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 
Abstract— In the present paper some aspects of the global 

dynamical behavior of a new SEIRS epidemic model with 
nonlinear incidence rate, non-permanent immunity and an 
additional epidemic-induced death rate are presented. More 
specifically, a point-to-point homoclinic connecting orbit to an 
endemic saddle equilibrium is numerically located, as a 
bifurcation with respect to the active parameter. Moreover, we 
compute members of the families of different types of 
heteroclinic connections, be them point-to-cycle, as well as, 
point-to-point connecting orbits. The physical meaning of these 
orbits in relation to the physical system is also discussed. 
 

Index Terms— Epidemic models; Homoclinic connection; 
Limit cycles; Heteroclinic connection 
 

I. INTRODUCTION 

Modeling real world epidemics can be a challenging and 
complex task and its usefulness is undisputable, because the 
more realistic the modeling is, the more it can contribute to 
a better understanding of the physical phenomenon itself. 
Furthermore, a realistic enough model must exhibit global 
dynamics, which can be considered as good approximations 
of the evolution of the associated real-world system. The 
properties and aspects of the global dynamic behavior of the 
system can help someone decide whether a system 
constitutes an accurate model of the physical problem of 
interest. There are several publications in the field, such as 
[1], [2], for example. 

Here, following our previous work [3] and the relevant 
references therein, we present some features concerning the 
global dynamics of a new SEIRS epidemic model. We also 
discuss the reflection of the mathematical results obtained 
herein on the real-world system, as well as the physical 
phenomena, the global asymptotic connections of which can 
be considered as stylized representations. 

In [3], the SEIRS model was treated with respect to 
stability, as well as local bifurcation analysis, resulting in 
bifurcation portraits throughout the associated regions of the 
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parameter space. Moreover, limit cycles generated by Hopf 
bifurcation of an endemic fixed point were obtained. In the 
present work we investigate the existence of homoclinic and 
heteroclinic orbits connecting invariant sets of the system. 
Then, we locate these orbits by means of standard numerical 
methods in combination with high order boundary 
conditions or the classical projection ones. Thus, a point-to-
point (P2P) homoclinic orbit at an endemic equilibrium is 
derived. In addition, representative samples of families of 
point-to-cycle (P2C), as well as of different types of P2P 
heteroclinic connections are obtained. 

The paper has the following structure: In Section II, a 
brief but necessary review of the local stability analysis 
from [3] with a few additions is made, so that the reader can 
follow the present work more smoothly. In Section III, the 
procedure regarding the computation of a homoclinic 
connecting orbit to a saddle-node endemic equilibrium is 
presented and the homoclinic orbit is obtained. Furthermore, 
some comments regarding its physical meaning and 
practical usefulness are made. In Section IV, various 
heteroclinic connections are presented together with 
comments on their topological configurations and practical 
meaning. Finally, in the last Section a summary of the 
analysis carried out together with the corresponding results 
is made. 

 

II. OVERVIEW OF STABILITY ANALYSIS  

The proposed SEIRS epidemic model, is structured by the 
following equations: 
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(1) 

where x  stands for the population of susceptible individuals 
normalized with respect to the total population,  denotes 
the normalized exposed (incubating) individuals and  

denotes the normalized population of infective individuals. 
Furthermore,  denotes the birth rate, d  denotes the 
physical death rate, 

w
y

r
  denotes the rate of loss of immunity, 

  denotes the rate of incubation,   is the additional death 
rate due to the epidemic,   denotes the recovery rate, 

(0,1)   and  are positive constants with s . 

Equations 

,m s 1
(1) were extracted from a four-dimensional 

SEIRS model, by elimination of the fourth equation 
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concerning the recovered individuals, as well as by 

substituting the nonlinear term m sx y

,0)

,r r

 for the incidence rate 

per infective individual. In general, both the nonlinear 
incidence rate and the additional death rate solely due to the 
disease lead to a more realistic modelling, since they offer a 
deeper insight into the actual relation between the different 
compartments of populations involved in the epidemic 
cycle. The specifics of the SEIRS epidemic model under 
consideration are briefly presented in Appendix A. 

The system exhibits two types of equilibria. The first is a 
disease-free one, be it , the eigenvalues of which 

are found equal to 
0 (1,0

  1 2 3, , , r                (2) 

hence, it is asymptotically stable, while the second one, 
0 0 0

1( , , )x w y

1

, represents an endemic fixed point 

corresponding to persistence of the disease. The coordinates 
of  are presented in Appendix A. This equilibrium always 

has a pair of complex conjugate eigenvalues together with a 
negative one. Moreover, in [3], by appropriate stability 
analysis we determine the active parameter   and 

investigate the parameter space ( , , )    (the other 

parameters being fixed) with respect to the existence and 
stability of the endemic equilibrium. In particular, by 
increasing the real exponents s  or (especiallym s ) we 
conclude to regions with no endemic equilibrium in the 
whole range  for (0,1)  . We also locate the critical 

regions, where it is proved that the sign change of the real 
part of the complex eigenvalues (as   varies) gives rise to 

supercritical Hopf bifurcations. Some aspects of the stability 
analysis associative to  are briefly presented in Appendix 

A. 
1

Furthermore, apart from the aforementioned fixed point, 
there exists a second endemic one in small regions of the 
parameter space, let it be denoted by , which is normally 

a saddle-node with one positive and two negative 
eigenvalues. When this equilibrium is continued 
numerically with respect to 

2

  (by increasing  ), it 

gradually moves towards the disease-free one and finally it 
coincides with the latter. This endemic equilibrium also 
undergoes a limit point (fold) bifurcation when continued 
with respect to s . For instance, for 

4 3, 10 , 10 

2

3.24.. 10

4( , , , , , , , ) (0.042, 0.5 , 10 , 0.1336.. , 0.5, 1.2)r m s     

(0.714394, 0.000613, 0.007269)
* 3 

the endemic equilibrium  has coordinates 

 and the quadratic coefficient 

has been computed to be . 
 

III.  P2P HOMOCLINIC CONNECTING ORBIT 

The system exhibits a relatively rich global dynamical 
behavior, in the sense that it possesses heterogeneous and 
topologically different connecting orbits. In the present 
Section the numerical location of a P2P homoclinic orbit is 
presented and the physical meaning of it together with its 
practical importance and usefulness are discussed. 

P2P homoclinic connecting orbits are considered 

separatrices in the state space in 2D conservative ODEs, 
since they divide the phase space into qualitatively different 
regions of motion; one region of periodic solutions and one 
of non-periodic ones, respectively. In that sense, homoclinic 
orbits can be perceived as the limit of periodic solutions, the 
fundamental period of which tends to infinity, while the 
orbit itself remains bounded. In other words, a P2P 
homoclinic orbit can be considered as a limit cycle, the 
value of the fundamental period of which is “very high”. So, 
the last (the one with the highest period) limit cycle is used 
as an initial approximation of the homoclinic orbit. 

Moreover, regarding the main algorithm associated with 
the numerical location of the P2P homoclinic orbit, there is 
well-known software and numerous techniques. The most 
famous ones are AUTO86 (see [4]) and MATCONT, (see 
[5], [6]), which use the method of orthogonal collocation on 
finite elements and the widely used technique of projection 
boundary conditions (BC from now on). The latter, as well 
as the method of eigenvectors (See [7]) are first order 
approximations, so the application of them presupposes 
good initial data for the reliable computation of the orbits of 
interest and this is becoming harder and harder to achieve as 
the number of state variables together with the number of 
active parameters increase. 

Assuming that we are interested in the determination of a 
connecting orbit for the general system 

 ; , , , :n p n pq f q a q a f       n 

c

   (3) 

where  is the vector of state variables and  

a vector of system parameters. Let the required number of 
control parameters, for which the P2P homoclinic orbit 
under determination constitutes an isolated and structurally 
stable phenomenon of the system be , that is the number 

of parameters, for which the connecting orbit is stabilized. 
Then this number is given by means of the following 
relation (See [8]) 

1( ,..., )T
nq q q a

p

1 u c sp n n n n n            (4) 

where  is the dimension of state variables of the system of 
interest, 

n

un  denotes the dimension of the unstable manifold 

of the invariant set, M  , from which the connecting orbit 

leaves asymptotically ( a( ) M 



, where “a” denotes the 

homonymous limit set and  is the 

connecting orbit of interest), 

 ( ( ), ) :  q t a t 

sn  denotes the dimension of 

the stable manifold of the invariant set, M 

( )

, to which the 

connecting orbit arrives asymptotically (i.e. ω M 

cn

, 

where “ω” denotes the homonymous limit set), while  , 

cn  are the dimensions of the respective center manifolds. 

In the case where the numerical location of a homoclinic 
connecting orbit at a hyperbolic saddle equilibrium is 
sought, then 0c cn n    and , so according to un n n   s

(4) we have 

1u up n n       (5) 

or 1p  , since un n u  , so one control parameter is 

needed and   has been chosen for this purpose; this is a 

global bifurcation in the phase space. Regarding the 
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numerical location of the P2P homoclinic connecting orbit, 
first of all we locate a limit cycle bifurcating from the 
endemic fixed point  through a supercritical Hopf 

bifurcation, by using a custom algorithm of orthogonal 
collocation on finite elements with an integral phase 
condition. Then, by means of a method of sequential 
continuation based on a custom algorithm of multiple 
shooting with an integral phase condition with active 
parameter 

1

 , the limit cycle is numerically continued with 

respect to its fundamental period up to an adequately high 
value. To this purpose, the original system (3) is 
transformed to ( ( ) )]q t t[ (u 

 ; ,pu T f

) 

u u u       (6) 

where the time scaling / pt T 

]

 maps the independent 

variable of time from [0, pT  to [0 , where ,1] pT  denotes the 

fundamental period. This transformation makes the 
numerical continuation easier, as the variable of the 
fundamental period appears explicitly as a system variable. 
The aforementioned family of numerically continued limit 
cycles is presented in Figure 1. 
 

 

Fig. 1 Numerically continued limit cycles starting from a 
supercritical Hopf bifurcation around the fixed point 1  for 

4 3 4( , , , , , 10 ,10 ,10 , 0.5,1     ,r m ) (0.0 0.5,s  42, .2)  and 

  the active parameter. 

 

A. High order BC 

We briefly present a technique for the determination of 
high order BC used for the numerical location of 
asymptotically connecting orbits, which involve fixed 
points. This technique is based on a combination of the 
multiple scales approximation method and that of successive 
approximations. The idea for this comes from Deprit and 
Henrard [9], Bennett [10] and the relevant references 
therein. In addition, Hassard [11] presented the idea to use 
high order BC instead of the projection ones. It should be 
noted that the projection method converges exponentially by 
increasing the truncation interval. However, this can 
increase the computational time (mainly in ordinary PCs 
with low to moderate CPU power). So, the use of high order 
BC can be proved useful in cases like that. 

Let us now consider a dynamical differential system of 
the form (3), possessing a number of fixed points and let 

 0 0 0 0
1 2, ,..,

T

nq q q q  be the fixed point associated with the 

P2P homoclinic orbit. Then, after setting 
0 , 1,...,i i iq q i n       (7) 

we expand the right-hand side of (3) in a Taylor series and 
keep terms up to the fourth order, which is the desired order 
of approximation here. Thus, we get 

 1,..., ; , 1,...,i i nh a i    n    (8) 

with  polynomial functions of ih 1,..., n  , of order less than 

or equal to four. We further assume that ( ), 1,...,i t i n   

can be approximated (up to the order of interest) by 
expanding in positive powers of a small orbital parameter, 
denoted as  , as 

   ,
1

k
j

i i
j

t t  


  j

n

   (9) 

with  the desired order of approximation. Then, 
substitution of 

k
(9) in (8) and equation of the terms of the 

same order results in  linear (with respect to the variables 
(

k

, , 1,..,i j i   corresponding to the -order, j 1,...,j k ) 

scale order systems. 
Additionally, assuming the hyperbolicity of the fixed 

point of interest (i.e. no eigenvalue associated with it has a 
real part equal to zero), the respective systems are solved 
successively. Regarding the solutions of a specific order, all 
the integration constants which are not associated with the 
manifold of interest (the high order approximation of which 
is constructed) and the integration constants associated with 
the homogeneous part of the respective second and higher 
order systems are set equal to zero. Then, the resulting 
expressions are substituted into the higher order systems. 
Thus, the final high order approximation up to the desired 
order, , is obtained by means of the  summations of k

,j j

n (9). 
For instance, regarding the scale order approximations of 
the outgoing (incoming) solution vector associated with the 
unstable (stable) manifold of the fixed point, by taking into 
account the solutions of the respective systems, the 
homogeneous part of the solution is removed 
( ) and the integration constants 

corresponding to the eigenvalues with negative (positive) 
real part are set equal to zero. The aforementioned solution 
procedure can be performed with the aid of a symbolic 
computational package, such as Mathematica or Maplesoft 
Maple (which offers direct integration with Mathworks 
Matlab), as the calculations can be lengthy even for low 
dimensional systems. Finally, high order BC are defined in 
the following form: 

2 1,...,  k

)

   2 2

,0 ,10 1 0, 1,...,out in

i i i ii iC q C q i n                   

(10) 

where  are positive weighting coefficients (set 

equal to 1 for the location of the connecting orbits in this 

work) and 

,0 ,1(C ,C )i i

( ,out in
i i   have been evaluated by use of (9). 

Eqns. (10) are differentiable, so the standard iterative 
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correcting methods of Jacobian-based solvers can be used 
during the solution procedure. Optimization techniques and 
algorithms can be used, as well (See [12], for example). In 
this work the system of nonlinear algebraic equations 
corresponding to the original system of nonlinear 
differential equations is solved using optimization methods, 
such as a Conjugate Gradient Steihaug’s method [13], 
instead of Newton-type ones. The use of optimization 
methods leads to a faster convergence of the associated 
system of nonlinear algebraic equations (for the same 
increment of the primary continuation parameter). The 
aforementioned method is used for the numerical location of 
the connecting orbits of interest, as well. 
 

B.  Scale order approximations and location of P2P 
connecting orbits 

First of all, regarding a fixed point  of the 

system, we set 
0 0 0( , , y )x w

0 0, , 0 .x x w w y y           (11) 

Then, an expansion of the right-hand sides of (1) around the 
equilibrium of interest in a Taylor series, where terms up to 
the fourth order are kept (so that fourth order BC are 
extracted) results in 

2 2 3 3
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Then, if 0 0 0( , , )x w y  represent the coordinates of 2  , by 

substituting (9) in (12) with , 4k  1 2 3( , , ) , )( ,      

and ( 1, 2,3, 4, , ),j j j j     denoting the successive 

approximations of the state variables, we obtain the 
following scale order systems: 
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3rd order of approximation 
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4th order of approximation 

y

y









  
 

  
 

 

   
 

   

2 2

4 100 4 010 4 001 4 200 1 3 2 002 1 3 2

2 2

101 1 3 2 2 3 1 300 1 2 003 1 2

2 2

201 1 2 1 1 2 102 1 1 2 2 1 400 1

4 3 3 2 2

004 1 301 1 1 103 1 1 202 1 1

4 100 4 010 4 001 4

2 2

3 3

2 2

h h h h h

h h h

h h h

h h h h

q q q

         

         

          

      

   

      

    

    

   

  



   
   

  

2 2

200 1 3 2 002 1 3 2

2

101 1 3 2 2 3 1 011 1 3 2 2 3 1 300 1 2

2 2

003 1 2 201 1 2 1 1 2 102 1 1 2 2 1

4 4 3 3 2 2

400 1 004 1 301 1 1 103 1 1 202 1 1

4 010 4 001 4 002 1 3

2 2

3

3 2 2

2

q q

q q

q q q

q q q q q

l l l

     

4



2

q             

           

       

     

   

      

    

    

     2

2

   

Engineering Letters, 27:4, EL_27_4_27

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



 

(16) 

Then, with the aid of Maplesoft Mapple and via the 
procedure described in Section III-A, we arrive at the fourth 
order approximations of both the outgoing (locally 
asymptotically unstable) vector solution and the incoming 
(locally asymptotically stable) one. The effectiveness of 
high order BC implemented compared to the classic first 
order ones, often encountered in bibliography, is presented 
in Figure 2. 

 

Fig. 2 Comparison between the high order BC and the 
classic first order ones around the fixed point associated 
with the homoclinic connecting orbit under determination 

for  and 4 3 4( , , , , , , ) (0.042, 0.5,10 ,10 ,10 ,1,1)r m s      
  is the control parameter. 

 
More specifically, if the exact solution (of the 

asymptotically connecting orbit) was known, then by 
starting from a point which lies inside the unstable (stable) 
manifold of the equilibrium)associated with the connecting 
orbit and proceeding backwards (forward) in time, the orbit 
would asymptotically approach the invariant set. However, 
the exact solution is not known, so an approximation of the 
boundary conditions is sought. With the aid of the 
aforementioned technique reliable approximations of these 
conditions can be constructed. In principle, the higher the 
approximation order is, the closer the approximate orbit will 
be to the exact solution, and hence to the invariant set, when 
a backward (forward) integration is carried out in case of 
the outgoing (incoming) (part of the) orbit. Of course, 
inevitably the orbit will deviate from the invariant set, due 
to the approximation. 

The infinite time horizon  associated with the 

asymptotic orbit of interest is truncated to [ , , so that 

by setting 

( , )

]T T 

/ ( )t T T    , (3) becomes ( ( ) [q t ( )]t  , see 

[8]) 

    ; ,T T f             (17) 

Moreover, by choosing a symmetric time interval we 
have . Thus equation T T T    (17), together with an 

integral phase condition constitute a truncated version of the 
boundary value problem, which is solved in order to locate 
the homoclinic point-to-point orbit of interest. Through the 

normalization introduced above, the independent variable of 
time is scaled to [0  and the system is reduced to ,1]

 2 ; , [0,     1]

5

Tf

.156 10 

]

   (18) 

By means of the method of orthogonal collocation on 
finite elements combined with the aforementioned fourth 
order BC, derived from (10), the homoclinic connecting 
orbit of interest (i.e. at the fixed point 

 ) has been computed 

inside the truncated, symmetric time interval 

6
2 (0.99760.., 5 , 6.109 10 )

[ 12000, 12000 , which has been determined using the 

well-known Beyn’s method [8] for 

 and 3 4 4, 10 , 0.5, 1.2)( , , , , , , .042, 10 , 0.5,10r m     

0.2805305h

) (0s 

..  . The respective algorithm has been 

implemented in Mathworks Matlab and the P2P homoclinic 
connecting orbit is presented in Figure 3. 

 

Fig. 3 P2P homoclinic connecting orbit at the equilibrium 

 computed inside the 

truncated time interval [

6
2 (0.99760..., 5. 0 , 6.109 10 ) 

12000, 12000]

5156 1

 , determined with  

Beyn’s method [8] for 
4 3 4( , , , , , , .042, 0.5,10 ,10 ,10 , 0.5,1.2)r m      

0.2805305h

) (0s 

...

,

   by means of a custom multiple shooting 

method with high order BC and an integral phase condition. 

 
The physical meaning of the P2P homoclinic orbit 

presented above is closely associated with the fact that it can 
be considered as a limit cycle bounded in phase space with 
infinite period, as noted above. In that sense, this type of 
connecting orbit is a stylized mathematical representation of 
the “largest” possible epidemic cycle of the real-world 
system (i.e. the evolution of the population dynamics of the 
corresponding epidemic). Furthermore, from a practical 
point of view, the point-to-point homoclinic orbit can be 
useful for the management of the epidemic and treatment of 
the associated populations, as well as for the prediction and 
forecasting of required resources needed, so that both a 
sensible demand and general planning are carried out before 
the outspread of the epidemic. More specifically, on the one 
hand, in case the periods of the corresponding epidemic 
cycles are underestimated, this could lead to the 
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underestimation of the resources required, which might, in 
turn, result in exposing the populations’ lives at risk. On the 
other hand, in case of overestimation, valuable resources 
might be wasted with an evident economic loss, as a 
consequence. 

The P2P homoclinic orbits for different sets of values of 
the system parameters and therefore for different types of 
epidemics, can be obtained by carrying out a numerical 
continuation of the computed homoclinic orbit. Also, by 
inspecting the corresponding variations of the phases of the 
associated epidemic and the general features of it, sensitivity 
analyses can be carried out, as well, in order to determine 
the robustness of the occurring phenomenon with respect to 
the system parameters of interest.  

Additionally, the critical value of  , h , for which the 

P2P homoclinic connecting orbit occurs denotes the 
“limiting value” closely associated with the nonlinear 
incidence rate, for which epidemic cycles occur/do not 
occur, that is for h   no epidemic cycles appear and the 

orbit moves to the disease-free equilibrium, 0 , 

asymptotically thus forming a heteroclinic P2P connection 
between  and . Last, the occurrence of a P2P 

homoclinic orbit at a “nearly disease-free” (in the sense that 
only a few people are exposed and most people are 
susceptible and recovered) endemic equilibrium might 
answer the question why some epidemics, which are 
considered “extinct”, appear again after a long time, with 
the “right trigger”. 

1 0

 

IV. HETEROCLINIC CONNECTING ORBITS 

The system (1) exhibits both P2C heteroclinic connecting 
orbits and P2P heteroclinic ones. In the present Section 
some topological aspects of these types of connections are 
presented and representative members of the corresponding 
phase portrait are numerically located and presented. 
Practical usefulness and physical meaning are discussed, as 
well. 

Here, the numerical location of the connecting orbit can 
be also posed in the form of a boundary value problem. 
However, in the case of a homoclinic point-to-point 
connection, the only invariant set involved is an 
equilibrium, while in the case of a heteroclinic point-to-
point connection the initial point of the trajectory must lie in 
the unstable manifold of the a-limit point (fixed point) and 
the final point must lie in the stable manifold of the ω-limit 
point. Furthermore, in the case of a point-to-cycle 
heteroclinic connection the initial point of the trajectory 
must lie in the unstable manifold of the a-limit point (fixed 
point) and the final point must lie in the center-stable 
manifold of a limit cycle (ω-limit cycle). 

 

A. P2C heteroclinic connecting orbits 

This type of heteroclinic orbit connects the endemic 
saddle equilibrium 2  to a stable limit cycle emerging 

through a supercritical bifurcation of the unstable endemic 
equilibrium 1 . Then, taking into consideration (4) and 

counting the dimensions of both the fixed point 2 , for 

which 1, 2, 0u s cn n n    

s cn n 

 and the limit cycle, for 

which 2, 1 

2

 we conclude that 0p  . So, the P2C 

heteroclinic orbits appearing in this system is a codimension 
zero phenomenon, hence they persist with no free 
parameters and they do not constitute bifurcations in phase 
space. Thus, there are infinitely many P2C heteroclinic 
connections in the phase space. This fact suggests that this 
model is realistic, since if there was a unique heteroclinic 
connection (i.e. a P2C heteroclinic bifurcation), that would 
mean that the only possible outbreak would be for one 
specific disease. 

In order to locate these orbits numerically, the original 
system is transformed to (18) and a custom multiple 
shooting algorithm with projection BC, implemented in 
Matlab, has been used. A sample of the family of 
heteroclinic orbits from   to a limit cycle is presented in 

Figure 4. 

 

Fig. 4 P2C heteroclinic connecting orbits from 

2 (0 ).9983..., 0.0000037, 0.000044  to a stable limit cycles 

bifurcating from a supercritical Hopf bifurcation associated 
with the endemic equilibrium  for 1

, , , , , ) (0.042, 0.5, 10r a m s   4 30 .3135 1.2)  4, 10 , 0( , , , 1  , 0.5,  

 
These orbits connect two heterogeneous invariant sets, be 

them a saddle-node endemic equilibrium and a stable limit 
cycle. The stability of the limit cycles, expresses the 
persistence of the epidemic. Also, for a different value of   

there is a “way”, by which the associated epidemic cycle, 
with its own features, sets in. Thus, as far as the physical 
meaning is concerned, the P2C connecting orbits could be a 
connection between an outbreak and an epidemic cycle 
(associated with 1 ). In addition, the limit cycles involved 

in the P2C connections do not exist for cr  (according 

to the obtained direction and stability of the Hopf 
bifurcation (see [3])), so by taking into consideration and 
analyzing the properties of these heteroclinic connections, it 
could be possible to obstruct the onset of the epidemic, i.e 
“send the orbit” to the disease-free equilibrium (ideally) by 
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effectively changing (at least) one system parameter. 
However, there is also the choice of leading the trajectory to 
the endemic equilibrium , as this situation is easier to 

handle than the epidemic cycle, because the portions of the 
populations remain constant. 

1

0

 

B. P2P heteroclinic connecting orbits 

Now, we deal with P2P heteroclinic asymptotically 
connecting orbits between pairs of equilibria of the SEIRS 
system. We also focus on some topological features, as well 
as on the physical meaning of these orbits. 

At first, we have a P2P heteroclinic connecting orbit from 
the saddle-node endemic fixed point  to the stable node 

disease-free equilibrium, . By counting the dimensions of 

both the fixed points  and , for which 

 and , respectively, 

by means of 

2


2 0

0cn

p 
1, 2, 0u s cn n n     3,sn 

(4) we conclude that . Thus no 

bifurcation occurs in phase portrait, since this heteroclinic 
orbit persists with no free parameters (codimension zero) 
and hence, as in the P2C case, infinite connections of this 
type exist. This result is physically meaningful, since there 
should always exist a “possibility” for an epidemic to occur 
and another one for it to be eradicated. In other words, in 
case there were specific parameter values of 

0

  for which 

the P2P connection could be performed, this would mean 
that in the rest cases the epidemic would not be possible to 
be eradicated. 

As far as the numerical location of the aforementioned 
type of connecting orbit is concerned, the original system is 
transformed to (18) and a custom algorithm of orthogonal 
collocation on finite elements together with the high order 
BC obtained from (10), implemented in Matlab, have been 
used. A sample of the P2P heteroclinic orbits of this type is 
presented in Figure 5. 

 

Fig. 5 P2P heteroclinic connecting orbit from the endemic 
“near-disease-free” equilibrium 

2 (0.9983..., 0.0000034, 0.000041)

0

 to the disease-free one 

, for 
4 3 4( , , , , , , , ) (0.042, 0.5, 10 , 10 , 10 , 0.3185, 0.5, 1.2)r a m s        

 

Next, we present a P2P heteroclinic connecting orbit 
leaving asymptotically in time from the saddle endemic 
equilibrium 2  and reaching the stable (in this case) 

endemic fixed point 1 , asymptotically in time, as well. 

Similarly to the previous cases, by considering the 
dimensions of both the fixed points  and 2 1 , for which 

1,u sn n n  2, 0c    and , respectively, 

via Eqn. 

3,s  0c n n 

0(4) we also obtain . Thus we also deal with a 

codimension zero phenomenon, where no bifurcation occurs 
in phase portrait, giving rise to a family of infinite orbits of 
this type. 

p

Regarding the physical meaning of this P2P connection, 
we would like to mention that it might model the case, 
where starting from an outbreak the epidemic tends to a 
relatively unchanged condition, where all the populations 
involved remain more or less constant, while disequilibrium 
periodic fluctuations are absent. This is what happens in 
cases where the incubation rate is low (for the same values 
of all the rest system parameters), while in cases where this 
parameter attains higher values, the corresponding situations 
tend to be associated with periodic behavior. Some 
examples of diseases with similar behavior and respective 
data can be found in [14] and the associated references 
within. A sample of these P2P heteroclinic connections is 
shown in Figure 6. The specific orbit has been numerically 
located with the aid of a custom algorithm of orthogonal 
collocation on finite elements together with the high order 
BC given by (10). 

 

Fig. 6 P2P heteroclinic connecting orbit from the endemic 
“near-disease-free” equilibrium 

2 (0.99897..., 0.0000022, 0.000026) (Endf) to the endemic 

equilibrium 1(0.065465..., 0.00200..., 0.02375...) (EH) for 
4 3 4( , , , , , , , ) (0.042, 0.5, 10 , 10 , 10 , 0.3485, 0.5, 1.2)r a m s        

 
Moreover, regarding the P2C and P2P heteroclinic orbits, 

presented so far, all starting from , we would like to 

comment on the sensitivity of the “path” the flow will 
follow, with respect to the initial conditions. In other words, 
a small perturbation near 

2

2 , of the corresponding to a 

specific disease portions of the population, can either 
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eradicate it or might turn it to an epidemic. 
Yet another type of a P2P heteroclinic connecting orbit 

which occurs in the phase space, is the one that connects the 
endemic fixed point  to the disease-free one, . Taking 

into account the dimensions of both the fixed points 
1 0

1  and 

, be them  and , 

respectively, by using Eqn. 
0 2,n n  1, 0u s cn   3,n  0n 

1
s c 

p(4) we conclude that   . 

So, this case concerns a somewhat different situation. 
Specifically, if  denotes the unstable manifold 

associated with  and  stands for the stable 

manifold associated with 

1(u 

1

)

 0( )s 

0 , then the separatrix 

 has dimension . Thus, 

combining with the above result we conclude to that one 
further condition needs to be introduced for parameterizing 
this kind of P2P orbits. In other words, there are multiple 
“routes” connecting the two aforementioned equilibria and a 
family of infinitely many orbits of this type is also generated 
in the phase space. In Figure 7, a numerically located 
member of this family is shown, obtained similarly to the 
previous cases of P2P heteroclinic connections. 

1( )u   0( )s  2n u s  n n

 

Fig. 7 P2P heteroclinic connecting orbit from the endemic 
equilibrium   to the 

disease-free one,  for 
1(0.25561..., 0.001597..., 0.01892...)

0
4 3 4, , ) (0.042, 0.5, 10 , 10 , 10 , 0.3185...,m s   ( , , , , , 0.9, 1.2)r a  

 
In terms of the physical meaning, these P2P heteroclinic 

orbits describe the possible ways, by which the epidemic 
vanishes starting from . We would like to stress that it is 

 that comprises the most typical situation of a “well-

established” epidemic, whereas 

1

1

2  is closer to the disease-

free situation. Also, for a model to be considered realistic, 
there should exist connections between every single 
endemic equilibrium and the disease-free one, as it is always 
possible for an epidemic to cease. Moreover, the fact that a 
restriction needs to be imposed in order to select a specific 
heteroclinic orbit of this type offers the possibility to take 
into consideration possible conditions that are (or must be) 
met during the transition to the disease-free state. 
 

V. CONCLUSION-DISCUSSION 

Throughout the present work asymptotically connecting 
orbits and their properties have been presented. These orbits 
have been numerically located either by means of a custom 
algorithm of multiple shooting or using a custom algorithm 
of orthogonal collocation on finite elements. Also, 
depending on the specific case, either the classical 
projection boundary conditions or the high order boundary 
conditions, defined via (10), have been employed. More 
specifically, the following types of connecting orbits have 
been numerically located: 

A point-to-point homoclinic connecting orbit at the 
saddle-node endemic equilibrium . The respective 

procedure starts from the continuation of the stable limit 
cycles generated through a supercritical Hopf bifurcation of 
the saddle-focus endemic equilibrium . 

2

1
A point-to-cycle heteroclinic connecting orbit from the 

saddle-node endemic equilibrium  to a stable limit cycle 

emerged through the Hopf bifurcation of the saddle-focus 
endemic fixed point 

2

1 . 

A point-to-point heteroclinic connecting orbit from the 
saddle-node endemic fixed point  to the stable node 

disease-free equilibrium 
2

0 . 

A point-to-point heteroclinic connection leaving from 2  

and reaching 1 . 

A point-to-point heteroclinic orbit, which connects 1  to 

0 .  

The homoclinic connection is manifested as a bifurcation 
in the phase space (codimension one), while infinitely many 
heteroclinic orbits of the above types exist, as they 
constitute a codimension zero phenomenon and hence no 
bifurcation occurs. Some topological properties of the orbits 
under consideration such as the structural stability have 
been discussed briefly together with their physical meaning, 
usefulness and relation to the physical background of the 
system. Also, arguments regarding the global behavior of 
the differential system in accordance with the physical 
properties of a disease have been presented. 

APPENDIX A 

The governing equations of the SEIRS epidemic model 
are the following: 

 
   
 

 

,

,

S rN dS εR h S I I

E d σ E h S I I

I γ d α I σE

R γI d ε R

   

   

    

  









   (A-1) 

and 
N rN dN αI      (A-2) 

where  denote the number of susceptible, 

exposed (incubating), infective, recovered individuals and 
the total population, respectively, while  represents 

the incidence rate per infective individual. The various 
parameters involved are defined in Section II. Then by 

, , , ,S E I R N

( , )h S I
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normalizing with respect to the total population 
( ) which is considered constant and 

taking into account Eqn. (A-2), the system becomes: 
N S E I R   

 
   

 
 

2

,

,

x r

w r

y σ

z γ

 

 

 









/ ,

rx εz αxy h x y y

σ w αwy h x y y

w r γ α y αy

y r ε z αyz

  

  

    

 

   (A-3) 

where 
/ , / , / ,

1

x S N

x w y  
w E N y I N z R N

z

   


   (A-4) 

Then, by eliminating  and setting 1z x w    y

  1, m sh x y βx y   with ,β m positive constants and , 

Eqns. (A-3) take the final form 

1s 

(1). 
Furthermore, through tedious algebraic manipulations 

(see [3], Appendix A), the coordinates of  are obtained in 

implicit form as 
1

       3 20 2 0 0
4 30

0

1
x α y ακ y κ σε y σκ

σ αy κ
   

0
0
 

2

 (A-5) 

       1 20 0 2 0 0
4 3

m s
βσ x y α y α κ ε y κ εκ


        (A-6) 

 20 0
2

1
w α y κ y

σ
     

0    (A-7) 

where  

0 1 2

3 1 2 4 1 2

,  ,  ,

,  

κ r ε κ r ε σ κ r γ α

κ κ κ κ κ κ

       
  

   (A-8) 

That is, for specific values of the involved parameters, at 

first we solve numerically (A-6) with respect to  and then 0y
0x  and  are obtained by use of (A-5) and (A-7), 

respectively. 

0w

Additionally, via the associated characteristic equation 
and the Routh-Hurwitz necessary and sufficient stability 
conditions, the critical (the real part of the complex 

eigenvalues becomes zero) value  is evaluated 

numerically (see [3]). Thus, by means of (A-5) and (A-7), 

0
cry

0
crx  and  are also extracted and finally, under certain 

restrictions (see also [3]), (A-6) furnishes 

0
crw

crβ , namely 

   
   

22 0 0
4 3

10 0

cr cr

cr m s

cr cr

α y α κ ε y κ εκ
β

σ x y


   
 2

0 1

   (A-9) 

with . We always get 

zero or at most one critical value and thus, by considering 
 as the varying parameters and 

00 1, 0 1, 0cr cr crβ x y     

, )β( ,γ σ β  as the active 

parameter, a critical surface ( ,cr cr )β β γ σ  is generated in 

the parameter space , over the respective critical 

region (where critical values of 

( , , )γ σ β

( , )γ σ   are derived). 

Moreover, as mentioned above (Section II), at these critical 
points , stable limit cycles are emerged from the 

endemic fixed point . 

( , , )crγ σ β

1

APPENDIX B 

Description of algorithm of orthogonal collocation on 
finite elements 

The well-known algorithm of orthogonal collocation on 
finite elements with Lagrange polynomials of maximal 
degree , defined by user, has been implemented. The 
algorithm has been used for the solution of the systems of 
differential equations and the approximation of the orbits of 
interest. For the numerical location of a point-to-point 
homoclinic orbit which satisfies the following differential 
system 

m

  1; , , , :n nx f x a x a f       n     (B-1) 

where 1( ,..., )T
nx x x

)

 is the vector of state variables and  

denotes a system parameter, the infinite time horizon 

a

( , 

/ ( )t T T

 is truncated to [ , . Then, setting ]T T 

    , (B-1) becomes 

   ; ,y T T f y α y y τ     

T



   (B-2) 

For the sake of simplicity, a symmetrically truncated time 
interval is chosen, that is . Thus, via the 

appropriate normalization, the independent (time) variable is 
scaled to [0  and the system becomes 

T T   

, 1]

2 ;y Tf y α    (B-3) 

Then, choosing the maximal degree of the basis polynomials 
used, the time interval is subdivided into  subintervals 
(the so-called “elements”) denoted as 

1N 

1[ , ],  1,.. , 1i iτ τ i N   . Thus, the solution of the system of 

differential equations is approximated by a weighted sum of 
the basis polynomials as 

   , ,
0

, 1,.. , 1,
m

n
i i l i l i

l

y τ c P τ i N y


       (B-4) 

within every subinterval, where  ,i lP τ  are the basis 

polynomials of degree , while the coefficients  need to 

be determined. The positions of the collocation points, 

l ,i lc

, , 1,...,i jτ j m  are chosen to be the translated roots of the 

original Legendre polynomial of degree m . So, after 
substituting (B-4) in (B-3) we arrive at the discretized 
differential system, being a system of nonlinear algebraic 
collocation equations, which are required to be exact at the 
collocation points. Thus, the following nm  equations 

(  is the number of state variables) must hold 

( 1)N

n

 
,

,2
i j

i
i i j

τ

dy
Tf y τ

dτ
      (B-5) 

for 1, .. , 1, 1, .. ,i N j m   ;  is the scaled independent 

time variable. Then, by setting 

τ

 , , , 1, .. , 1, 1, .. ,i j i i jy y τ i N j    m

)

 

and requiring that the solution be continuous within the 
entire time interval we get the associated ( 2n N 

 
matching conditions 

1, ,0 , 2, .. ,i m iy y i N 1      (B-6) 
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where  ,0 , 1,.. ,i i iy y τ i N 

n

[8] W. J. Beyn, “The Numerical Computation of Connecting Orbits in 
Dynamical Systems”, IMA Journal of Numerical Analysis, vol. 9, pp. 
379-405, 1990. 

1



. The discrete counterparts 

of the boundary conditions used for the location of limit 
cycles are the following  equations [9] A. Deprit and J. Henrard, “Symmetric doubly asymptotic orbits in the 

restricted three-body problem”, The Astronomical Journal, vol. 70, p. 
271, 1965. 

1,0 1,N my y     (B-7) 
[10] A. Bennett, “Analytical determination of characteristic exponents”, 

in Methods in astrodynamics and celestial mechanics, 1st ed. vol. 17, 
R. L. Duncombe and V. G. Szebehely, Eds., Academic Press, p. 101, 
1966. 

Finally, the discrete counterpart of an integral type phase 
condition is utilized for both limit cycles and homoclinic 
orbits; the continuous form of this condition is [11] B.D. Hassard, “Computation of invariant manifolds”, in New 

approaches to   nonlinear problems in dynamics, 1st ed. P. J. Holmes, 
Ed. US: SIAM, pp. 27-42, 1987.      

1

0
ˆ ˆ 0

T
y τ y τ y τ dτ       (Β-8) 

[12] M. Shi, “Degree Reduction of Disk Rational Bezier Curves Using 
Multi-objective Optimization Techniques”, IAENG International 
Journal of Applied Mathematics, vol. 45, no. 4, pp392-397, 2015. 

where the approximation  is used. Note that 

for the location of limit cycles, by the time normalization 

ˆ( ) ( ( ))y τ f y τ

/ pτ t T , mapping [0, ]pT [0,1] to , with pT  the 

fundamental period of the limit cycle, the original system 
(B-1) is transformed to 

[13] T. Steihaug, “The conjugate gradient method and trust regions in large 
scale optimization”, SIAM Journal on Numerical Analysis, 20.3, pp. 
626-637, 1983. 

[14] Miranda Chan and Michael A. Johansson, “The incubation periods of 
Dengue Viruses”, PLOS ONE, Vol. 7, no. 11, pp1-7, 2012. 

 
  ; ,py T f y α y y τ      (Β-9) 

Also, (B-5) becomes 

 
,

,

i j

i
p i i j

τ

dy
T f y τ

dτ
      (Β-10) 

Thus, the period appears explicitly as a system parameter 
(this is useful for the numerical continuation performed). 
Then, using the Gauss-Legendre quadrature, the discrete 
counterpart of the integral phase condition (B-8) becomes 

1

, , , ,
1 0

ˆ ,
N m

i j i j i j i j
i j

ω y y v


 

  0    (Β-11) 

where  are the Gauss-Legendre quadrature coefficients-

weights,  denote the values of the derivatives and 

the points of the computed orbit at a previous step, 
respectively;  are the points under determination. So, 

counting up the number of the unknowns and the number of 
the equations for the case of limit cycle location, we deduce 
that the problem is well-posed, as these numbers are equal. 

,i jω

 , ,ˆ,  i j i jv y

,i jy

REFERENCES 
[1] C. Xu and M. liao, “Stability and Bifurcation Analysis in a SEIR 

Epidemic Model with Nonlinear Incidence Rates”, IAENG 
International Journal of Applied Mathematics, vol. 41, no. 3, pp191-
198, 2011. 

[2] W. Du, S. Qin, J. Zhang and J. Yu, “Dynamical Behavior and 
Bifurcation Analysis of SEIR Epidemic Model and its Discretization”, 
IAENG International Journal of Applied Mathematics, vol. 47, no. 1, 
pp1-8, 2017. 

[3] M. P. Markakis and P. S. Douris, “Hopf Bifurcation Analysis of a New 
SEIRS Epidemic Model with Nonlinear Incidence Rate and 
Nonpermanent Immunity”, International Journal of Mathematics and 
Mathematical Sciences, vol. 2018, Article ID 1467235, p. 13, 2018. 

[4] E. J. Doedel, AUTO 86 user manual, Software for Continuation and 
Bifurcation Problems in Ordinary Differential Equations, 1986. 

[5] V. De Witte, W. Govaerts, Y.A. Kuznetsov & M. Friedman, 
“Interactive initialization and continuation of homoclinic and 
heteroclinic orbits in MATLAB”, ACM Transactions on Mathematical 
Software (TOMS), vol. 38, no. 3, p.18, 2012. 

[6] A.R. Champneys, Y.A. Kuznetsov and B. Sandstede, “A numerical 
toolbox for homoclinic bifurcation analysis”, International Journal of 
Bifurcation and Chaos, vol. 6, pp. 867-888, 1996. 

[7] Y. Liu, L. Liu and T. Tang, “The Numerical Computation of 
Connecting Orbits in Dynamical Systems: A Rational Spectral 
Approach”, Journal of Computational Physics, vol. 111, pp. 373-380, 
1994. 

Engineering Letters, 27:4, EL_27_4_27

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 


	I. INTRODUCTION
	II. Overview Of Stability Analysis 
	III.  P2P Homoclinic Connecting Orbit
	A. High order BC
	B.  Scale order approximations and location of P2P connecting orbits

	IV. Heteroclinic Connecting Orbits
	A. P2C heteroclinic connecting orbits
	B. P2P heteroclinic connecting orbits

	V. Conclusion-Discussion
	References



