supply of 

spare parts in wartime, uncertainty is one of the most 

challenges. There are few research works study the 

optimization of spare parts support in wartime from the 

aspects of uncertainty of spare parts demands, battle 

scenario and supply risk simultaneously. It is usually 

assumed that the demand of spare parts obeys the known 

probability distribution, which is not consistent with the 

real consumption of spare parts in wartime.  

When dealing with the uncertainty of logistics, the 

methods of stochastic optimization, fuzzy optimization and 

robust optimization are often used. Reference [4] dealt with 

the uncertainty of transportation cost and product quantity 

in reverse supply by establishing a multi-product and 

multi-level stochastic optimization model. However, in 

stochastic optimization, it is usually necessary to know or 

assume the distribution of uncertain parameters in advance. 

In reference [5], the influence of uncertainty of cost and 

demand rate on supply network was studied by using fuzzy 

optimization method. However, fuzzy optimization is 

usually difficult to solve, and it is difficult to guarantee the 

feasibility of the solution in the worst case. Thus, the robust 

optimization was proposed because it doesn’t rely on the 

distribution of uncertain parameters, and can guarantees the 

feasibility of the solution in the worst case. Reference [6] 

used robust optimization to solve discrete scenario 

uncertainties in logistics network design, and three robust 

optimization models: maximum cost, maximum repentance 

and relative repentance were compared. Reference [7] 

considered the static scenario uncertainty optimization 

method in supply networks, in which the random 

parameters belong to box-shaped or ellipsoidal uncertain 

sets. In reference [8], a hybrid robust optimization model 

for optimal design of biofuel supply chain was proposed. 

The uncertainty of the technology was expressed as an 

imprecise conversion rate, and expressed as a probability 

scenario. The literature [9] proposed a stochastic robust 

optimization model for a closed-loop supply chain network 

design that considered the lateral transfer as a response 

strategy to the operational and interrupt risk so that the 

network is resilient when the supply is interrupted. 

At present, robust optimization includes continuous 

uncertainty and discrete uncertainty, and most of research 

works just focus on single kind of uncertainty and single 

objective optimization problems. There is still a lot of 

improvement for combinational multi-objective robust 

optimization. In this paper, the optimization problem with 

continuous uncertainty such as spare parts demands and 

risk, as well as, discrete uncertainty of combat scenarios is 

studied. A multi-objective robust optimization model of 

spare parts supply in wartime is established, considering 

the minimum spare parts supply lead time and minimum 

shortage cost as the optimization objectives at the same 

time. 

Multi-objective Robust Optimization Model for 
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II. SUPPLY OPTIMIZATION MODEL WITHOUT 

UNCERTAINTY 

A. Problem Description 

In the classical three-echelon supply network, the 

spare parts are supplied from rear warehouses to the front 

line to meet the demands of battlefield repair. The field 

warehouses serve as distribution centers to receive spare 

parts from the rear warehouses and distribute them to 

combat units.  

This paper sets up a finite discrete set of task scenario 

 1,2, ,S s . In different scenario, the values of 

parameters such as cost and risk are quite different. Even in 

the same scenario, parameters such as the demands of spare 

parts is neither determined nor subject to a specific 

distribution. 

The model of spare parts supply in wartime must be 

based on the following assumptions: (1) this paper takes the 

supply of single kinds of spare parts as an example. In 

order to ensure the efficiency of emergency repair, 

replacement maintenance is adopted as the main 

maintenance method, and the demands of spare parts are 

equal to the quantity of replacement spare parts; (2) lateral 

transport between nodes is not taken into account; (3) in the 

supply network, the locations of each node are known; the 

transport time between rear warehouses to the field 

warehouses and between field warehouses to the combat 

units are known and fixed; (4) the risk of enemy attack only 

occur in the transportation between field warehouses and 

combat units, and the value of risk is uncertain. The overall 

maximum risk threshold of the whole supply network is 

known; (5) the rear warehouses have unlimited capacity 

and sufficient spare parts. The maximum capacity of each 

field warehouse is known and fixed; (6) the priority of 

combat units is the same, and the demand of spare parts of 

each combat unit is uncertain. The threshold of minimum 

spare parts fill rate of each combat unit is known. (7) since 

the more spare parts are supplied, the greater the risk is, 

this paper assumes that the risk is proportional to the 

number of spare parts; (8) in order to meet the requirement 

of spare parts for urgent repair task in the shortest time, 

only time and risk factors are considered, and other factors 

such as economy are not taken into account in military. 

B. Parameter Description 

L : index of rear warehouses， 1,2, ,l L ; I : index 

of field warehouses, 1, 2, ,i I ; J : index of combat 

units， 1, 2, ,j J ; S :index of scenarios, 1,2, ,s S ; 

iU : maximum capacity of the field warehouse i ; 
s

jd : 

The actual demand of spare parts of combat unit j under 

the scenario s ; liT : transport time of per unit spare parts 

supplied from rear warehouse l  to field warehouse i ; 
ijT : 

transport time of per unit spare parts supplied from field 

warehouse i  to combat unit j ; s

ijr : actual risk of supply 

from field warehouse i  to combat unit j  in scenario s ；
sr : risk threshold for the entire supply network in 

scenario s ; s

jc : unit shortage cost of the combat unit j  

in scenario s ;
sC : total shortage cost of the entire supply 

network in scenario s ;
s : the lowest threshold of demand 

fill rate, (0,1]s  ; lix : the amount of spare parts 

supplied from rear warehouse l  to field warehouse i ; ijy : 

the amount of spare parts supplied from field warehouse i  

to combat unit j ;  

C. Modeling 

The following mixed integer programming model is 

established by considering the model under certain 

conditions: 

  

m i n ( s g n ( ) ) ( s g n ( ) )l i l i i j i j

l i i j

T x T y T    
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min ( )s s s

j j ij

i j

C c d y            (2) 

s.t. 

0
ij
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s

j

y

d
  


              (3) 

s( ) 0s

ij ij

i j

y r r             (4) 

0li i

l

x U                 (5) 

0ij li

j l

y x                 (6) 

 0; 0, ,ij li ij liy x y x N             (7) 

1,2, ,s S                (8) 

The objective function (1) indicates that the total lead 

time of the supply network should be minimum in order to 

complete the supply task in the shortest time, 

0

2 sin
sgn( )

xt
x dt

t



   is a step function, when 

0x  , the value of the function is equal to 1, when 0x  , 

the value of function is equal to 0, and the value of function 

is -1 while 0x  ; The objective function (2) indicates that 

the total cost of spare parts in the supply network should be 

minimum in order to ensure the implementation of the 

emergency repair task; Formula (3) indicates that the total 

fill rate of spare parts should not be lower than the 

minimum threshold; Formula (4) indicates that the overall 

risk of spare parts supplying from  field warehouses to  

combat units should not exceed the maximum risk 

threshold; Formula (5) indicates the capacity limit of each 

field warehouse when the spare parts arrive from the rear 

warehouses to the field warehouses; Formula (6) indicates 

that the output of spare parts in each field warehouse 

should not exceed the amount of input. Constraint (7) 

defines the type of decision variable. In wartime spare parts 

supply, constraints (3)~(7) are hard constraints, that is, in 

any situation, the worst case within any range of 

uncertainty must be satisfied. 
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III. THE ROBUST OPTIMIZATION MODEL UNDER 

UNCERTAINTY 

In the above model, the demand of spare parts, the 

supply risk, the shortage costs of the combat units and the 

minimum fill rate of the spare parts are different in the 

different scenarios, which meet the discrete uncertainty. 

Meanwhile, even in the same scenario, due to the 

complexity of the battlefield environment, the actual spare 

parts demands and the actual risks of the supply are 

uncertain, which can be formulate as: 
s s s

j j jd d d   ,
s s s

ij ij ijr r r   , where, 

s

jd and 
s

ijr are nominal values,  is the continuous 

uncertainty parameter. Robust optimization needs to deal 

with the two kinds of continuous and discrete uncertainty in 

the model simultaneously. 

A. Robust Optimization Model with Uncertain 

Scenarios 

In the above model, lix and ijy are decision variables, 

s

jd , s

ijr , s

jc and
s are uncertain control variables. In 

each discrete scenario s ,  , , ,s s s s

j ij jd r c  is a set of 

constraints, and sP  is the probability of occurrence for each 

scenario, 
1

1
S

s

s

P


 . If the decision variables keep the 

objective function of the model optimal in any scenario, the 

optimality robustness is defined. If the decision variables 

make the model basically feasible in any scenario, the 

feasibility robustness is defined. In robust optimization, a 

trade-off between optimality robustness and feasibility 

robustness of the model is required. 

In the robust optimization model proposed by Mulvey, 

the balance between robustness of the solution and model 

are controlled by penalty function. Its objective function is 

represented as follows: 

1 2 1 2 smin (x, y , y , , y ) (z ,z , , z )s   (9) 

where the first term 1 2(x, y , y , , y )s  is used to 

measure the robustness of solution. The second 

term 1 2 s(z , z , , z )  is feasible penalty function which 

is used to describe the robustness of the model. ( )  is 

penalty function,  sz is the set of error vectors,  is 

penalty coefficient. 

In this paper, the following mean variance model is 

used in robust optimization: 
2

( ) ( )s s s

s s s

s S s S s S

P c P c P c 
  

          

(10) 
2

( ) ( )s s

s

s S

P d y


          (11) 

where the first term in formula (10) is the expected the 

shortage cost in discrete scenario, and the second term is 

the variance of shortage cost which is used to measure the 

range of variation of objective function. The formula (11) is 

the variance between the supply and the actual demand, 

which is used to punish the deviation of the scenario 

parameters. 

So the robust counterpart of objective function (2) is: 

2

2

min = ( )

( ( ) ( ))

( )

s s s

s j j ij

s i j

s s s s

s j j ij s j j ij

s i j s i j

s

s j ij

s i j

C Pc d y

P c d y Pc d y

P d y





 

 
    
 

  



 



 

(12) 

B. Robust Optimization Model with Uncertain 

Parameters 

Even in a certain scenario, the demand of combat 

units
s

jd  and the transport risk s

ijr  are still uncertain 

parameters, which can neither be expressed as constants nor 

be described by specific distributions. Thus, robust 

optimization is adopted to ensure that the requirements in 

the "worst case" can be met. 

Without losing generality, the basic form of linear 

robust optimization is as follows: 

min min

. . . .

,

CX t

s t AX b s t CX t

l x u AX b

l x u t R

  

  

  

  (13) 

where, the coefficient matrix C , A  and the vector 

b contain uncertain parameters. Taking uncertain 

coefficient matrix
1 2( ) ( , , , )ij mA a a a a  as an 

example, let iJ  is a set of subscripts for all columns of 

uncertain data in the i th row of the coefficient matrix
ija , 

and the uncertain parameters in the matrix can be expressed 

as ,ij ia j J .Therefore, the uncertain parameters in 

formula (13) are represented as follows:
ij ij ij ija a a  , 

0j j j jc c c   and 
i i i ib b b  ij J  . 

Where 
ija ,

jc and
ib  represent the uncertain 

parameters;
ija ,

jc , ib are defined as nominal 

values;
ija ,

jc and
ib are used as uncertainty 

scale;
ij ,

0j and i represent the uncertainty level, 

U  , where U is uncertainty set [10].  

Then the robust counterpart of model (13) is as follow 

[11]: 

U 0

U U

min

. . [max ]

[max ] max ( )

i

i

j j j j j

j j J

ij j ij ij j i i i

j j J

t

s t c x c x t

a x a x b b



 



 





 



  
  

  

  
   

  

 

 

 

(14) 

There are several types of uncertain sets in linear 

robust optimization, such as box, polyhedral, ellipsoidal, et 

al [12]. Their uncertainty sets are as follows, respectively: 
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   ,box iU j J     


       

 1
,

i

polyhedral i

J

U j J    
  

       
  


 

 
2 1/2

2
( )

i

ellipsoidal

J

U     
  

     
  

  

In the box-type uncertain set, when   is equal to 1, 

the uncertain set is interval uncertainty. In this paper, the 

demands and risks of spare parts in wartime are all 

expressed by interval uncertainty. Then, 

U 0max : 1
i i

j j j j j

j J j J

c x c x   
 

  
  

  
  . So the 

corresponding linear interval robust optimization 

equivalent model of model (13) is as follows: 

min

. .
i

i

j j j j

j j J

ij j ij j i i

j j J

t

s t c x c x t

a x a x b b





 

  

 

 

   (15) 

Based on the above derivation, the robust counterpart 

of objective function (12) is as follows: 

2

2

min

[( ) ]

[( ) ] [( ) ]

(( ) ) 0

s s s

s j j j ij

s i j

s s s s s s

s j j j ij s j j j ij
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


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  
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   
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

 



(16) 

The robust counterpart of constraint (3) is: 

( ) 0s s s

j j ij

j i j

d d y       (17) 

The robust counterpart of constraint (4) is: 
s( ) 0s s

ij ij ij ij

i j

y r r y r       (18) 

In this case, a constrained multi-objective robust 

optimization model for wartime spare parts supply under 

discrete scenarios is obtained as equation (19). 

 

C. Constraints Handling 

Before solving the fitness function constructed by the 

model (19) by using meta-heuristic algorithm, constrained 

handling process should be carried out firstly. Constrained 

handling is a key problem in multi-objective optimization. 

At present, the most common used methods can be classed 

in penalty function method, feasible rule based method, 

multi-objective method, and so on [13]. It is often difficult 

to select a reasonable rule for the feasible rules based 

method to balance the dominance of solutions and the 

degree of violation of constraints. The multi-objective 

method transforms the constraints into objectives, which 

greatly increases the difficulty of solving the problem. As 

the most common used algorithm, penalty function method 

has the characteristics of high feasibility and easy to be 
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(19)  

 

 

understood and calculated. Penalty function method 

includes stationary penalty function method, dynamic 

penalty function method and adaptive penalty function 

method. In literature [14], an adaptive penalty function 

method for evolutionary computation is presented. The 

constrained multi-objective optimization problem is 

transformed into an unconstrained multi-objective 

optimization, and then the multi-objective evolutionary 

algorithm is used to solve the constrained multi-objective 

optimization problem. 

Defining a new fitness function consists of distance 

and penalty terms: 

( ) ( ) ( )i i if z D z M P z            (20) 

where ( )if z represents the i th fitness function, ( )iD z  is 

the distance item, M  is penalty coefficient, ( )iP z is 

penalty term and z is individual vector. 

The constraint violation is defined as follows: 

1

( ) ( )
m

i j

j

v z c z


              (21) 

where, for inequality constraints, ( ) max(0, ( ))j jc z g z , 

and ( ) 0jg z   represents the j th unequal constraint. 

For equality constraints, ( ) max(0, ( ) )j jc z h z   , 

and ( ) 0jh z   represents the j th equal constraint, 

 is a very small positive number. 

The parameter fr  is used to represent the proportion 

of feasible individuals in the population. 

the number of feasible individual in population

the size of population
fr   

Then the distance item is defined as follows:  

 
2 2

( ) if 0
( )

( ) ( )

i f

i

i i

v z r
D z

obj z v z otherwise


 



 (22) 

where iobj  represents the i th objective function. 
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Define the punishment term as follows: 

( ) (1 ) ( ) ( )i f i f iP z r X z r Y z        (23) 

where
0 if 0

( )
( )

f

i

i

r
X z

v z otherwise


 


,

0 if isfeasible
( )

( ) otherwise
i

i

z
Y z

obj z


 


. 

 

IV. SOLUTION ALGORITHM 

Multi-objective evolutionary algorithm (MOEA), as a 

meta-heuristic algorithm, can solve multi-objective 

optimization problems effectively. Differential evolution 

(DE) algorithm is one of the widely used MOEA. In this 

paper, the improved multi-objective differential evolution 

algorithm is used to obtain the optimal solutions of the 

multi-objective optimization model by comparing the 

Pareto dominance relation between individuals. 

There are four basic steps when using differential 

evolution: initialization, mutation, crossover, and selection. 

Step 1 Initialization. The initial population is 

randomly generated, and the size of the population is N , 

the size of individual dimension is D . The elements, 

from
1ix  to 

iDx on the i th individual, represent the 

decision variable of the model. The individual elements of 

the initial population are as follows: 
0 (0,1) ( )l u l

ij j j jx x rand x x          (24) 

where u

jx and
l

jx are the upper and lower bounds of 

decision variables, respectively. (0,1)rand represents a 

uniform distributed random number between[0,1] . 

Step 2 Mutation. 
1 2, , ,t t t t

i i i iDx x x x is the i th 

individual vector in the t th iteration. The mutation 

individual 
1 2, , ,t t t t

i i i iDv v v v is generated according to 

the mutation strategy. 

At present, the most common used differential 

evolutionary mutation strategies are as follows [16]:  

(1) DE/rand/1: 

1 2 3( )i r r rv x F x x     

(2) DE/rand/2 : 

1 2 3 4 5( ) ( )i r r r r rv x F x x F x x        

(3) DE/best/1 : 

1 2( )i best r rv x F x x     

(4) DE/best/2 : 

1 2 3 4( ) ( )i best r r r rv x F x x F x x        

(5) DE/current-to-best/1 : 

1 2( ) ( )i i best i r rv x F x x F x x        

(6) DE/current-to-rand/1 : 

1 2 3( ) ( )i i r i r rv x rand x x F x x        

where 1 2 3r r r  , and [0,1]F   is the mutation 

coefficient. 

In the proposed mutation strategy, an idea of Archive 

Strategy was draw from the NSGA-II algorithm [17]. In 

this strategy an external archive is constructed to save and 

update the non-dominated individuals so far, and the niche 

technology is used to sort the non-dominated individuals in 

the archive. The process of mutate is as follows: 

1

2 3

( )

( ) ( )

ci elite rand

elite i rand i

v x F x x

F x v F x v

    

    
   (25) 

where ix  is the i th individual, and iv  is the 

corresponding mutation individual; elitex  is an elite 

individual selected from the external archive by niche 

technology, randx is a randomly selected individual from 

the external archive, and elite randx x . 

1 2 3c elite rand ix x x x      , 0i   and 

3

1

1 1,2,3i

i

i


  . 
3

1

= / 1, 2,3i i i

i

p p i


 , and 

1=1p ， 3 = (0.7,1)p rand ， 2 3= (0.5, )p rand p 。 

Eq. (25) can make full use of the information of the 

current population, as well as the information of the 

external archive, to ensure that the population moves to the 

elite individuals. 

Step 3 Crossover. The crossover individual vector 
t

iu is generated from the original individual 
t

ix  and the 

mutation individual 
t

iv by the crossover operation: 

, ( CR)

,

t

ij ijt

ij t

ij

v if rand
u

x otherwise

 
 


      (26) 

where, 
ijrand is an uniform distributed number 

between[0,1] , and CR [0,1] is the crossover rate. It 

can be see that the greater the value of CR , the greater 

the probability of cross operation is. 

Step 4 Selection. The values of fitness functions of the 

parental individual
t

ijx  and the crossover individual
t

iju  

were calculated respectively. According to the Pareto 

dominance relationship between them, the non-dominant 

individual is selected as the offspring individuals
1t

ijx 
. 

Step 5 If the termination condition is satisfied, the 

individuals in the external archive are selected as the final 

non-dominated solution set. Conversely, return to step 2. 

 

V. EXAMPLE ANALYSIS 

A. Mission Scenario 

The three-echelon supply network is composed of one 

rear warehouse, three field warehouses and five combat 

units. There is ether offensive scenario or defensive 

scenario that may be happened after the beginning of the 

battle. In the defensive scenario, enemy attack is fierce, 

equipment damage is serious, and the urgent repair task is 

heavy. So the demand of spare parts is larger, and risk of 

disruption of transportation is higher. In the offensive 

scenario, our side is in a dominant situation, and less 

vulnerable to enemy attack which lead to relative relaxed in 

demand for spare parts, as well as, relative low in the risk 

of supply disruptions. However, the shortage in offensive 

scenario will have great effect on the result of battle. So the 

shortage costs are larger in offensive scenario. The 

information about the supply network and its nodes are 

shown from Table I to Table VI, respectively. 
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TABLE.I 

LEAD TIME OF UNIT SPARE PARTS BETWEEN NODES 

 

field 

warehouses 

1 

field 

warehouses 

2 

field 

warehouses 

3 

rear warehouse 20 15 18 

combat units 1 1.5 1 1 

combat units 2 0.8 1.2 1 

combat units 3 0.6 1 1.2 

combat units 4 1.5 1.5 1.6 

combat units 5 0.5 0.3 0.6 

 
TABLE II 

INVENTORY CAPACITY OF THE DISTRIBUTION CENTER  

 
field 

warehouses 1 

field 

warehouses 2 

field 

warehouses 3 

Maximum 

capacity 
55 50 60 

 
TABLE III 

SPARE PARTS DEMANDS OF COMBAT UNITS 

 scenario 1 scenario 2 

combat units 1 [16,26] [4,10] 

combat units 2 [11,21] [2,6] 

combat units 3 [14,22] [6,10] 

combat units 4 [22,30] [8,12] 

combat units 5 [26,36] [9,15] 

 
TABLE IV 

RISK OF UNIT SPARE PARTS BETWEEN NODES 

 scenario 1 

 

scenario 2 

field 

warehouses 

1 

field 

warehouses 

2 

field 

warehouses 

3 

combat units 1 
(0.4,0.6) 

(0.2,0.5) 

(0.3,0.7) 

(0.1,0.3) 

(0.5,0.6) 

(0.2,0.3) 

combat units 2 
(0.1,0.3) 

(0.1,0.2) 

(0.3,0.6) 

(0.1,0.3) 

(0.4,0.7) 

(0.3,0.5) 

combat units 3 
(0.5,0.8) 

(0.1,0.2) 

(0.6,0.9) 

(0.2,0.5) 

(0.3,0.7) 

(0.1,0.3) 

combat units 4 
(0.5,0.9) 

(0.3,0.7) 

(0.2,0.6) 

(0.1,0.4) 

(0.2,0.4) 

(0.2,0.3) 

combat units 5 
(0.2,0.4) 

(0.1,0.2) 

(0.4,0.7) 

(0.2,0.5) 

(0.6,0.8) 

(0.3,0.6) 

 
TABLE V 

SHORTAGE COSTS OF UNIT SPARE PARTS IN COMBAT UNITS 

 scenario 1 scenario 2 

combat units 1 800 1000 

combat units 2 1600 2500 

combat units 3 1000 1800 

combat units 4 900 1600 

combat units 5 1500 2000 

 
TABLE VI 

THRESHOLD OF RELATED PARAMETERS OF THE SUPPLY 

NETWORK 

 scenario 1 scenario 2 

risk threshold 100 80 

total shortage loss 18000 22000 

Fill rate 0.90 0.95 

 

The simulation studies were carried out in a MATLAB 

2014b platform on an ASUS laptop with 5-6300HQ 

2.3GBz CPU, 4GB RAM in Windows 7.0(64-bit) 

environment. The relevant experimental parameters are set 

as follows: scenario probability 1 0.3sP  , 2 0.7sP  , 

scenario penalty coefficient 1000  , 10000   

[18], 10000M  , population size 100N  , the 

maximum iterations
max 300iter  , crossover probability 

CR 0.95 [19], mutation 

factor 1 2 3( , , ) (0,1)F F F rand . 

B. Result Analysis 

The multi-objective differential evolution algorithm is 

used to solve the model and the non-dominated solution set 

of the model is obtained. The evolutionary strategy 

proposed in this paper is compared with the other three 

traditional evolutionary strategies. Experiments are carried 

out 15 times under each algorithm, and their 

non-dominated solution sets are finally obtained. The 

distribution of the non-dominated solution in the objective 

space is shown in Figure 1. The transverse axis and the 

longitudinal axis represent two fitness functions, 

respectively. 

As can be seen directly from Figure 1, the results 

obtained by the evolutionary strategy proposed in this paper 

are widely and uniformly distributed in the objective space 

and also dominate the results of other strategies. That to say 

they have better convergence and distribution [20], and the 

improved mutation strategy improves the performance of 

the differential evolution algorithm and can well solve the 

proposed multi-objective robust optimization model. 

 
Fig.1 Comparison of non-dominated solutions 

 

Each non-dominated solution corresponds to a supply 

scheme, which can be substituted into the model to 

calculate the lead time of spare parts supply, the shortage 

costs, and the risk in each scenario. Due to the large 

number of non-dominated solutions, the solutions can’t be 

enumerated one by one, so the mean and variance of the 

results are shown in Table 7 and Table 8. 

As can be seen from the Table VII, the shortage costs 

and risks of each algorithm are below the prescribed 

threshold, and all of non-dominant solutions are feasible 

solutions. A negative shortage indicates that the number of 

supplied spare parts is greater than the demand. The 

improved algorithm can get the shortest average lead time 

of spare parts, and the risk and shortage of each scenario is 

the smallest, which shows that the improved algorithm is 

superior to other algorithms. On the other hand, it can be 

seen from Table VIII that the variance of the corresponding 

indexes with our strategy is smaller than that of other 

strategies, which shows that the proposed algorithm has 

good adaptability and stability to the proposed robust 

optimization model. 

 

 

 

 

Engineering Letters, 27:4, EL_27_4_17

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



TABLE VII 

MEAN VALUE OF THE RESULTS BY EACH ALGORITHM 

 
Lead 

time 

shortage 

cost in 

scenario 

1 

shortage 

cost in 

scenario 

2  

Risk in 

scenari

o 1  

Risk in 

scenari

o 2 

NO. of 

non-do

minant 

DE/rand/1 57.2 -10600 -20400 87.84 48.64 78 

DE/best/1 57.9 -10300 -21900 86.32 47.21 100 

DE/curren

t-to-best/1 
60.8 -8700 -16200 97.23 53.45 32 

Proposed 

strategy 
52.6 -18600 -27500 72.31 39.03 100 

 
TABLE VIII 

STANDARD DEVIATION OF THE RESULTS BY EACH ALGORITHM 

 
Lead 

time 

shortage 

cost in 

scenario 

1 

shortage 

cost in 

scenario 

2  

Risk in 

scenari

o 1  

Risk in 

scenari

o 2 

DE/rand/1 9.22 2.0953 3.1612 11.62 6.37 

DE/best/1 8.96 2.0879 3.2225 11.36 6.54 

DE/current-t

o-best/1 
5.62 1.5307 2.0805 10.54 5.96 

Proposed 

strategy 
6.01 1.5221 1.9870 9.88 5.92 

 

In order to verify the robustness of the robust 

optimization model in the case of scenario uncertainty, the 

optimal solutions of the robust optimization model are 

substituted into the deterministic model just considering 

scenario 1 or scenario 2, respectively. The results are shown 

in figure 2. It can be seen that the shortage and the risk does 

not exceed the prescribed threshold, that is, the robust 

optimal solution is feasible in the deterministic models. The 

proposed model has good robustness. 

 

 
Fig.2 Feasibility analysis of the optimal solution of robust optimization in 

each scenario 

In order to verify the robustness with parameter 

uncertainty, the optimal solutions of the robust optimization 

model are substituted into the deterministic model of 

parameter determination. In this paper, the robust 

optimization model is compared with three deterministic 

models. The parameters of the deterministic models are 

named the nominal value, the minimum value and the 

maximum value respectively. The results of lead time, 

shortage, and risk are shown in Table IX. 

It can be seen from Table IX that the risk and shortage 

in each deterministic model are lower than the prescribed 

threshold, and the optimal solutions of the robust 

optimization model are the feasible in each deterministic 

model. At the same time, the risk and shortage of the robust 

optimization model is higher than that of other 

deterministic models, which indicates the conservatism of 

the robust optimization model, that is, the feasible scheme 

to satisfy the worst case. 
TABLE IX 

CALCULATION RESULTS CORRESPONDING TO DIFFERENT 

UNCERTAINTY LEVEL OF DEMAND 

  
Lead 

time 

Shortage 

cost 
risk 

Nominal 

model 

scenario 1 52.6 -18600 72.31 

scenario 2 52.6 -27500 39.03 

Minimum 

model 

scenario 1 52.6 -19500 56.92 

scenario 2 52.6 -28200 32.74 

Maximum 

model 

scenario 1 52.6 -17600 75.82 

scenario 2 52.6 -24700 41.89 

Robust 

model 

scenario 1 52.6 -17500 76.16 

scenario 2 52.6 -24000 42.50 

 

VI. CONCLUSION 

In this paper, the high uncertainty of spare parts 

supply in wartime is considered. The robustness analysis is 

carried out from two aspects, scenario uncertainty and 

parameter uncertainty, at the same time. A multi-objective 

robust optimization model for spare parts supply in wartime 

is constructed, taking the minimum lead time and shortage 

cost as the optimization objectives, and take the fill rate and 

the risk conditions as constraints. The meta-heuristic 

intelligent algorithm with improved evolution strategy is 

used to solve the model. The effectiveness and advantage of 

the improved algorithm are verified by comparison 

experiments. By analyzing the results, it is found that the 

optimal solutions of the robust optimization model are 

feasible in the worst case of the conditions of scenario and 

parameter uncertainty. That to say the robust optimization 

model has good robustness when dealing with uncertain 

conditions of spare parts supply in wartime. The robust 

optimization model established in this paper provides a 

certain decision-making frame for the optimization of spare 

parts supply under uncertain conditions in wartime. 
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