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Abstract— Cable manufacturing in a developing country like 

Nigeria today is faced with the problem of thermoplastic 

extrusion processes due to the complex nature of the parameters 

that are involved in the process. These process parameters that 

include melt temperature, pressure, and screw speed generally 

impact the quality of the electrical insulation product. The main 

consequence of the problems is the low and variable output rate 

from extruder causing non-uniform diameter along the cable 

length which often increases the production cost. Different 

researches have been done to improve extrusion output quality 

in developed countries. However, there are still some problems 

in achieving consistent product quality as most of the developing 

countries still use the trial and error techniques to determine 

cable insulation thickness. This paper presents a method of 

predicting electrical cable insulation thickness during the 

process of any type of thermoplastic (i.e. PVC, PE or XLPE) 

extrusion using an artificial neural network. A three-layered 

feedforward artificial neural network with back propagation 

algorithm was developed using MATLAB to predict the 

insulation thickness in thermoplastic extrusion. The neural 

network model developed was able to accurately predict the 

insulation thickness based on process parameters such as the 

melt temperature, pressure and line speed that have been 

determined in production. The possibilities of adopting neural 

network controllers in the thermoplastic extrusion process were 

also discussed. 

 

Index Terms—Artificial neural network, Cable, Extrusion 

process, Insulation thickness, thermoplastic 

 

I.  INTRODUCTION 

Extrusion is a process in which objects of fixed cross-

sectional areas are created. It is one of the processing methods 

that are used in different industries such as plastic, aluminum 

and sheet industries. One of the most common applications of 

the extrusion process is in cable manufacturing. Some of the 

materials that are being used in cable production such as 

copper, aluminum, and plastic [1], primarily involve 

extruding to get the desired output. The machine used in the 

extrusion process is called an extruder.  
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It processes materials by moving it along a screw and making 

it come out through a die at a certain temperature and 

pressure. One of the key components in an extruder is the 

screw and it is divided into three main functional zones [2]. 

These zones include the feed, melting/compression, and 

pumping. The materials which are fed into the extruder 

through the hopper are driven along the screw as they absorb 

heat that is provided by the barrel heaters. A molten flow, 

which occurs as a result of the heating, is then forced into the 

die. The die is responsible for forming the molten material 

into the desired shape required. Fig. 1 shows the block 

diagram of a typical thermoplastic extrusion process. 

 

 
Fig. 1. Block diagram of a typical extrusion process 

The melt temperature and pressure are some of the most 

important parameters in an extrusion process. These 

parameters indicate the performance, quality of an extruder. 

Another important process parameter includes screw speed, 

motor load, barrel temperature, dies temperature, the power 

drawn by the heaters, and the cooling rate of the cooling units. 

Other parameters that also affect the extrusion line include 

the line speed, line tension, cooling rate and the dimensions 

of the products being extruded [3]. Fig. 2 shows the 

diagrammatic representation of the components of a single 

screw extruder that is used in the cable manufacturing 

industry.

 

Fig. 2. Components of a single screw extruder 
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   In general, the production of quality output from the 

extruder is a major concern. For example, in cable industries, 

it is important that the extruder output delivers and provides 

a homogenous and well-mixed thermoplastic at specific melt 

temperature and pressure [4]. Improper operation and 

engineering of an extruder, however, impact the quality of the 

output product. This could be in the form of a defect such as 

cracking, voids, rough surface and thickness variations [5]. 

Machine learning techniques such as artificial neural 

network, which was inspired by the operations of the 

biological brain, can be applied to nonlinear systems such as 

the thermoplastic extrusion process. The strong learning 

capability, clustering, nonlinear mapping, and parallel 

computation capability of the artificial neural network have 

made it applicable to extrusion process problems. Different 

approaches have been taken over the years to improve and 

optimize the thermoplastic extrusion process in the industry. 

For instance, Abdulkareem et al. [6] asserted that the quality 

of PVC used in the cable manufacturing industry can impact 

the output quality from an extruder and hence, they 

experimentally determined the best combination of polymers 

with additives to produce a good quality PVC that can be 

extruded to produce a quality cable. These techniques are 

developed to ensure that the production of high-quality 

extrusion output is achieved while reducing manufacturing 

cost, downtime and waste of materials. Jing, D. et al. [7] 

developed a low-cost real-time energy monitoring method 

which is used to study the effect of process settings on 

efficiency and melt quality. (Zinnatullin, Kazakov, & 

Trufanova,) [8] investigated the use of an automatic control 

system in the extrusion of polymeric cable insulation. The 

control system developed was able to accurately determine 

the efficient conditions for the cooling process to some extent 

and hence, the production of quality cables was obtained. 

Abeykoon et al. [9] proposed a model-based controller that 

can be utilized in a polymer extrusion process to obtain a melt 

temperature profile prediction. Pathak, Jitendra, & Mousam, 

[10] investigated the effects of the process parameters in the 

extrusion process by utilizing the finite element method. The 

best process parameters for hot extrusion was also studied by 

Sivaprasad and colleagues [11] by using finite element 

simulation. Dharmendra and Sunil [12] proposed a method of 

optimizing the process parameters of high-density 

polyethylene (HDPE) material as regression analysis [13], 

other researchers such as Solomon and colleagues [14]; 

Ramya and Sreedevi [15]; and Krupal, et al. [16] have utilized 

the Taguchi approach to obtain great results in extrusion 

processes. Also, Bekir, C. [17] used artificial neural network 

(ANN) approach to predict the coating of thickness of wire 

coating extrusion processes. Rami, R., and Amin, R. [18] and 

Do-Hun, L. et al. [19] used application of ANN to predict 

XLPE cable in the extrusion process and ensemble model for 

simulating streamflow respectively.  In the work of Mura, K. 

[20], a predictive ability of Bayesian regularization using 

ANN was applied as a comparative empirical study on social 

data.  

  In cable manufacturing industries, the materials that are 

required for cable production are copper (Cu) or aluminum 

(Al) and plastics. Polyvinyl Chloride (PVC) is the plastic that 

is commonly extruded and used in low voltage (1kV) cable 

insulation. Other types of plastics/polymers that are used in 

cable insulation include Polyethylene (PE), and cross-linked 

polyethylene (XLPE) which is suitable for medium and high 

voltage applications. 

   The melting temperature was found to be the most effective 

factor that contributes to the quality of the output of HDPE 

extrusion followed by the extrusion speed, extrusion pressure 

and winding speed respectively. While some have 

concentrated on developing control techniques using 

automatic control systems and nonlinear modeling techniques 

such and Levenberg-Marquart algorithm was applied in 

ANN. However, some of these approaches remain highly 

theoretical and do not consider manufacturing process 

constraints in its modeling. The breakthroughs that have been 

achieved with the use of ANN and machine learning can 

significantly improve this process. Therefore, to bridge the 

gap between simulations (i.e. theoretical) and real 

manufacturing execution systems, the use of an ANN to 

predict the insulation thickness of electrical cables during the 

thermoplastic extrusion process becomes handy. This can 

significantly improve the quality of the output of the 

extrusion process in manufacturing industries. 

This paper presents a method of predicting electrical cable 

insulation thickness during the thermoplastic extrusion 

process using an artificial neural network. The possibilities of 

adopting neural network controllers in the thermoplastic 

extrusion process were also discussed. This study is 

organized as follows: Section 2 reviews different literature 

works for the techniques that have been proposed to improve 

thermoplastic extrusion, Section 3 describes the methods and 

materials that have been utilized in this work, Section 4 

provides the necessary results obtained from the study and the 

discussion of the results obtained, and Section 5 concludes 

the study. 

II. METHODS AND MATERIALS 

A. Dataset Material 

   This study considered three different types of thermoplastic 

materials that are used in the electrical cable insulation 

manufacturing process. The types of cables considered in the 

study include Polyvinyl Chloride (PVC), Polyethylene (PE), 

and Cross-linked Polyethylene (XLPE) cables. The relevant 

data of the appropriate process parameter settings that are 

being used by two major cable manufacturing industries were 

considered.  The two-cable manufacturing industry were 

selected based on their capability to produce high-quality 

cables and ease of accessibility. The process parameters 

settings that were obtained from the extrusion of PVC is 

shown in Table I. These parameters include the zone 

temperatures, clamp temperature, neck temperature, 

crosshead temperature, die temperature, line speed, melt 

pressure, screw speed, and the desired thickness. A 90- mm 

dimension of single screw extruder was used in the 

production of the PVC and the PE electrical cable insulation 

process.  

 Similar process parameters settings with different values 

were also obtained for PE and XLPE. 
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Table I 

Production Process Parameters Settings for PVC extrusion 

  Temperature in Degree Celsius 

Line Speed 

(m/min) 

Screw 

Speed 

(rpm)) 

Thick 

ness 

(mm) S/N 1st 

Zone  

2nd 

Zone  

3rd 

Zone  

4th 

Zone  

5th 

Zone  

6th 

Zone  

Clamp  Neck  Cross    

head  

Die  

Actual 

Setting 
130 155 160 160 160 160 170 155 170 170 11 455 0.8 

1 129 157 160 160 161 160 170 156 171 170 11 453 0.79 

2 129 157 160 160 161 160 170 156 171 170 11 453 0.79 

3 132 156 162 160 162 161 171 155 170 169 10 454 0.8 

4 131 157 162 160 162 161 170 154 170 169 10 454 0.81 

5 130 156 162 159 161 160 171 156 170 169 11 453 0.8 

6 130 156 161 160 160 160 170 155 171 169 11 453 0.8 

7 132 155 161 159 161 160 171 154 171 169 11 455 0.78 

8 132 155 161 159 161 160 171 154 171 169 11 455 0.78 

9 129 157 160 160 161 160 170 156 171 170 11 453 0.79 

10 129 157 160 160 161 160 170 156 171 170 11 453 0.79 

11 130 156 160 160 160 160 170 155 171 169 10 453 0.8 

12 129 157 160 160 161 160 170 156 171 170 12 453 0.79 

13 132 156 162 160 162 161 171 155 170 169 10 454 0.8 

14 130 156 162 159 161 160 171 156 170 169 11 453 0.8 

15 131 157 162 160 162 161 170 154 170 169 10 454 0.81 

16 130 156 161 160 160 160 170 155 171 169 11 453 0.8 

17 132 156 162 160 162 161 171 155 170 169 10 454 0.8 

18 132 156 162 160 162 161 171 155 170 169 10 454 0.8 

19 132 156 162 160 162 161 171 155 170 169 10 454 0.8 

20 132 155 161 159 161 160 171 154 171 169 11 455 0.78 

21 129 157 160 160 161 160 170 156 171 170 12 453 0.79 

22 131 157 162 160 162 161 170 154 170 169 10 454 0.81 

23 130 156 162 159 161 160 171 156 170 169 11 453 0.8 

24 130 156 162 159 161 160 171 156 170 169 11 453 0.8 

25 130 156 162 159 161 160 171 156 170 169 11 453 0.8 

26 131 157 162 160 162 161 170 154 170 169 10 454 0.81 

27 130 156 162 159 161 160 171 156 170 169 11 453 0.8 

28 131 157 162 160 162 161 170 154 170 169 10 454 0.81 

29 130 156 162 159 161 160 171 156 170 169 11 453 0.8 

30 130 156 162 159 161 160 171 156 170 169 11 453 0.8 

31 130 156 161 160 160 160 170 155 171 169 11 453 0.8 

32 130 156 162 159 161 160 171 156 170 169 11 453 0.8 

33 131 157 162 160 162 161 170 154 170 169 10 454 0.81 

34 130 156 161 160 160 160 170 155 171 169 11 453 0.8 

35 129 157 160 160 161 160 170 156 171 170 12 453 0.8 

36 130 156 161 160 160 160 170 155 171 169 11 453 0.8 

37 132 155 161 159 161 160 171 154 171 169 11 455 0.78 

38 130 156 161 160 160 160 170 155 171 169 11 453 0.8 

39 129 156 161 160 161 160 171 155 171 169 11 456 0.79 

40 132 156 162 160 162 161 171 155 170 169 10 454 0.8 

41 130 156 161 160 160 160 170 155 171 169 11 453 0.8 

42 132 156 162 160 162 161 171 155 170 169 10 454 0.8 

43 130 156 161 160 160 160 170 155 171 169 11 453 0.8 
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44 130 155 160 160 160 160 170 155 170 170 11 455 0.8 

45 129 156 161 160 161 160 171 155 171 169 11 456 0.79 

46 132 155 161 159 161 160 171 154 171 169 11 455 0.78 

47 132 155 161 159 161 160 171 154 171 169 11 455 0.78 

48 132 156 162 160 162 161 171 155 170 169 10 454 0.8 

49 130 156 161 160 160 160 170 155 171 169 11 453 0.8 

50 132 156 162 160 162 161 171 155 170 169 10 454 0.8 

51 130 156 161 160 160 160 170 155 171 169 11 453 0.79 

52 129 156 161 160 161 160 171 155 171 169 11 456 0.8 

53 132 156 162 160 162 161 171 155 170 169 10 454 0.78 

54 130 156 161 160 160 160 170 155 171 169 11 453 0.8 

55 132 156 162 160 162 161 171 155 170 169 10 454 0.79 

56 130 156 161 160 160 160 170 155 171 169 11 453 0.8 

57 132 156 162 160 162 161 171 155 170 169 10 454 0.78 

58 132 156 162 160 162 161 171 155 170 169 10 454 0.8 

59 132 156 162 160 162 161 171 155 170 169 10 454 0.8 

60 129 157 160 160 161 160 170 156 171 170 12 453 0.79 

 

B. Artificial Neural Network 

   Artificial neural network (ANN) is a machine learning 

technique that is capable of exploring the relationships 

between different variables with very high accuracy. ANN 

has been increasing in its usage over the past decade and it is 

becoming very popular in solving non-linear modeling 

problems [21] They are composed of processing units known 

as neurons. These neurons consist of a group of links that are 

interconnected. They are known as synapses with each of 

them having a weight 𝑤𝑘𝑗 . The weight is multiplied by an 

input 𝑥𝑗 and all the weighted weights are then summed 

together with an external bias 𝑏𝑘 which is needed to increase 

or reduce the output of the summed data 𝑣𝑘. To reduce the 

amplitude range of the output signal 𝑦𝑘 , an activation 

function φ is utilized. The neural network sequence can be 

represented mathematically as shown in equations (1) and (2). 

𝑛𝑒𝑡𝑘 = ∑ (𝑤𝑘𝑗) + 𝑏𝑘  𝑚
𝑗=1     (1) 

      

𝑦𝑘 = φ(𝑣𝑘)(𝑛𝑒𝑡𝑘)     (2) 

      

where 𝑤𝑘𝑗  is the synapses weight, 𝑥𝑗 is the input, 𝑏𝑘 is the 

bias, 𝑣𝑘 is the sum of the weighted weights, 𝑦𝑘  is the output, 

and φ is the activation function. Fig. 3 shows the model 

representation of a neuron.  
 

 

Fig. 3.  Model representation of a neuron 

 

Different types of activation functions can be used in an ANN 

model. Some common types include the Sigmoid 

linear, Gaussian and Gaussian complement functions. 

However, the most commonly used type is the sigmoid 

function and it can be expressed mathematically as shown in 

equation (3). 

φ(𝑣𝑘) =
1

1+𝑒−𝑣𝑘
    (3) 

In this work, the multilayer perceptron model was utilized in 

predicting the insulation thickness in the thermoplastic 

extrusion process. The multilayer perceptron which is also 

known as the feedforward neural network is the building 

block for all neural network models. It consists of one input 

layer, one output layer, and one or more hidden layers. Fig. 4  

shows the multilayer perceptron network schematic diagram. 

                                                            

 

                                                  

                                         

            

                                                                                       Fig. 4.  Multilayer Perceptron schematic diagram 
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Considering that the input layer has a 𝑀 set of neurons, the 

output of the neuron is given by equation (4). 

𝑂𝑢𝑡𝑖,𝑘𝑖
= 𝑓(∑ 𝑤𝑚𝑘𝑖

𝑥𝑚
𝑀
𝑚=0 ), 𝑘𝑖 = 1, … , 𝐾𝑖   (4) 

The output 𝑂𝑢𝑡1,𝑘𝑖
 of the input neuron is also fed into the 

hidden neuron such that the output neuron in the hidden later 

is given by equation (5). 

𝑂𝑢𝑡ℎ,𝑘ℎ
= 𝜑 (∑ 𝑤𝐾ℎ−1,𝑘ℎ

𝑂𝑢𝑡ℎ−1,𝑘ℎ−1

𝐾ℎ−1
𝐾ℎ−1=0 ),  

𝑘ℎ = 2, … , 𝐾ℎ , ℎ = 1, … 𝑁ℎ   (5) 

where 𝜑 is the activation function, 𝐾ℎ and 𝑀 are the numbers 

of the ℎ𝑡ℎ hidden layer neuron and inputs respectively, 𝑁ℎ is 

the number of hidden layers and 𝑤0,𝑘ℎ
, 𝑤𝑖𝑡ℎ 𝑘ℎ = 1, … 𝐾ℎ are 

the biases of the input and hidden layers. The output layer, 

therefore, can be calculated by summing all the outputs of the 

hidden layer neurons as shown in equation (6). 

𝑦𝑡 = ∑ 𝑤𝑘ℎ,𝑡𝑂𝑢𝑡𝑁,𝑘𝑁

𝐾𝑁
𝑘𝑁=0 , 𝑡 = 1, … 𝑇  (6) 

where T is the total number of neurons in the output layer, 

𝑤𝑘ℎ,𝑡 is the weight of the connecting link of the hidden layer 

and 𝑘ℎ = 1, … 𝐾ℎ is the weight of the connecting link of the 

output layers. 

The feedforward neural network is trained with a back-

propagation algorithm. Training is the process in which the 

network is modified using an appropriate learning mode to 

adjust the weights to ensure that the network attempts to 

produce the desired output. The supervised training algorithm 

that was utilized in this study is the Bayesian regularization. 

Although the Bayesian is not the fastest training algorithm, it 

was selected due to its ability to provide good generalization 

for difficult, small, and noisy data  

 

Structure of the Artificial Neural Network 

    In this study, two different ANN models were developed 

in MATLAB. The first model was used for both the PVC and 

PE materials while the XLPE was done differently due to its 

different configuration. Fig 5 show the network diagram of 

the ANN model while Fig. 6 is the function fitting neural 

network which are used in this study for the PVC and PE 

insulation thickness prediction. The MLP model consists of 

three layers. The input layers have thirteen (13) neurons with 

each neuron representing the input variables.  

These input variables include the zone temperatures (1st-7th 

zone), clamp temperature, neck temperature, crosshead 

temperature, die temperature, line speed, and the screw speed. 

 The hidden layer has thirty (30) neurons which were chosen 

based on a trial and error approach. The output layer consists 

of one neuron which represents the output variable. The 

output variable in this study is the insulation thickness.  

 

 
 

 

 

 

 

 

 
 

    

       

 

Fig. 6: Function fitting neural network  

The activation function between the input and hidden layer is 

the tansig function while the activation function between the 

hidden layer and the output layer is the purelin function. Fig. 

7 and Fig. 8 represent the block diagrams of the tansig and 

purelin functions respectively. 

     Fig. 7. Tansig activation function Simulink diagram 

   Fig. 8. Purelin function Simulink diagram 

 

The MLP model developed for the XLPE consists of thirty-

two (32) input neurons, forty (40) hidden layer neurons and 

one output neuron. The thirty-two input neurons consist of the 

different process parameters for the three extruders ranging 

from the zone temperatures to the caterpillar speeds. Fig. 9 

shows the network diagram for the neural network model for 
the XLPE cables.  

 

Fig. 9. Network diagram for the neural network model for XLPE insulations                

 

Fig. 5. Network diagram for the neural network model for PVC 

and PE insulations                
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The activation function between the input and hidden layer is 

the tansig function while the activation function between the 

hidden layer and the output layer is the purelin function. 

Eighty percent of the data that were obtained was used in 

training while the remaining twenty percent was used for 

testing the performance of the network developed in the two 

models at ten percent each. 

The MLP schematic diagram utilized in this study is as shown 

in Fig. 10. The functional relationship between the 

independent variables (input) and the output variable can be 

expressed as shown in equation (7).  

  𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4 … 𝑥𝑛−1, 𝑥𝑛)  (7)                                             

where 𝑥1, 𝑥2…𝑥𝑛 represent the process parameters and 𝑦 

represents the insulation thickness. This shows that the neural 

network is essentially a nonlinear regression model. 

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
Fig. 10. Schematic diagram of the neural network model 

 

Based on the network architecture utilized in this study, the 

mapping has two forms between the output and the input 

(independent) variables. The mapping is expressed as 

follows: 

𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟 → 𝑛𝑘
(1)

= ∑ 𝑤𝑘𝑛
(1)

𝑥𝑛 + 𝑏𝑘
(1)𝑅

𝑛=1       (8) 

𝑎𝑘
(1)

= 𝑓1𝐿𝑒𝑣𝑒𝑙(𝑛𝑘
(1)

)            (9) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟 → 𝑛𝑘
(2)

= ∑ 𝑤𝑘𝑛
(2,1)

𝑎𝑘
(1)

+ 𝑏1
(2)𝑅

𝑛=1  (10) 

𝑦 = 𝑎𝑘
(2)

= 𝑓2𝐿𝑒𝑣𝑒𝑙(𝑛𝑘
(2)

)           (11) 

 

where 𝑤𝑘𝑛 are the weights of the links between the input layer 

and the hidden layer which are specific to independent 

variable 𝑛 and neuron 𝑘, 𝑏𝑘 are the biases, 𝑥𝑛 are the input 

dataset, 𝑓 is the activation function and 𝑦 is the output. After 

successive iterations, the output equation can be generalized 

as follows: 

𝑦∗ = 𝑓∗(∑ 𝑤𝑘
′ 𝑓𝑁

𝑘=1 (∑ 𝑤𝑘𝑛𝑥𝑛 + 𝑏𝑘
(1)𝑅

𝑛=1 ) + 𝑏(2)); 𝑛 =

1,2 … 𝑅 𝑘 = 1,2 … , 𝑁          (12) 

where 𝑤𝑘
′  is the initial weight of the link between the input 

layer and hidden layer, 𝑏(2) is the bias, and 𝑅 is the total 

number of layers and 𝑁 is the total number or neurons. 

The Bayesian regularization learning algorithm utilized in 

this study is based on a probabilistic interpretation of the 

parameters of the network. In the training process and in order 

to compute the distance between the real and predicted data, 

the following function is used.  

 

 

 

 

𝑃 = 𝐸𝐷(𝑇|𝑤, 𝑀) =
1

𝑁
∑ (𝑦∗ − 𝑦)2𝑛

𝑖=1   (13) 

where 𝑇 is the training set, 𝐸𝐷 is the mean square error, 𝑤 is 

the weight, 𝑦 is the expected output and 𝑀 is the neural 

network architecture. In the neural network architecture, the 

Bayesian regularization adds terms to regulate large weights 

that may be introduced in the network to obtain a smooth 

mapping described as presented in equations (14) and (15). 

𝑃 = 𝛽𝐸𝐷(𝑇|𝑤, 𝑀) + 𝛼𝐸𝑊(𝑤|𝑀)    14) 

𝐸𝑊 =
1

𝑁
∑ 𝑤𝑛

2𝑛
𝑖=1      (15) 

where 𝐸𝑊 is the sum of the squares of the network weights, 

𝑤𝑛 is the network weigths while 𝛼 and 𝛽 are known as the 

hyper-parameters 𝛼𝐸𝑊(𝑤|𝑀) is known as the weight decay 

and 𝛼 is the decay rate. When 𝛼 ≪ 𝛽, errors will be made 

smaller by the training algorithm and if 𝛽 ≫ 𝛼, the training 

will reduce the weight size at the expense of the network 

error. This technique enables the neural network system to 

produce a smooth network response. 

C. Performance Evaluation Criteria 

   To be able to validate and evaluate the performance of the 

neural network development, the mean square error (MSE) 

technique was utilized in this study. Other sets of evaluation 

criteria include the mean relative error (MRE), mean absolute 

error (MAE) and the root mean square error (RMSE). The 

values of the performance criteria must be close to zero (0) as 

much as possible to indicate the high quality of the neural 

network developments. The performance criteria are 

described with the following equations: 

𝑀𝑆𝐸 =  
1

𝑛𝑠
∑ (𝑑𝑖 − 𝑦𝑖)2𝑛𝑠

𝑖=1  ;  (16) 

𝑀𝑅𝐸 =  
1

𝑛𝑠
∑

(𝑑𝑖−𝑦𝑖)

𝑑𝑖

𝑛𝑠
𝑖=1     (17) 

𝑀𝐴𝐸 =  
1

𝑛𝑠
∑ |𝑑𝑖 − 𝑦𝑖|𝑛𝑠

𝑖=1   ; and  (18) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛𝑠
∑ (𝑑𝑖 − 𝑦𝑖)2𝑛𝑠

𝑖=1    (19) 

 

where 𝑛𝑠 is the number of observations, 𝑑𝑖 is the desired 

values and 𝑦𝑖  is the predicted value?  

 

III. RESULTS AND DISCUSSIONS 

   In this section, the results of the study are presented. 

Relevant discussions are also made to enable an adequate 

understanding of the results obtained. 

 

A. Predicting PVC Insulation Thickness  

   Table II shows the PVC extrusion dataset characteristics 

used in the study. It consists of the parameter number, 

descriptions, and some statistics such as the minimum, 

maximum, mean and standard deviation values of the 

different attributes. 
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Table II 

Characteristics of PVC cable extrusion dataset 

S/N Description Minimum Maximum Mean  Standard Deviation 

Process Parameters (Input variables) 

1 1st zone temperature ℃ 129 132 130.639 1.096 

2 2nd zone temperature ℃ 153 157 155.033 1.316 

3 3rd zone temperature ℃ 160 162 161.016 0.826 

4 4th zone temperature ℃ 159 161 160 0.775 

5 5th zone temperature ℃ 160 162 161.115 0.819 

6  6th zone temperature ℃ 160 161 160.443 0.5 

7 7th zone temperature ℃ 160 163 161.344 1.124 

8 Clamp temperature ℃ 170 171 170.607 0.493 

9 Neck Temperature ℃ 154 156 154.934 0.772 

10 Crosshead temperature ℃ 170 171 170.328 0.473 

11 Die temperature ℃ 169 170 169.459 0.502 

12 Line speed m/min 10 12 11.049 0.805 

13 Screw speed rpm 453 456 454.443 1.025 

Output variable 

1 Thickness mm  0.79 0.8 0.796 0.005 

 

Performance Evaluation for PVC Insulation Thickness 

Prediction 

    In this study, the Bayesian regularization learning 

algorithm is used and training stops when the generalization 

stops improving. The network calculates the errors on the 

training and testing dataset. The neural network stops training 

when the error is minimized which indicates that the neural 

network can generalize to an unseen dataset. The regression 

analysis is also performed in order to measure the correlation 

between the target and output values. Fig. 11 shows the 

regression analysis plot. Table III also shows the MSE and R 

values for training and testing. When the regression value R 

is close to 1, a close relationship is indicated, however, with 

a regression value of 0, a random relationship occurs. It can 

be observed from the graphical representation in Fig. 2 that 

the regression values are close to 1 which indicates a close 

relationship between the target and the output data. 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 11. Regression analysis plot for Bayesian Regularization 

backpropagation algorithm (PVC). 

                                      
                                        Table III 

                         MSE and R values for the training and testing 

 

 

 

It can be seen that the R values are closest to 1 and this 

indicates an accurate prediction. The performance of the 

Bayesian algorithm is indicated in Fig 12. From Fig. 12, it 

can be observed that the best training performance is 

1.43319 ×  10−6  at epoch 843. 

 

Fig. 12. Training performance for the Bayesian backpropagation algorithm 
(PVC). 

 

Twenty percent of the dataset was used to validate the 

performance of the network. These datasets were not used in 

the training and act as a new dataset which can be used to 

  MSE R 

Training 1.43319 × 10─6 0.98826 

Test 1.43319 × 10─6 1.00000 

AII ─ 0.99016 
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determine the performance of the developed neural network 

model in predicting insulation thickness in the extrusion 

process. Fig. 13 shows the graphical representation to 

indicate the relationship between the production and 

predicted values. The mean square error (MSE) of the 

predicted values is obtained as 4.86965 ×10^ (-5). 

It can be seen from the graph in Fig.13 that the developed 

neural network system can accurately predict the insulation 

thickness as the predicted values closely match the values 
obtained from the dataset used for verifying the artificial 

neural network system  

 
Fig. 13. Relationship between PVC predicted values and production values                             

B. Predicting PE Insulation Thickness 

   Table IV shows the PE extrusion dataset characteristics 

used in the study. It consists of the parameter number, 

descriptions and some statistics such as the minimum, 

maximum, mean and standard deviation values of the 

different attributes 

 

Performance Evaluation for PE Insulation Thickness 

prediction 

    The production setups for the PVC and PE extrusions used 

in this study are the same. Hence, the network used for the 

PVC insulation thickness prediction was used to predict the 

insulation thickness for the PE cable extrusion process. Fig. 

14 shows the graphical relationship between the predicted 

values and the production values for PE cable insulation. The 

mean square error (MSE) of the predicted values is obtained 

as 2.84315 ×10^ (-5).  

 

 

 

 

 

 

 
 

 

 

 

Fig. 14. Relationship between PE predicted values and production values 

(PE) 

   
Table IV 

Characteristics of PE cable extrusion dataset 

S/N Description Minimum Maximum Mean  Standard Deviation 

Process Parameters (Input variables) 

1 1st zone temperature ℃ 159 162 160.506 1.119 

2 2nd zone temperature ℃ 163 167 164.656 1.389 

3 3rd zone temperature ℃ 170 172 171.1311 0.826 

4 4th zone temperature ℃ 175 177 176.115 0.819 

5 5th zone temperature ℃ 180 182 180.738 0.772 

6 6th zone temperature ℃ 184 186 185.131 0.741 

7 7th zone temperature ℃ 190 193 191.656 1.196 

8 Clamp temperature ℃ 194 196 195.098 0.851 

9 Neck Temperature ℃ 194 196 195.098 0.831 

10 Crosshead temperature ℃ 195 196 195.508 0.504 

11 Die temperature ℃ 199 200 199.475 0.504 

12 Line speed m/min 14 16 14.918 0.822 

13 Screw speed rpm 171 173 172.033 0.795 

Output variable 

1 Thickness mm 0.73 0.75 0.747 0.005 
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From the graph of Fig.14, it is observed that the predicted 

values of the neural network are closely related to the values 

obtained from the production values. The artificial neural 

network is capable of predicting accurately the insulation 

thickness from the process parameters.  

C. Predicting XLPE insulation thickness   

   Table V shows the XLPE extrusion dataset characteristics 

of the dataset used in the study. It consists of the parameter 

number, descriptions, and some statistics such as the 

minimum, maximum, mean and standard deviation values of 

the different attributes. 

 

Performance evaluation for XLPE insulation thickness 

prediction 

   The regression plot for the Bayesian neural network 

developed for the prediction of XLPE insulation thickness is 

shown in Fig. 15. It can be seen that the regression values are 

close to 1 which indicates an accurate prediction. Table VI 

shows the MSE and R values for the training, and testing of 

the neural network. 

 

 

 
Table V 

Characteristics of PVC cable extrusion dataset 

S/N Description Minimum Maximum Mean  Standard Deviation 

90 Extruder Process Parameters (Input variables) 

1 1st zone temperature ℃ 94 96 94.803 0.853 

2 2nd zone temperature ℃ 100 103 101.967 1.251 

3 3rd zone temperature ℃ 105 107 106.131 0.695 

4 4th zone temperature ℃ 108 109 108.475 0.504 

5 5th zone temperature ℃ 110 112 110.574 0.884 

6 6th zone temperature ℃ 111 112 111.819 0.388 

7 Setting speed rpm 118 119 118.492 0.504 

8 Screw speed rpm 4.25 4.26 4.257 0.005 

9 Melt pressure Mpa 14 15 14.721 0.452 

10 Line Speed rpm 2.9 3.17 3.123 0.0513 

11 Upper caterpillar speed rpm 258 259 258.492 0.504 

12 Lower caterpillar speed rpm 258 259 258.180 0.388 

150 Extruder Process Parameters (Input variables) 

1 1st zone temperature ℃ 97 99 98.197 0.542 

2 2nd zone temperature ℃ 105 107 106.148 0.703 

3 3rd zone temperature ℃ 105 107 105.902 0.700 

4 4th zone temperature ℃ 108 109 108.25 0.437 

5 5th zone temperature ℃ 108 110 108.913 1.005 

6 6th zone temperature ℃ 111 112 111.738 0.444 

7 7st zone temperature ℃ 111 112 111.672 0.473 

8 8th zone temperature ℃ 111 112 111.409 0.496 

9 9th zone temperature ℃ 111 112 111.409 0.496 

10 Setting speed rpm 117 119 118.574 0.644 

11 Screw speed rpm 4.25 4.27 4.261 0.007 

12 Melt pressure Mpa 14 15 14.262 0.444 

65 Extruder Process Parameters (Input variables) 

1 1st zone temperature ℃ 99 100 99.770 0.424 

2 2nd zone temperature ℃ 105 107 105.885 0.877 

3 3rd zone temperature ℃ 106 108 107.033 0.706 

4 4th zone temperature ℃ 111 112 111.295 0.459 

5 5th zone temperature ℃ 111 112 111.738 0.444 

6 Setting speed rpm 133 135 133.819 0.533 

7 Screw speed rpm 6.34 6.46 6.4109 0.054 

8 Melt pressure Mpa 12 14 13.787 0.451 

Output variable 

1 Thickness mm 0.53 0.56 0.549 0.009 
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Fig. 15. Regression analysis plot for Bayesian Regularization 

backpropagation algorithm (XLPE).  

                                    Table VI 

        MSE and R values for the training and testing 

 

  

 

 

 

 

 

 

 

Fig. 16. Training performance for the Bayesian backpropagation algorithm 

(XLPE) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Fig. 16, it can be observed that the best training 

performance is 2.6807 × 10−10  at epoch 504. A percentage 

of the dataset was used to validate the performance of the 

artificial neural network. From Fig. 17, it can be seen that 

there is a close relationship between the predicted values and 

the values obtained from the production data set. The mean 

square error of the predicted values is obtained as 

1.59202 × 10−5. Hence, the system can accurately predict 

the insulation thickness for XLPE insulation thickness.  

D. Prospects of artificial neural network in thermoplastic 

extrusion process 

   It can be observed from this study that the use of an artificial 

neural network can accurately predict the insulation thickness 

in thermoplastic extrusion. This can significantly improve the 

output quality and increase the production rate of electrical 

cables. Production managers in industries can be equipped 

with the appropriate tools which can enable them to produce 

quality cable insulation while eradicating the need to perform 

long experiments which can lead to waste of materials and 

increase the cost of production. The prospects of utilizing the 

artificial neural network in the extrusion process are endless 

as it can also be used for the control of the entire system. The 

neural network controller coupled with an extruder (which 

enables it to be able to predict future plant behaviors and 

select appropriate control input) which can optimize future 

performance. 

 

IV. CONCLUSION 

   A multilayer perceptron neural network trained with 

backpropagation using the Bayesian regularization algorithm 

was developed. The artificial neural network model 

developed in this study was able to accurately predict the 

insulation thickness in the thermoplastic extrusion process for 

PVC, PE and XLPE cables. Before now, the use of trial and 

error techniques to determine the appropriate insulation 

thickness for cable insulation is common, but as seen in the 

present work, the use of artificial neural networks can 

eradicate the need for trial and error techniques which can 

improve the output quality, reduce production time and cost. 

An artificial neural network is best suited to solve an 

industrial problem because it can be applied to real 

manufacturing execution systems. The prospects of using an 

artificial neural network in the extrusion process were also 

highlighted. Further research work could still be done by 

  MSE R 

Training 7.8457 × 10─11 1.00000 

Test 1.99053 × 10─11 0.96241 

AII ─ 0.99429 
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Fig. 17. Relationship between XLPE predicted values and 

production values (XLPE 
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using an artificial neural network to predict extrusion process 

parameters to further improve the output quality of the 

thermoplastic extrusion process. 
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