
 

 

Abstract—Deep convolutional neural network used for image 
classification is an important part of deep learning and has 
great significance in the field of computer vision. Moreover, it 
helps humans to simulate the human brain more realistically, 
pointing out the direction for the development of artificial 
intelligence. In fact, the rapid development and its application 
of deep neural networks are due to the improvements of various 
activation functions. The activation function is one of the most 
critical parts of the neural networks, which provides the 
possibility of strong nonlinear fitting ability of the deep neural 
network. In this paper, we analyze how the activation function 
affects the deep neural network, and then analyzes and 
summarizes the development status and the performance of 
different activation functions. Based on these, we designed a 
new activation function to improve the classification 
performance of neural networks. Finally, we perform extensive 
classification experiments on the MNIST, CIFAR10/100, and 
ImageNet datasets, and compare various popular activation 
functions to provide a reference for the selection of activation 
functions when designing deep neural network models. Deep 
convolutional neural networks, including the four models 
AlexNet, VGGNet, GoogLeNet, and Network in Network (NIN), 
are used to observe the role of the activation function in training 
and testing phase. The experimental results show that the 
constructed deep convolutional neural networks based on the 
improved activation function not only have a faster convergence 
rate, but also can improve the image classification accuracy 
more effectively. 

Index Terms—deep learning, image classification, activation 
function, generalization, overfitting 
 

I. INTRODUCTION 

N recent years, deep learning model is the most remarkable 
direction in the field of machine learning. It interprets data, 

such as images, voice and text, by imitating the working 
mechanism of human brain. It is widely used in automatic 
driving [1] [2] [3], medical diagnosis [4] [5] [6], speech 
recognition [7] [8] [9], machine translation [10] [11] and 
some other fields. Its concept originates from the research 
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and development of artificial neural networks. Back 
propagation algorithm [12] makes deep learning model no 
longer remote, and eventually brings the revival of deep 
learning research based on statistical model [13].  

Activation functions are the core of deep neural network 
structure. It is just a node added to the output of the neural 
network, also known as a transfer function. It can also 
connect two layers of neural network models. It is used to 
determine whether the neural network output is yes or no, 
mapping the output values between 0 and 1 or between -1 and 
1 (depending on the activation functions between different 
two layers). At present, the popular and commonly used 
activation functions include Sigmoid function [14], Tanh 
function [15], ReLU function [16], Leaky ReLU function 
[17], etc. However, the gradient vanishing problem usually 
occurs in the backward transferring of sigmoid function, 
which greatly reduces the training speed and convergence 
results. 

The ReLU function can effectively alleviate the gradient 
vanishing problem. It can be used to train the deep neural 
network in the supervised manner without relying on the 
unsupervised layer-by-layer pre-training, which significantly 
improves the performance of the deep convolutional neural 
network. Krizhevsky and others [18] tested the commonly 
used activation functions ReLU, sigmoid and tanh functions, 
and proved that the performance of the ReLU function is 
better than the sigmoid function. 

However, ReLU also has fatal shortcomings. Firstly, the 
output of ReLU function is greater than 0, so that the output is 
not zero mean, that is, mean shift (bias shift), which easily 
leads the neurons of the latter layers to get the signals of 
non-zero mean output of the upper layer as input, making the 
calculation of network parameter difficult. Secondly, as the 
training progresses, part of the input will fall into the hard 
saturation region of ReLU function, resulting in the result of 
corresponding weight cannot be updated. Mean shift and 
neuron death affect the convergence and optimizing speed of 
deep neural networks. 

The main function of activation functions in deep neural 
networks is to provide the ability of non-linear modeling of 
networks. If only linear convolution and full connection 
operations are included in the network, it can only express 
linear mapping. Even if the depth of the network is increased, 
it is still linear mapping, which makes it difficult to 
effectively tune the data of non-linear distribution in the real 
environment. When the activation function is applied to deep 
convolutional neural networks, it mainly has an impact on 
network training in the forward and backward process. 
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In deep convolutional neural networks, activation function 
of hidden layer neurons is at the core position . Obviously, it 
is equivalent to the based kernel function [46] in signal 
decomposition. According to the theory of signal processing, 
the true optimal transformation is based on the specific signal 
characteristics; the basis function that matches it best is 
selected, and the signal decomposition is performed based on 
the preferred basis function. It is difficult to say that, for a 
certain kind of signal, the wavelet transform or the Fourier 
transform is good. Since the feedforward network design has 
the same model as the signal decomposition, optimizing the 
type of activation functions according to the actual problem is 
important for designing a high performance deep neural 
network. At present, there is almost no theoretical guidance 
for the selection of neural network activation functions. The 
activation functions of most specific applications are 
determined through a large number of experiments [47]. 
Therefore, it is very important to summarize the advantages 
and disadvantages of the popular activation functions for 
different situations and to lay the foundation for better 
application of the deep learning model in the future [42]. 

In this paper, in order to solve gradient vanishing problem 
of neural network model, we analyze the advantages, defects 
and intrinsic properties of several popular activation 
functions, and construct a piecewise function as new 
activation function based on ReLu and Swish functions. 
Finally, we use four deep convolutional neural networks (i.e. 
AlexNet, VGGNet, Goog- LeNet, and NIN) to conduct 
intensive experiments on four public datasets (i.e., MNIST, 
CIFAR10, CIFAR100, and ImageNet) to compare the effects 
of various neuron activation functions on the convergence 
speed and image classification performance of deep CNN. 
Finally, experimental results show that the activation 
function type of the neuron is equivalent to the basis function 
in the signal decomposition. If it is not fully optimized, the 
generalization ability and performance of deep convolutional 
neural network cannot be obtained, especially the 
classification performance on the unseen test data. In addition, 
the proposed new activation function plays a very significant 
role in improving the training speed and reducing the error 
rate of the deep neural network. 

The rest of the paper is organized as the follows. We first 

introduce and analyze the recent developments of activation 
functions in deep learning in Section II. Then we present 
multiple popular activation functions in deep CNN for image 
classification in Section III. Finally, experimental results and 
corresponding analysis are introduced in Section IV. Finally, 
we discuss what we learned, our conclusions, and the future 
works in Section V. 
 

II. RELATED WORKS 

In this part, we introduce the meaning of deep learning 
model, and its key parts, activation function, development. 
Then, we summarize the existing problems, difficulties, 
challenges and improvements made by researchers. 

In 1980, Fukushima et al. [19] proposed the concept of 
convolutional neural network (CNN). In 1998, Lecun et al. 
[20] further realized and optimized the convolution neural 
network. In 2003, Simard et al. [21] simplified the neural 
network model. The above three typical deep learning models 
introduced above are from different teams. DBN comes from 
the Hinton team at the University of Toronto, SAE comes 
from the Bengio team at the University of Montreal, and 
CNN from the Lecun team at New York University. It can be 
seen that image classification systems based on deep 
convolution neural network are more and more widely used, 
and the research work of deep convolution neural network 
has been highly valued by researchers. But some of these 
headaches still do not have a better solution. For example, the 
deep learning model itself is complex and difficult to 
implement; the training algorithm of the deep learning model 
determines that the model is easy to diffuse gradients, and the 
model is not easy to converge, which requires a lot of time to 
debug; there is no complete general theory yet, so the design 
of neural network structures and training models requires a 
lot of practical skills and needs to constantly explore the best 
parameters and optimization algorithms and so on. In order to 
solve the gradient vanishing problem in deep neural network 
model, the advantages and disadvantages of many activation 
functions ReLU [22] and Softplus [23] are analyzed. 

In fact, the preliminary study of the activation functions 
went through three phases: 

 Simple linear function: this model does not reflect the 
nonlinear characteristics of the activation function and 

 
Fig. 1. Curves of some classic activation functions in the MATLAB platform. 
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does not have the characteristics of classification, so it is 
rarely used. 
 Linear threshold function: This kind of function usually 
has good classification performance, but because it is a 
non-conductible function, it is difficult to find an effective 
learning algorithm. 
 Nonlinear function: This type of function gives the deep 
neural network model a powerful nonlinear fitting ability 
to capture the features and patterns behind massive data. 
Now, choosing the most effective one from many complex 

activation functions is one of the most critical steps in the 
practical application. Some of the classic activation functions 
in the MATLAB platform are shown in Fig. 1. 
 

III. POPULAR ACTIVATION FUNCTIONS IN DEEP CNN 

MODEL FOR IMAGE CLASSIFICATION 

In this section, we first introduce some popular activation 
functions in deep convolution neural networks (CNNs) for 
image classification and respective properties. Furthermore, 
we propose a new activation function used for improving the 
classification performance of neural networks. The flow of 
the entire algorithm is shown in Fig. 2. 

A. Effect of Activation Function in Deep Convolutional 
Neural Networks 

Activation function in deep neural network refers to the 
preservation and mapping of the “characteristics of activated 
neurons” through non-linear functions, which is the key to 
solving non-linear optimization problems in neural networks. 
When the activation function is linear, the linear combination 
of massive linear equations can only be expressed linearly. 
Even if the network has multiple layers, it is equivalent to a 
linear network with single hidden layer. This kind of linear 
representation of the input is only equivalent to a multilayer 
perceptron. This makes it impossible to approximate 
arbitrary functions with nonlinearities. Due to the 
performance of the network model is far from meeting the 
practical requirements, researchers have tried to use a 
combination of nonlinearities [24]. The use of activation 
function increases the nonlinearity of the neural network 

model, making the deep neural network meaningful. 
Furthermore, the traditional activation functions will reduce 
the input value to a fixed interval, because the gradient-based 
optimization method will be more stable when the output 
value of the activation function is limited. The new sparse 
activation functions based on brain nerves have high training 
efficiency, but in this case, a smaller learning rate is generally 
required. Three kinds of constructions of loss planes caused 
by different activation functions are presented in Fig. 3. 

We draw the role of activation function in the whole neural 
network model, including forward and backward propagation 
stages, as shown in Fig. 4. It can be seen that the output of the 
activation function in the deep convolutional neural network 
is defined as 
 

( )a f x w b                                 (1) 

 
where f (·) represents the activation function, w represents the 
weights of deep neural networks and b denotes the bias. It can 
be seen from equation (1) that the input vector first makes an 
inner product with the weight vector, the inner product and 
the offset term, and finally outputs through an activation 
function. The role of the activation functions here is to input 
the data. The feature is preserved and mapped by its own 
nonlinear characteristics and passed to the next neuron in the 
next layer. In the forward propagation stage, the entire data 
transmission process from the input layers to the hidden 
output layers is through the information processing 
characteristic in nonlinear activation functions. On the other 
hand, the back-propagation process is aimed to update the 
weights and offset values of the network. Now, we introduce 
how activation functions make a role in the training and 
testing process of deep convolutional neural networks. 

Take the mean square error function as an example, after a 
single layer of forward-propagation, the output error of deep 
neural network can be expressed as 
 

21
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In the back-propagation process, the weight w needs to be 
updated. Take the w0 as an example, according to the chain 
rule, we can get its update rule as 
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Then w0 is updated according to 
 

 

Fig. 2. The experimental flow and steps of deep CNN models for image 
classification. 
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The updating way for other weights in the network is similar 
to the above process. Equation (7) shows that in each 
updating process, the residual is multiplied by learning rate 
and partial derivative at each level. If inappropriate activation 
function is selected, the deep convolutional neural network 
will unable to be effectively trained because of the small 
bottom residual after the multi-layer propagation. Therefore, 
in the process of back-propagation, the choice of activation 
function will affect the convergence results of the whole 
model. 

B. Popular Activation Functions 

Activation functions, as an indispensable component of 
deep learning, playing a vital role in it. The revival of neural 

networks benefits from the design of a specific activation 
function (i.e., ReLU). It solves the “vanishing gradient” 
problem in the deep neural network, and makes the training 
of deep network model come true. The deeper the network is, 
the more complex and abstract the semantic features will be 
captured, which is very effective for object classification. At 
present, a large number of excellent activation functions have 
been proposed, including Leaky-ReLU [17], PReLU [25], 
ELU [26], and Swish [27]. However, there are no conclusions 
as to what activation function can perform best in what 
scenario. There are also no universal standards to determine 
which property is effective [45]. 

Each neuron node in the neural network accepts the output 
value of the upper layer of neurons as the input value of the 
neuron, and passes the input value to the next layer. The 
neuron node in the input layer passes the input value directly 
to the underlying layers (hidden layers or output layers). In 

 

Fig. 3. Three kinds of constructions of loss planes caused by different activation functions. 
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Fig. 4. The forward and backward propagation process of deep convolutional neural network. 

 
Fig. 5. Popular activation functions in deep neural networks and their corresponding derivatives. 
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the multi-layer deep neural network models, there exists 
complex functional relationship between the output of the 
upper node and the input of the underlying node. This 
function is called an activation function (also called an 
excitation function). 

At present, the most successful and widely-used activation 
function is the Rectified Linear Unit (ReLU), which is 
defined as 
 

f (x) = max(x, 0)                              (8) 
 
The use of ReLU function was a breakthrough that enabled 
the fully supervised training of the state-of-the-art deep 
networks. Deep networks with ReLUs are more easily 
optimized than networks with sigmoid or tanh units (which 

are defined in Eq. (9) and Eq. (10), respectively), because 
gradient is able to flow when the input to the ReLU function 
is positive. Thanks to its simplicity and effectiveness, ReLU 
has become the default activation function used across the 
deep learning community. 
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Softplus can be seen as a smoothed version of ReLU, which 
is defined as 
 

 
(1)                                                                                (2)                                                                               (3) 

 
(4)                                                                                 (5)                                                                                 (6) 

 
(7)                                                                                 (8)                                                                                 (9) 

 
(10)                                                                              (11)                                                                              (12) 

Fig. 6. Loss landscapes of the neural network model with multiple activation functions. 
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( ) log(1 )xP x e                              (11) 

 
ReLU function sets all negative values to zero. Instead, 
Leaky-ReLU assigns a non-zero slope to all the negative 
values. The Leaky-ReLU activation function was first 
proposed in the acoustic model and was defined as  
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where α∈(0, +∞) is a fixed parameter. 

Then we calculate the derivatives of the following five 
activation functions, as shown below. 
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The output of sigmoid function is not zero-centered, which 

reduces the efficiency of weight updating. When the input is 
slightly away from the coordinate origin, the gradient of this 
function becomes very small (i.e., almost equaling to zero). 
Finally, this will lead to the weight has little effect on the loss 
function, which is not conducive to the optimization of 
network weight, resulting in gradient saturation problem. 
When the weight of deep neural network is initialized to a 
value in the (1, +∞) interval, there will be the gradient 
explosion problem. On the other hand, the output of sigmoid 
function is not zero-centered. This is undesirable because it 
will cause the neurons in the latter layer to receive the signals 
of the non-zero mean output from the upper layer as input. 
One result is that if the data enters the neuron positively (e.g., 
elementwise), the calculated gradient will always be positive. 

In the specific applications, the tanh function is usually 
superior to the sigmoid function, mainly due to the sigmoid 
function is sensitive to changes in function values when the 
input is between interval [0, 1], and loses sensitivity once it 
approaches or exceeds interval in a saturated state, affecting 
the accuracy value predicted by the neural network. And the 
output and input of tanh can maintain a nonlinear monotonic 
rise. However, it also has the problem of gradient saturation. 
Generally, in binary classification problems, tanh function is 
usually used in the hidden layer and sigmoid function is used 
in the output layer. 

The ReLU function is a popular activation function. When 
the input is positive, there is no gradient saturation problem. 
ReLU function has only the linear relationship. Whether it is 
on forward or backward propagation stage, it is much faster 
than sigmoid and tanh functions. However, it also has some 
drawbacks. If inputs are negative, ReLU is not to be activated 
at all, which means that once a negative number is entered, 
ReLU will have zero output. PReLU is an improved version 

of ReLU. In the negative region, PReLU has a small slope, 
which can be used to avoid the problem of neuronal necrosis 
in ReLU. 

If researchers do not use the activation function (actually 
equivalent to the activation function is f (x) = x). In this case, 
the input of each node in one layer is a linear function of the 
output of the upper layer. It is easy to verify that no matter 
how many layers of the neural network has, the output is a 
linear combination of the inputs, which is equivalent to the 
effect of no hidden layers. This means that your model is  the 
most primitive perception machine (i.e., perceptron). Then 
the approximation ability of the network is quite limited. 

The primary role of the activation functions in deep 
convolutional neural networks is to provide the nonlinear 
modeling capabilities of the network. Assuming that a deep 
neural network model contains only linear convolution and 
full connection operation, the network can only express linear 
mapping. Even if the depth of the network is increased, it is 
still linear. It is difficult to effectively tune the nonlinearly 
distributed data in the actual environment. After adding the 
(non-linear) activation function, the deep neural network has 
the hierarchical non-linear mapping ability. Therefore, the 
activation function is an essential component of the deep 
neural network model. 

In fact, PReLU is also a variant of Leaky-ReLU. In the 
PReLU function, the slope of the negative value is trained 
rather than pre-defined. Finally, we plot the curves of all 
activation functions and their corresponding derivatives, as 
shown in Fig. 5. 

Generally speaking, the above activation functions have 
their own advantages and disadvantages. At present, there are 
no conclusions that which activation functions are good or 
bad, which must be obtained according to experiments. 

C. Property of Activation Functions 

Typically, loss landscapes of deep convolutional neural 
network model can reflect the nature and property of the 
activation function. In the past, a large number of linear or 
non-linear dimension reduction methods have been 
developed to observe the parameter distribution and training 
process of the model. However, some traditional methods 
such as PCA dimension reduction [28] and LDA dimension 
reduction [29] are difficult to observe the distribution of 

 

Fig. 7. Popular activation functions in deep neural networks and their 
corresponding derivatives. 
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network parameters effectively because of the severe 
over-parameterization of deep convolution neural networks. 
The reduction of massive dimensions makes the information 
seriously distorted, and it is difficult to reflect the training 
process and convergence results of the model. 

Therefore, we plan to use a reverse exploratory approach 
to visualize the loss landscape of the model. We use the final 
convergence position to explore the loss value in the random 
direction, so as to form a two-dimensional loss landscape 
under the two dimensions of network weight and bias. 

Finally, we plot the loss planes of the model with multiple 
activation functions, as shown in Fig. 6. Among them, (1)-(12) 
represent the radbasn, radbas, purelin, logsig, hardlims, tribas, 
tansig, softmax, satlins, satlin, linear, and sawtooth function , 
respectively. By comparing the visualization results of loss 
landscapes of deep convolutional neural networks under 
multiple various activation functions, it can be clearly seen 
that the different distributions are obtained due to different 
properties. Some functions have smoother boundaries than 
the others, while they are jagged, such as (10) and (12). On 
the other hand, the degree of nonlinearity of boundary can 

also reflect their fitting capability: the fitting ability of 
activation functions (1) and (7) is much higher than that of (2) 
and (3). However, in practical application, a higher fitting 
ability does not mean a better classification performance. The 
over-fitting problem caused by the over high fitting ability is 
a typical example. In fact, how to achieve a balance between 
model optimization and generalization is the key to solve the 
problem at present. 

D. Piecewise Bi-Nonlinear Activation Function 

Based on the analysis of above activation functions, we try 
to design a new function to balance the network optimization 
and generalization. The new proposed activation function 
(soft-ReLU) utilizes both their advantages of several 
different activation functions, and it is defined as 
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TABLE I 
CLASSIFICATION RESULTS OF VARIOUS ACTIVATION FUNCTIONS ON FOUR IMAGE CLASSIFICATION BENCHMARKS ON ALEXNET 

Activation Functions MNIST CIFAR10 CIFAR100 ImageNet 

ReLU 99.27% 93.11% 77.9% 76.4% 

PReLU 99.46% 95.43% 81.7% 77.2% 

Leaky ReLU 99.37% 94.42% 81.4% 76.8% 

Softplus  99.41% 93.37% 79.2% 74.5% 

ELU 99.17% 92.27% 78.8% 74.7% 

MPELU 98.85% 92.84% 76.8% 74.1% 

Swish 99.43% 94.47% 80.4% 76.7% 

Ours 99.27% 94.81% 79.4% 75.5% 

 
TABLE II 

CLASSIFICATION RESULTS OF VARIOUS ACTIVATION FUNCTIONS ON FOUR IMAGE CLASSIFICATION BENCHMARKS ON VGGNET 

Activation Functions MNIST CIFAR10 CIFAR100 ImageNet 

ReLU 99.31% 93.20% 78.2% 76.7% 

PReLU 99.49% 95.47% 82.2% 77.4% 

Leaky ReLU 99.36% 94.46% 81.6% 76.4% 

Softplus  99.44% 93.33% 79.5% 74.8% 

ELU 99.22% 92.40% 79.0% 75.1% 

MPELU 98.87% 93.01% 77.2% 74.6% 

Swish 99.76% 94.66% 80.7% 77.4% 

Ours 99.33% 95.52% 82.9% 77.8% 

 
TABLE III 

CLASSIFICATION RESULTS OF VARIOUS ACTIVATION FUNCTIONS ON FOUR IMAGE CLASSIFICATION BENCHMARKS ON GOOLENET 

Activation Functions MNIST CIFAR10 CIFAR100 ImageNet 

ReLU 99.33% 93.32% 79.1% 76.8% 

PReLU 99.34% 95.41% 82.1% 77.2% 

Leaky ReLU 99.32% 95.57% 83.1% 77.5% 

Softplus  99.47% 93.51% 79.7% 75.4% 

ELU 99.36% 93.17% 79.2% 74.7% 

MPELU 98.90% 93.22% 78.4% 75.1% 

Swish 99.74% 94.41% 81.1% 77.7% 

Ours 99.45% 95.37% 82.4% 77.1% 
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where fact(·) represents the proposed soft-ReLU function. The 
first order derivative can be obtained by 
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Finally, we present the function curves and its first order 
derivative in Fig. 7. It can be clearly seen that proposed 
soft-ReLU is a piecewise bi-nonlinear activation function. 
When x > 0, the gradient is always kept at 1; while  x < 0, the 
gradient begins to disappear at the great distance, which 
avoids the neuronal necrosis phenomenon while ensuring 
over-effect. 
 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we perform a large number of experiments 
on four image classification benchmark datasets (i.e. MNIST, 
CIFAR10, CIFAR100, and ImageNet ) by using four deep 

neural network models (i.e. AlexNet, VGGNet, GoogLeNet, 
and NIN) to observe the nature and performance of different 
activation functions, including ReLU, PReLU, Leaky ReLU, 
Softplus, ELU, MPELU, Swish, and Soft-ReLU functions. 
Finally, the experimental results and detailed analysis are 
presented in each section. 

A. Experimental Setup 

In this part, we first introduce the experimental settings, 
including the introduction of the database, the selection of 
network model, and the setting of hyper-parameters. 

Experimental Datasets for Image Classification. We 
select four image classification datasets in the experimental 
process. The MNIST handwritten dataset [30] is from the 
National Institute of Standards and Technology (NIST). The 
training set consists of handwritten images from 250 different 
people, 50% of whom are high school students and 50% of 
staff from the Census Bureau. It includes a total of 60 000 
images from 0 to 9. The test set is also the same proportion of 
handwritten digital data, which contains a total of 10 000 
images. The CIFAR-10 dataset [31] consists of 60 000 32×32 

TABLE IV 
CLASSIFICATION RESULTS OF VARIOUS ACTIVATION FUNCTIONS ON FOUR IMAGE CLASSIFICATION BENCHMARKS ON NETWORK IN NETWORK 

Activation Functions MNIST CIFAR10 CIFAR100 ImageNet 

ReLU 99.21% 93.29% 78.4% 76.1% 

PReLU 99.36% 95.37% 80.8% 75.4% 

Leaky ReLU 99.21% 95.50% 82.3% 77.2% 

Softplus  99.25% 93.42% 78.4% 75.1% 

ELU 99.19% 93.10% 79.0% 74.0% 

MPELU 98.77% 93.07% 78.1% 73.9% 

Swish 99.53% 94.28% 80.4% 74.6% 

Ours 99.33% 95.15% 81.1% 75.2% 

 
TABLE V 

CLASSIFICATION RESULTS OF VARIOUS ACTIVATION FUNCTIONS ON FOUR IMAGE CLASSIFICATION BENCHMARKS ON RESNET-101 

Activation Functions MNIST CIFAR10 CIFAR100 ImageNet 

ReLU 99.32% 93.23% 78.6% 75.8% 

PReLU 99.44% 95.18% 81.1% 76.1% 

Leaky ReLU 99.07% 95.07% 82.0% 76.7% 

Softplus  99.34% 93.66% 79.8% 75.5% 

ELU 99.46% 93.20% 79.4% 74.7% 

MPELU 98.94% 93.41% 79.2% 74.2% 

Swish 99.38% 94.33% 81.1% 74.2% 

Ours 99.29% 95.07% 80.8% 74.7% 

 
TABLE VI 

CLASSIFICATION RESULTS OF VARIOUS ACTIVATION FUNCTIONS ON FOUR IMAGE CLASSIFICATION BENCHMARKS ON WIDE RESNET 

Activation Functions MNIST CIFAR10 CIFAR100 ImageNet 

ReLU 99.51% 93.20% 79.2% 73.9% 

PReLU 99.34% 94.85% 80.4% 74.4% 

Leaky ReLU 99.20% 94.72% 81.2% 75.3% 

Softplus  99.41% 93.28% 79.6% 75.0% 

ELU 99.40% 93.44% 79.2% 74.1% 

MPELU 99.12% 93.30% 79.7% 74.4% 

Swish 99.07% 94.12% 80.4% 73.4% 

Ours 99.40% 94.88% 79.4% 74.4% 
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color images of 10 classes, each with 6000 images. There are 
50 000 training images and 10 000 test images in CIFAR 10. 
CIFAR100 [32] has 100 classes, each of which containing 
600 images where includes 500 training images and 100 test 
images. ImageNet [33] is a computer vision based 
recognition project and is the largest database for image 
recognition in the world, which contains a total of 1 000 000 
natural images in 1000 categories. 

Deep Convolutional Neural Networks. AlexNet [34], 

VGGNet [35], GoogLeNet [36], NIN [37], ResNet [38], and 
Wide ResNet [39] with different activation functions are used 
to perform image classification task. The above six models 
include 17, 19, 22, 14, 101, and 23 layers, respectively. In 
fact, comparing the classification performance of many 
activation functions across various models can 
comprehensively reflect their properties. 

Hyper-parameters Setting. The models are initialized by 
a Gaussian distribution function. Learning rate is set to 0.01 

TABLE VII 
MNIST: CLASSIFICATION RESULTS OF VARIOUS ACTIVATION FUNCTIONS ON ALEXNET UNDER VARIOUS INITIALIZATION METHODS 

Activation Functions LSUV [39] Xavier [40] MSRA [41] Gaussian Distribution 

ReLU 99.37% 99.14% 99.15% 99.24% 

PReLU 99.23% 99.52% 99.39% 99.34% 

Leaky ReLU 99.42% 99.25% 98.99% 98.97% 

Softplus  99.18% 99.40% 99.03% 99.17% 

ELU 99.04% 98.66% 99.21% 99.02% 

MPELU 98.65% 99.10% 98.91% 98.92% 

Swish 99.59% 99.66% 99.75% 99.44% 

Ours 99.32% 99.46% 99.15% 99.34% 

 
TABLE VIII 

CIFAR10: CLASSIFICATION RESULTS OF VARIOUS ACTIVATION FUNCTIONS ON ALEXNET UNDER VARIOUS INITIALIZATION METHODS 

Activation Functions LSUV [39] Xavier [40] MSRA [41] Gaussian Distribution 

ReLU 92.95% 93.02% 92.90% 93.05% 

PReLU 95.47% 95.78% 95.83% 95.67% 

Leaky ReLU 95.26% 95.15% 95.00% 95.43% 

Softplus  93.57% 93.75% 93.69% 93.83% 

ELU 93.29% 93.14% 93.42% 92.78% 

MPELU 94.23% 93.57% 93.44% 92.83% 

Swish 94.73% 93.86% 93.86% 93.92% 

Ours 95.10% 95.09% 95.05% 94.79% 

 
TABLE IX 

CIFAR100: CLASSIFICATION RESULTS OF VARIOUS ACTIVATION FUNCTIONS ON ALEXNET UNDER VARIOUS INITIALIZATION METHODS 

Activation Functions LSUV [39] Xavier [40] MSRA [41] Gaussian Distribution 

ReLU 78.97% 78.50% 79.00% 78.88% 

PReLU 81.18% 80.68% 81.54% 80.99% 

Leaky ReLU 82.05% 81.74% 81.99% 81.74% 

Softplus  79.45% 79.42% 78.79% 79.70% 

ELU 79.75% 79.08% 79.24% 78.99% 

MPELU 79.32% 78.94% 79.60% 78.83% 

Swish 80.95% 81.02% 80.97% 81.54% 

Ours 80.81% 80.35% 80.41% 81.26% 

 
TABLE X 

IMAGENET: CLASSIFICATION RESULTS OF VARIOUS ACTIVATION FUNCTIONS ON ALEXNET UNDER VARIOUS INITIALIZATION METHODS 

Activation Functions LSUV [39] Xavier [40] MSRA [41] Gaussian Distribution 

ReLU 73.99% 74.09% 74.15% 73.88% 

PReLU 73.83% 74.70% 73.99% 74.32% 

Leaky ReLU 74.96% 75.49% 75.13% 75.23% 

Softplus  74.81% 74.94% 75.16% 74.75% 

ELU 74.52% 74.16% 74.46% 74.11% 

MPELU 73.77% 74.13% 73.86% 74.41% 

Swish 72.81% 73.72% 73.96% 73.81% 

Ours 73.97% 73.99% 74.76% 74.78% 
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and gradually decreases, which can accelerate the optimizing 
speed and eventually converge to a better position. Then, 
momentum is set to 0.9 for alleviating the interference of 
local minimum, and the weight decay is set to 0.0005 to avoid 
the over-fitting problem of deep convolutional neural 
network. Moreover, Dropout [38] is used to improve the 
generalization ability of deep CNN and the rate is set to 0.5 
while it is opened in the training process. 

B. Classification Performance 

We calculate the performance of the six models on the four 
image classification benchmarks, as shown in Table I to 
Table VI. In the model AlexNet, PReLU function almost 
achieves the best results on both four datasets: 99.46%, 
95.43%, 81.7%, and 77.2% on MNIST, CIFAR10, 
CIFAR100 and ImageNet datasets, respectively. The 
performance of Swish is also better than others. The 
performance of our proposed activation function Soft-ReLU 
is acceptable, exceeding the performance of Leaky ReLU and 
ELU on CIFAR10/100 and ImageNet datasets. In the deep 
convolutional neural network VGGNet, Soft-ReLU performs 
best on three datasets: 95.52%, 82.9%, and 77.8% on 
CIFAR10, CIFAR100, and ImageNet. Swish performs best 
on MNIST and achieves the classification accuracy of 
99.76%. Most of the activation functions perform similarly 

on the MNIST dataset, which is caused by the simple 
background of samples in MNIST. In the GoogLeNet, 
inception architecture plays a key role in the training process. 
Leaky ReLU has good performance on CIFAR10 (95.57%) 
and CIFAR 100 (83.1%) while Swish function achieves the 
best classification accuracy on ImageNet (77.7%). In the NIN 
network model, various activation functions have their own 
advantages and disadvantages on different datasets (Swish: 
99.53% on MNIST, PReLU: 99.50% on CIFAR 10, Leaky 
ReLU function: 82.3% on CIFAR 100, and ReLU: 76.1% on 
ImageNet). In the ResNet 101, the short-connection structure 
makes optimization of ultra-deep neural networks possible. 
Wide ResNet proves that even a lighter neural network model 
can achieve good results with Soft-ReLU activation function: 
99.40%, 94.88%, 79.4%, and 74.4% on MNIST, CIFAR10, 
CIFAR100, and ImageNet. 

C. Influence of Network Initialization 

In this part, we observe the impact of network initialization 
on the optimization and generalization of deep convolutional 
neural networks, including LSUV [39], Xavier [40], MSRA 
[41], and Gaussian distribution. The classification results on 
four image classification benchmarks under the AlexNet are 
shown in Table VII to Table X. 

 

 

Fig. 8. Classification performance of four activation functions on four image datasets. 
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The idea of Xavier is to make the variance of the input 
weight of a neuron (the output when backpropagating) equal 
to the reciprocal of  number of inputs, the purpose of which is 
to allow gradient information to be evenly distributed across 
the network. If we pay more attention to forward propagation, 
we can choose the number of inputs, that is, the number of 
inputs for forward propagation; if we pay more attention to 
backward propagation, we choose the number of outputs. If 
both are considered, we can set the average of the two term as 
the final result. MSRA initializes the weights as the Gaussian 
distribution with a mean of 0 and a variance of 2 / input, 
which is also different from Xavier filler; it is especially 
suitable for the ReLU activation function. 

According to the experimental results, it can be seen that 
there is almost no difference in the different initializations, 
that is, there is no obvious influence of initialization on the 
optimization and generalization of the deep neural network. 
This is due to the advantages brought by large-scale data. The 
network model can easily avoid the local minimum under the 
training of large-scale data, except for some extremely poor 
initialization positions [43][44]. 

D. Hyper-parameter Sensitivity and Visualization of 
Decision Boundary 

In this part, we explore the hyper-parameter sensitivity to 
activation function, such as the batch size. The classification 
results under multi various batch size are shown in Fig. 8. It 
can be seen that as batch size increases, the performance of 
each activation function gradually increases, and tends to be 
stable at the batch size of 128. On the other hand, the Swish 
performs better than other three activation functions (ReLU, 
Softplus, and PReLU) on the four datasets. 

In general, within a reasonable range, the larger the batch 
size makes the gradient drop direction more accurate, then 

the smaller the oscillating will be; on the other hand, if the 
batch size is too large, a local minimum may occur. Small 
bath size usually introduce more randomness, it is difficult to 
achieve convergence, and in rare cases it may work better. 

Next, we observe the decision boundary of neural network 
with different activation functions on a two dimensional toy 
dataset, as shown in Fig. 9. Graphs (1) to (6) in the Fig. 9 
represent the ReLU, PReLU, Leaky ReLU, Swish, Softplus, 
and Soft-ReLU functions, respectively. According to the first 
order derivative and smoothness of the boundary of neural 
networks, we can observe the properties of the corresponding 
activation function. 

Furthermore, we calculate and observe weight distribution 
of different activation functions on four deep CNN models, 
including AlexNet, VGGNet, GoogLeNet and NIN, as shown 
in Fig. 10. From the point of view of minimizing structural 
risk, we choose the simplest structure as the best network in 
many models, rather than the most complex one with the 
most discrete weight distribution. 
 

V. CONCLUSION 

Here, we try to conclude the useful properties of activation 
functions in deep learning: 

 Nonlinear: the derivative is not a constant. It is the 
foundation of the multi-layer deep neural network that 
guarantees that the neural network does not degenerate 
into a single-layer linear network. 
 Then the differentiability guarantees the computability 
of overall gradient in optimization. For the SGD algorithm, 
since it is almost impossible to converge to the location 
near zero, the limited non-differentiable points will not 
have a great impact on the optimization results. 

 
   (1)                                                                              (2)                                                                             (3) 

 
   (4)                                                                              (5)                                                                             (6) 

Fig. 9. Decision boundary of deep CNN under various activation functions. 
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 Simple calculation property. The number of calculations 
of activation function in the forward direction of the deep 
neural network is proportional to the number of neurons, 
so the simple nonlinear function is more suitable as a 
proper activation function than complicated one. 
 Non-saturation. Saturation refers to the problem that the 
gradient is close to zero (i.e., the gradient disappears) in 
some intervals, resulting in the network parameters unable 
to continue to update. 
 Monotonic property. The monotonicity usually makes 
the overall gradient direction at the activation function not 
change, making training easier to converge. 
 Limited output range. The limited output range makes 
the deep convolutional neural network more stable for 
some larger inputs. 
 Identity. This has the advantage that the amplitude of the 
output does not increase significantly with increasing 
depth, making the network more stable and the gradients 
can be more easily returned. 
 Normalization. The main idea is to automatically 
normalize the sample distribution to the distribution of 
zero mean and uniform variance, thus stabilizing the 
training process. 
At present, there are no conclusions in academia which 

activation functions are better than others or which properties 

are more important than others. We hope that a large number 
of experiments can be used to analyze which properties of 
activation function are conducive to improving the network’s 
optimization and generalization ability, such as monotonicity, 
smoothness, unbounded above, and bounded below. 
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