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Abstract—The H  synchronization problem of coupled delay 

partial differential systems (PDSs) with hybrid coupling is 

addressed in this paper. By using the nonsingular 

transformation method and pinning control, the coupled PDSs 

is decoupled to simplify the complex H  synchronization 

problem, several H  synchronization criteria are obtained. 

Furthermore, the asymptotical synchronization problem is 

studied when the external disturbances disappear. The 

relationship between the H synchronization and the 

asymptotical synchronization is also presented. Finally, an 

example of digital simulation elucidates the practicability and 

validity of the theoretical results. 

Index Terms— H synchronization, partial differential 

systems, hybrid coupling, nonsingular transformation method, 

pinning control 

I. INTRODUCTION 

OMPLEX networks are  ubiquitous in nature and human 

society. Such as ecosystems, food web, communication 

network.  Synchronization is an important feature of complex 

networks, which means that two or more times varying 

quantities maintain certain relativity in the process of change.  

Synchronization can be seen everywhere, such as fireflies, 

yeast cells, image processing. Just a few, synchronization is 

skillfully used to solve many practical problems. Various 

synchronization patterns have been extensively studied by 

scholars at home and  abroad[1-39]. 

Delays are inevitable due to the limited propagation 

velocity, traffic congestion, the technical level and other 

objective factors. Time delay exists objectively during the 

information transmission of complex networks. Ignoring it 

will result in the inconformity of the theoretical analysis and 

the actual situation and produce the erroneous results. Hence,  

Synchronization of complex dynamical networks with 

time-delay has received increasing attention[1-27].  

The phenomena that are related to time and space can be 

modeled by PDSs.  Recently, the research on synchronization 

of complex dynamic networks with PDSs has aroused great 

interest of scholars， many breakthroughs have occurred in 

this field[16-18, 20, 26, 34-36].  

Noise, broadly speaking, is a signal of harmful interference 

other than useful signals in a communication system. It is  
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well known that communication noise is ubiquitous in the  

process of signal transmission, it can cause a system to enter 

an unpredictable state and reduce the performance of the 

system, even disrupt synchronization. Therefore, it is very 

important to study the anti-interference ability of the complex 

network, namely H  synchronization. In 2007, Y-Y Hou et 

al. first proposed the strict mathematical definition of H  

synchronization, they studied the H  synchronization by 

using the Lyapunov function method [38]. Their pioneering 

work had made great progress in the study of H  

synchronization. 

K-N Wu studied the H  synchronization problem of the 

coupled time delay PDSs and obtained sufficient conditions 

to guarantee the H  synchronization[25]. However, it is very 

difficult to prove the matrix inequality with nN nN  

dimensions when the number of subsystems is fairly large. C. 

Li and G. Chen decoupled the general complex dynamic 

network with coupling time-delay by using the nonsingular 

transformation method and obtained the matrix inequality 

synchronous criteria with n n  dimensions[23]. Inspired by 

nonsingular transformation method, K-N Wu et al. studied 

the H  synchronization problem of PDSs[26]. This method 

subtly reduces the dimension of the matrix and makes the 

proof   easy. 

Nevertheless, the model in [26] remains to be improved. 

On the one hand, the author only considered the state 

coupling term without taking the spatial diffusion coupling 

term into consideration. On the other hand, the author didn’t 

implement any control methods for the H  synchronization 

of the PDSs. In fact,  since  it is impossible to add controller 

to all the nodes, pinning control is an effective control 

strategy, especially for the large-scale network. In the last 

few years, pinning control techniques have been widely 

adopted to guarantee the synchronization of the network 

models [28-35]. 

Inspired by the above analysis, we considered the H  

synchronization of coupled delay partial differential systems 

with hybrid coupling via nonsingular transformation method 

and pinning control. The contributions of this paper are the 

following aspects:  

(1) We add the spatial diffusion coupling term, which 

makes the model more general in comparison with the model 

in [26]; 

 (2) We add pinning controller on the first l  nodes, which 

will effectively promote synchronization; 

 (3) By using nonsingular transformation method, we 

obtained several sufficient conditions to guarantee the H  

synchronization of coupled delay PDSs. Obviously, our 

research methods are different from those of literature [26]. 
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The remainder of this paper is organized as follows. In 

section 2, some preliminaries and notations are given. In 

section 3, the sufficient conditions on H  synchronization of 

the coupled PDSs via nonsingular transformation method are 

provided. In section 4, an example of digital simulation is 

used to elucidate the practicability and validity of our control 

method and the correctness of the theorem. Finally, 

conclusions are drawn. 

II. MODEL DESCRIPTION AND PRELIMARIES 

In this paper, we consider the following disturbed coupled 

delay PDSs 
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where 
1 2( , , )T n

i i i iny y y y R   is the state variable of 

the ith subsystem, ( , )x t  are the spatial variable and time 

variable, and ( , ) n

i x t R   stands for the spatial-temporal 

disturbance which satisfies 
0

( , ) ( , )T

i ix t x t dxdt 



   . 

In a general way, we assume that the spatial domain be p 

dimensional, that is, 1 2( , , , ) P

px x x x R  . The 

function : n nf R R  is smoothly nonlinear. The 

coefficients n nB R  , 
1

n nD R  and
2

n nD R 
 are 

constant matrices. The positive constant c  represents the 

coupling strength. ( )ij N NG g   is the outer coupling 

matrix of the PDSs, which  describes the coupling strength 

between node i  and node ( )j i j . If there is a link 

between node i  and ( )j i j , 0,( )ij jig g i j   , 

otherwise, 0,( )ij jig g i j   ,  and  
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The positive constant   represents the time delay of 

information transformation among subsystems. The Laplace 

operator   is defined as follows 
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The boundary condition and initial value of the coupled 

delay PDSs are given as follows 

( , ) 0, , ( , ) ( , ), [ ,0].i i iy x t x y x t x t t       

And ( , )iu x t  is the pinning controller of the ith subsystem, 

which is defined as follows 

( , ) ( , ),i i iu x t e x t                           (3) 

where 

 
, 1,2, , .

0, 1, , .
i

i l

i l N





 

 
                         (4) 

where   is the pinning control gain. 

Remark 1. Because the coupling configuration represents 

the exchange of information between nodes, for state 

coupling and spatial diffusion coupling, a node has the same 

communication as its neighbors. We assume that the outer 

coupling matrices of state coupling term and spatial diffusion 

coupling term are the same.  

The disturbed coupled delay PDSs (1) achieves 

synchronization if 

1 2( , ) ( , ) ( , ) ( , ),Ny x t y x t y x t s x t t     , 

where ( , ) ns x t R  is the solution of an isolated node, 

which satisfies the following equation 

( , )
( ( , )) ( , ), , 0,

s x t
f s x t B s x t x t

t


    


      (5) 

In which 

2

2
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( , )
( , )

p

k k

s x t
s x t

x


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
 . The corresponding 

initial value and boundary conditions of system (5) are 

( , ) 0, , ( , ) ( ), [ ,0].s x t x s x t x t       

  The synchronization error is defined as 

( , ) ( , ) ( , ).i ie x t y x t s x t   

A direct calculation yields the following synchronization 

error dynamics  
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Here and in the sequel, the variables ( , )x t  are suppressed 

for convenience. Clearly, the synchronization problem of 

N-coupled delay PDSs in (1) is equivalent to the stabilization 

problem of synchronization error dynamics in (6). 

  By the linearization of (6), we can get the following 

system 

1
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where ( , )J J x t  is the Jacobian matrix of ( )if y  at 

( , )s x t , that is '( ( , ))J f s x t . 

Let 
1 2( , , , ) n N

Ne e e e R   ，  
1 2( , , , ) n N

N R      , 

then we have 

1 2( , ) ,T Te
Je B e cD e x t G cD eG e

t
 


         


(7) 

where { , , , ,0, ,0}

l N l

diag   



  . 

 The following lemma will be used to decouple the coupled 

synchronization error dynamics in (6). 

Lemma 1. [39] Assume that a matrix G is irreducible and 

symmetric and satisfies the restriction (2). Then there is an 

unitary matrix 1 2( , , )N    , such that 

, 1,2, ,T

k k kG k N    , 
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Where , 1,2, , ,i i N   are the eigenvalues of matrix G. 

Remark 2. The matrix   is an orthogonal matrix, that 

means 1 T  . 

  According to Lemma 1, there exists unitary matrix 

1 2( , , ) n N

N R      ， such that TG   , where 

1 2{ , , , }.Ndiag      

Taking  

1 2( , , ) ,n N

Nv e v v v R    

1 2( , , ) ,n N

N R          

1 .n NR     

We get the following system 

1 2( , ) ,
v

Jv B v cD v x t cD v v
t

 


         


 (8) 

  In virtue of   is a symmetric matrix, so there is an 

orthogonal matrix ,N NU R   makes the matrix TU U  

become a diagonal matrix , i.e., ,TU U   where 

1 2{ , , , }.Ndiag      

Then we have 
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  From (9), we can get the following N-decoupled systems  

1 2( , ) ,i
i i i i i i i i i

v
Jv B v c D v x t c D v v

t
    


        


 (10) 

Definition 1. The disturbed coupled delay PDSs (1) 

achieves the H  synchronization with a disturbance 

attenuation 0   , if the following inequality holds when 

( , ) 0, [ ,0],ie x t t     
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Lemma 2.[27] Let   be a cube: ( 1,2, , )i ix l i p  , 

( )h x  be a real-valued function belonging to 
1( )C   which 

vanish on the boundary    of  , i.e..， ( ) 0h x   , 

then 
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Lemma 3.[26] Let   be a cube: ( 1,2, , )i ix l i p  , 

1 2( ) ( ( ), ( ), ( )) n

nz x z x z x z x R   be a function which 

belongs to 
2 ( )C   and vanish on the boundary of  , then  

2
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T T

k k

z x z x dx z x z x dx
l 


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Lemma 4.[26] The H  synchronization problem of 

N-coupled PDSs (1) is equivalent to the H  synchronization 

problem of N decoupled systems (10). 

 

III. H  SYNCHRONIZATION AND ASYMPTOTICAL 

SYNCHRONIZATION OF COUPLED DELAY PDSS 

In this section, the H  synchronization of coupled delay 

PDSs (1) is discussed via the H  stabilization problem of 

N-decoupled systems in (10). By using the nonsingular 

transformation, a lower dimensional matrix inequality 

criterion is obtained. The asymptotical synchronization of 

coupled delay PDSs (1) is considered as the asymptotical 

stability of N-decoupled systems in (10) when the external 

disturbance is ignored. 

Theorem 1. If there exist two series of symmetric positive 

definite matrices iP  and , 1,2, , .iQ i N ,  satisfying  

0,iPB                                 (12) 

2 0,i iPD                                (13) 

and the following LIMs 
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Then the coupled delay PDSs (1) is in H  

synchronization with a given external disturbance attenuation 

lever 0.   
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By virtue of Lemma 4, we know what we need is to verify 

the H  stabilization of N-decoupled systems (10).  Therefore, 

we need the inequality (11).  

Noting ( ( ,0)) 0V v   , we have 
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Keeping (10) in mind, we can get 
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  Substituting (14) and (15) into (12), we obtain  
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In light of condition (14), we know that the inequality (11) 

is satisfied, and that  completes the proof.  

 It is clear that the asymptotical synchronization of coupled 

delay PDSs (1) is equivalent to the asymptotical stabilization 

of decoupled systems in (10), that is, when 

0, ( , ) 0i i iv x t     as t   if and only if 

( , ) 0ie x t   as t  , since   is nonsingular. 

The following theorem concerns on the asymptotical 

synchronization of the coupled delay PDSs (1) with 0.i   

Theorem 2. Assume that there exist two series of 

symmetric positive definite matrices iP  and 

, 1,2, , .iQ i N ,  such that 

0,iPB                                 (20) 

2 0,i iPD                               (21) 

and the following LIMs  
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    (22) 

then the coupled PDSs (1) achieves the asymptotical 

synchronization. 

  Taking the Lyapunov function and using the similar 

technique, in light of conditions (20), (21) and (22), we can 

get that ( ( , )) 0,V v t   which yields the asymptotical 

stabilization of decoupled systems in (10) with 0i   .We 

can complete the proof by the equivalence of the 

asymptotical synchronization of the coupled systems in (1). 

We omit the details. 

Remark  3. From the conditions (14) and (22), we can get 

that the smaller 1 2, , , ,pl l l  the easier to achieve the  H  

synchronization or the asymptotical synchronization.  

Remark 4. When 
0

,T

i idxdt 



    i. e., the 

spatial-temporal disturbances are of finite energy 

2

0 0
.T T

i i i ie e dxdt dxdt  
 

 
       

Then we get 0T

i ie e dxdt


  as ,t   and the 

asymptotical synchronization follows. Which means the H  

synchronization implies the asymptotical synchronization in 

the case of finite-energy disturbance. 

  From the criteria (14) and (22), we also get the same 

relationship. Actually, inequality (22) means 

2
1

1
2 2( )

p
T

i i i i i i

k k

J P PJ Q P PB
l




      

2 2 1

2 1 12
1

1
2 ( ) 0.

p
T

i i i i i i

k k

c PD c PD Q D P
l

  



    

The above inequality can be derived by the criterion (14), 

then we get that the criteria are in accordance with the result 

of the definitions. 

Remark 5. The criteria of theorem 1 and 2 are easier to be 

verified by using the nonsingular transformation method 

because the dimension of the matrix is significantly reduced 

from Nn Nn  to n n . 

IV.   NUMERICAL EXAMPLES 

In this section, we give an example to elucidate the 

practicability and validity of our control method and the 

correctness of the theorem. 

Consider the following disturbed coupled delay PDSs 
3

1 1 2

1

( , , 0.6)i
i i ij j

j

y
y B y c g D y x x t

t 


     


  
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3

2 1 2 1 2

1

( , , ) 0.5sin( )cos( )ij j

j

c g D y x x t x x it


    

,i ie                1,2,3.i                                (23) 

The initial values are 

1 1 2 1 2

2 1 2 1 2

3 1 2 1 2

( , , ) 5sin(2 )sin(3 )cos(2),

( , , ) 2sin(2 )sin(3 )sin(2),

( , , ) sin(2 )sin(3 ) tan(2),

y x x t x x

y x x t x x

y x x t x x

 

 

 





 

 

for [ 0.6,0].t    

The boundary conditions are 1 2( , , ) 0, ,iy x x t x   where 

[0,0.5] [0,0.5], 1,2,3.i   The synchronization function 

1 2( , , )s x x t  satisfies ,
s

s B s
t


   


with the initial value 

1 2 1 2( , ,0) 2sin(2 )sin(3 )cos(2),s x x x x   let 1 2 1 2( , , ) ( , ,0)s x x t s x x  

for [ 0.6,0].t   The corresponding boundary condition is 

1 2( , , ) 0,s x x t x  .Take 1 20.00004, 0.1, 0.01, 0.0001,B c D D    

1 2 32, 0.      and the outer coupling matrix 

2 1 1

1 2 1 .

1 1 2

G

 
 

  
  

 

It is not difficult to see that 1 2 0.5.l l    

Take 1 2 3 1 2 31, 1, 0.00032.p p p Q Q Q        

We can verify that inequality in theorem 1 holds.  

The coupled delay systems (23) achieves the asymptotical 

synchronization according to the relationship between the 

H  synchronization and asymptotical synchronization when 

the external disturbance disappears. 

 

1(1 ) , 0a y s t   

 

1(1 ) , 0.1b y s t   

 

1(1 ) , 0.2c y s t   

 

 

1(1 ) , 0.3d y s t   

 

 

1(1 ) , 0.4e y s t   

 

 

1(1 ) , 0.5f y s t   
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1(1 ) , 1g y s t   

 

1(1 ) , 1.5h y s t   

 

 

1(1 ) , 2i y s t   

 
Fig1. The errors of the first node of PDSs (23) without disturbances at  
0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2.t t t t t t t t t          

 

 

2(2 ) , 0a y s t   

 

 

2(2 ) , 0.5b y s t   

 

2(2 ) , 1c y s t   

 

2(2 ) , 1.5d y s t   

 

2(2 ) , 2e y s t   

 

2(2 ) , 2.5f y s t   

Fig2. The errors of the second node of PDSs (23) without disturbances at 

0, 0.5, 1, 1.5, 2, 2.5.t t t t t t       
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3(3 ) , 0a y s t 

 

3(3 ) , 0.5b y s t   

 

3(3 ) , 1c y s t   

 

3(3 ) , 1.5d y s t   

 

3(3 ) , 2e y s t   

 

3(3 ) , 2.5f y s t 

 

3(3 ) , 3g y s t   

 

3(3 ) , 3.5h y s t   

 

3(3 ) , 4i y s t   

 

3(3 ) , 4.5j y s t   
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3(3 ) , 5k y s t   

Fig3. The errors of the third node of PDSs (23) without disturbances at 

0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5.t t t t t t t t t t t            

Figs. 1-3. illustrate the asymptotical synchronization . 

 

 

1(4 )a y s  

 

2(4 )b y s  

 

3(4 )c y s  

Fig. 4.The errors of PDSs (23) without disturbances along time at 2 0.3.x   

 

Fig. 4 illustrates the asymptotical synchronization by the 

synchronization errors along the time t when one of the 

spatial variables is fixed. 

 

Remark 6. From the Figs.1-3, we can see that the 

synchronization errors , 1,2iy s i   of the first two nodes 

which are controlled by pinning controllers converge to zero 

faster than the third node which is not controlled by pinning 

control,  the convergence effect of the first two nodes is 

superior to the third one,  which indicates pinning control is 

an efficient control method for the coupled delay PDSs with 

hybrid coupling. 

 

V. CONCLUSION 

The H  synchronization problem of coupled delay partial 

differential systems (PDSs) with hybrid coupling via 

nonsingular transformation method and pinning control is 

addressed in this paper. Sufficient conditions are obtained to 

guarantee the H  synchronization by exploiting the 

Lyapunov functional method and some inequality techniques. 

The relationship between asymptotical synchronization and 

H  synchronization is also presented for coupled delay 

PDSs. The effect of spatial domain on the H  

synchronization is pointed out and the advantage of the 

nonsingular matrix transformation in investigation of the  

H  synchronization is also stated. Finally, an example of 

digital simulation is used to elucidate the practicability and 

validity of our control method and the correctness of the 

theorem. 
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