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Abstract—This paper describes how a priori information
about the signal parameters can influence the accuracy of
estimating the number of these signals. This study considers
sinusoidal signals and it is supposed that the parameters
(amplitudes, frequencies and phases) of the received signals
are known up to a certain error. The error probability of the
maximum likelihood estimation of the number of sinusoids is
calculated under this condition.

Index Terms—model selection, sinusoids in noise, number
of signals estimating, maximum likelihood, abridged error
probability, quasi-likelihood method.

I. I NTRODUCTION

I N this paper, the problem is studied of estimating the
number of sinusoidal (modulated sinusoidal in general

case) signals with unknown parameters. It is a fundamental
problem in signal processing and its related areas. There are
a lot of classical [1]–[4] and modern [5]–[16] studies dealing
with this problem. Most of them focus on the cases when
the signal parameters are completely unknown. The problems
that are described there cannot be solved by the classical
maximum likelihood method, that is why many different
approaches to modify the maximum likelihood method have
been proposed. However, as it is shown in [10] and [11], in
some cases the maximum likelihood method can be applied
directly without any modification. One of these cases is a
problem of determining the number of signals with known
parameters, but it is a very rare one in practice. Usually, there
are cases when the signal parameters are measured with some
errors. It means that the signal parameters are not completely
unknown and we have some measured parameter values that
can be used instead of the true ones in the likelihood function
for the further estimating the number of signals.

Let us describe the steps for this approach implementation.
Firstly, it is needed to synthesize the maximum likelihood
(ML) algorithm for estimating the number of signals under
the assumption that all the signal parameters are known.
Next, one has to substitute some arbitrary parameter values
in this algorithm for the true ones. For example, one can
substitute the results of the measurement of these parameters.
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The resulting algorithm is called the quasi-likelihood (QL)
one [14] for estimating the number of signals. In other words,
the structure of the QL algorithm coincides with the structure
of the ML algorithm for estimating the number of signals
with the known parameters, except the values of the signal
parameters. In the ML algorithm, the true values are used,
while in the QL algorithm one uses some arbitrary values
that may deviate from the true values.

The estimation of the signal parameters is not prerequisite
for the QL algorithm functioning. This fact implies compu-
tational simplicity and other advantages of the QL algorithm
that are described in this paper. The main disadvantage of
the QL algorithm is the dependence of the performance of
this algorithm on the value of the deviation of the measured
parameters from the true ones. One needs to understand this
dependence before using the QL algorithm.

This paper is focused on the design and the performance
analysis of the QL algorithm for estimating the number of
modulated sinusoidal signals. In other terms, there is pro-
vided the performance analysis of the maximum-likelihood
algorithm for estimating the number of signals in case when
the signal parameters deviate from their true values. Note
that, in our previous research [14] we analyzed a special case
when only the amplitudes and phases of modulated sinusoids
may deviate from their true values. In this paper a general
case is examined: we suppose that all the parameters of the
modulated sinusoids may deviate from their true values and
we also provide the simulations to confirm our theoretical
results.

The main goal of this paper is to study the dependency
of the performance of the QL algorithm on such key fac-
tors as the measurement errors when measuring the signal
parameters, signal-to-noise ratios (SNR), etc. The results of
this study will help one to decide whether it is necessary to
substitute the maximum-likelihood algorithm by some other
one or not.

The structure of the paper includes the following parts:
the problem statement and the structure of the QL algorithm
are introduced in Section II; the theoretical performance
analysis along with the universal approximation of the error
probability is presented in Section III; and finally, Section
IV, there are described the simulations that both represent
and confirm the theoretical results.

II. PROBLEM FORMULATION

Let us start with describing a model of the signal under
analysis. It is composed of a number of the modulated
sinusoids as follows

s(t, ν, aν ,ων ,ϕν) =

ν
∑

i=1

aifi(t)cos(ωit− ϕi +Ψi(t)),

(1)
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where ν ∈ {1, .., νmax} denotes a number of sinusoids;
ai ∈ R

1 is the amplitude;ωi ∈ [0, 2π) is the frequency, and
ϕi ∈ [0, 2π) is the phase shift of thei-th sinusoid, respec-
tively; fi(t), Ψi(t) denote the amplitude and phase envelope,
respectively; while the vectorsaν = (ai)

ν

i=1
, ων = (ωi)

ν

i=1
,

ϕν = (ϕi)
ν
i=1

contain all amplitudes, frequencies and phases
of the ν modulated sinusoids. In a trivial case, i.e., when
fi(t) = 1, Ψi(t) = 0 for all i and t, the model (1) reduces
to the sum of sinusoids.

Suppose that the observed datax(t) be a signal (1)
corrupted by the additive white Gaussian noise. In this case,
one can representx(t) as

x(t) =

ν0
∑

i=1

a0ifi(t)cos(ω0it− ϕ0i +Ψi(t)) + σn(t), (2)

where by the subscript0 we denote the true values of the
relevant unknown parameters.

Next let us write down the log-likelihood function for the
model described by (1) and (2). By applying the classical
results from [17] one can obtain

L(ν, aν ,ων ,ϕν) =
1

σ2

Ns
∑

t=1

x(t)s(t, ν, aν ,ων ,ϕν)

− 1

2σ2

Ns
∑

t=1

s2(t, ν, aν ,ων ,ϕν).

(3)

In this paper, it is assumed that amplitudes, frequencies,
and phases of the signals in (1) are measured with errors.
Thus, there used some valuesa∗i = a0i + ∆ai, ω∗

i =
ω0i + ∆ωi, ϕ∗

i = ϕ0i + ∆ϕi instead of the true values
of these parameters where∆ai, ∆ωi and∆ϕi characterize
the absolute errors in the measurement of the respective
parameters. Let us substitute (1) into (3) with the measured
values of the unknown parameters

L(ν, a∗ν ,ω
∗

ν ,ϕ
∗

ν) =

=
1

σ2

ν
∑

i=1

a∗i

Ns
∑

t=1

x(t)fi(t) cos(ω
∗

i t+Ψi(t)− ϕ∗

i )

− 1

2σ2

ν
∑

i=1

ν
∑

j=1

a∗i a
∗

jK
∗∗

i,j,

(4)

where

K∗∗

i,j =

Ns
∑

t=1

cos(ω∗

i t+Ψi(t)− ϕ∗

i ) cos(ω
∗

j t+Ψj(t)− ϕ∗

j ).

(5)
Hereinafter we use a comma to separate double indices from
each other.

Now the QL algorithm for estimating the number of
signals can be represented as

ν̂ = argmin (−L(ν, a∗ν,ω
∗

ν ,ϕ
∗

ν)) . (6)

It is obvious that computational complexity of QL al-
gorithm (6) is lower than that of other commonly used
algorithms. This advantage of QL approach follows from the
fact that the QL algorithm (6) does not require the calculation
of the unknown parameters. However, it is also obvious that
the performance of the QL algorithm (6) is decreasing with
increasing the error in measurement of the signal parameters.

That is why, it is especially important to have an instrument
for the performance analysis of the QL algorithm (6). Further,
such instrument will be presented and tested.

III. T HEORETICAL PERFORMANCE ANALYSIS

In this section, a theoretical performance analysis of the
algorithm (6) is provided.

Firstly, let us substitute the structure of the observed data
(2) into the log-likelihood function (4)

L(ν, a∗ν ,ω
∗

ν,ϕ
∗

ν) =
1

σ2

ν
∑

i=1

ν0
∑

j=1

a∗i a0jK
∗

i,j +
1

σ2

ν
∑

i=1

a∗i ηi

− 1

2σ2

ν
∑

i=1

ν
∑

j=1

a∗i a
∗

jK
∗∗

i,j ,

(7)
where

ηi = σ

Ns
∑

t=1

n(t)fi(t) cos(ω
∗

i t+Ψi(t)− ϕ∗

i ), (8)

K∗

i,j =

Ns
∑

t=1

cos(ω∗

i t+Ψi(t)− ϕ∗

i ) cos(ω0jt+Ψj(t)− ϕ0j).

(9)
Note that the coefficientsK∗∗

i,j (5) and K∗

i,j (9) can be
represented as

K∗∗

i,j =V ∗∗

ci,j cos(ϕ
∗

i − ϕ∗

j ) + V ∗∗

si,j sin(ϕ
∗

i − ϕ∗

j )

+W ∗∗

ci,j cos(ϕ
∗

i + ϕ∗

j ) +W ∗∗

si,j sin(ϕ
∗

i + ϕ∗

j ),

K∗

i,j =V ∗

ci,j cos(ϕ
∗

i − ϕ0j) + V ∗

si,j sin(ϕ
∗

i − ϕ0j)

+W ∗

ci,j cos(ϕ
∗

i + ϕ0j) +W ∗

si,j sin(ϕ
∗

i + ϕ0j),

(10)

and
(

V ∗∗

ci,j

V ∗∗

si,j

)

=
1

2

Ns
∑

t=1

fi(t)fj (t)

(

cos
sin

)

((

ω∗

i −ω∗

j

)

t+Ψi(t)−Ψj(t)
)

,

(

W ∗∗

ci,j

W ∗∗

si,j

)

=
1

2

Ns
∑

t=1

fi(t)fj(t)

(

cos
sin

)

((

ω∗

i +ω∗

j

)

t+Ψi(t)+Ψj(t)
)

,

(

V ∗

ci,j

V ∗

si,j

)

=
1

2

Ns
∑

t=1

fi(t)fj (t)

(

cos
sin

)

((ω∗

i −ω0j)t+Ψi(t)−Ψj (t)),

(

W ∗

ci,j

W ∗

si,j

)

=
1

2

Ns
∑

t=1

fi(t)fj (t)

(

cos
sin

)

((ω∗

i +ω0j)t+Ψi(t)+Ψj(t)).

The representations (10) are useful for the further calcu-
lations of the coefficientsK∗∗

i,j (5) andK∗

i,j (9).
In this paper, we use an error probability, i.e.,Pr(ν̂ 6= ν0)

as a measure of performance of the algorithm for estimating
the number of signals and an abridged error probability [10]–
[14] as a universal approximation to the error probability. Let
us write down a definition of the abridged error probability
that can be found in [10]–[14]

pa=1−Pr(L(ν0)−L(ν0 − 1)>0, L(ν0)−L(ν0 + 1)>0),
(11)

whereL (ν) is a log-likelihood function, i.e., in our case one
can write as

L (ν) = L(ν, a∗ν ,ω
∗

ν ,ϕ
∗

ν).

Now let us calculate an abridged error probability for the
algorithm (6). For this purpose, the log-likelihood function
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(7) should be substituted into the definition of the abridged
error probability (11). After all the transformations, (11) can
be represented as follows

pa = 1− Pr(ξν0 > −R, ξν0+1 < Q) , (12)

where

R =

(

ν0
∑

j=1

a0jK
∗

ν0,j
−

1

2
a∗ν0K

∗∗

ν0,ν0
−

ν0−1
∑

j=1

a∗jK
∗∗

ν0,j

)

σ
√

K∗∗

ν0,ν0

,

Q =

(

−

ν0
∑

j=1

a0jK
∗

ν0+1,j+
1

2
a∗ν0+1K

∗∗

ν0+1,ν0+1+
ν0
∑

j=1

a∗jK
∗∗

ν0+1,j

)

σ
√

K∗∗

ν0+1,ν0+1

,

and
ξi = ηi/

(

σ
√

K∗∗

i,i

)

.

The following final formula for the abridged error prob-
ability of the algorithm (6) for estimating the number of
modulated sinusoids can be obtained using some classical
results from (12).

pa = 1− 1√
2π

Q
∫

−∞

exp

(

−y2

2

)

Φ

(

R+ ρy
√

1− ρ2

)

dy, (13)

where

ρ =
K∗∗

ν0,ν0+1

σ2
√

K∗∗

ν0,ν0
K∗∗

ν0+1,ν0+1

,

and

Φ(x) =
1√
2π

x
∫

−∞

exp
(

−t2/2
)

dt.

Some practical applications may require reducing the com-
putational complexity of the result (13). An asymptotically
exact approximation for (13) can be written as follow

pa ≃ 1− Φ(R)Φ(Q)

+
ρ

2π
exp

(

−R2

2

)

exp

(

−Q2

2

)

.
(14)

The approximate formula (14) can be used instead of the
exact formula (13) for the next parameters ranges

min(Q,R) > 3, and |ρ| < 0.9.

Now let us describe how the result (13) can help to
make the choice between the QL algorithm and any other
algorithms. Suppose that the true values of the unknown
parameters belong to some known intervals, i.e., for alli:
a0i ∈ [ali, ari], ϕ0i ∈ [ϕli, ϕri] and ω0i ∈ [ωli, ωri]. This
is a typical case for measurements with errors. The result
(13) can help one to choose between the quasi-likelihood
algorithm and any other algorithms for estimating the number
of signals, the following should be made:

1. Consider (13) as a function of∆ai, ∆ωi and∆ϕi, i.e.,
pa(∆ai,∆ωi,∆ϕi).

2. Find the maximum of thepa(∆ai,∆ωi,∆ϕi) using
ali, ari, ϕli, ϕri, ωli, ωri as the constraints.

3. Find the abridged error probability for the algorithms
that pretend to be alternatives to the QL algorithm.

4. By means of the results produced at the steps 1. -3.
and having estimated the computational complexity of the
tested algorithms, and some other arguments, one can make
the choice.

IV. A BRIDGED ERROR PROBABILITY

Next let us list the some basic properties of the abridged
error probability that follow from its definition (11).

P.1) The abridged error probability is a lower bound of the
error probability in the case1 < ν0 < νmax.

P.2) The abridged error probability is equal to the error
probability in the caseν0 = 2, νmax = 3.

Assume that the absolute values ofL(ν0 − 1) and
L(ν0 + 1) increasing with the SNR or the number of
samples increasing faster than all the terms from the set
{

{L(i)}ν0−2

i=1

⋃ {L(i)}νmax

i=ν0+2

}

, i. e., if the SNR or the
number of samples trends to infinity, then

|L(i)|
|L(ν0 − 1)| → 0 and

|L(i)|
|L(ν0 + 1)| → 0, (15)

for any i ∈ {1, . . . , ν0 − 2, ν0 + 2, . . . νmax}.
P.3) If the assumption (15) is fulfilled, then the abridged

error probability trends to error probability as SNR or
number of samples tends to infinity.

Let us discuss the assumption (15). If this assumption is
not fulfilled, then also the following condition does not hold:

p (|ν̂ − ν0| > 1)

p (|ν̂ − ν0| = 1)
→ 0, (16)

as the SNR or the number of samples trends to infinity.
The condition (16) is important because the error situation

when |ν̂ − ν0| = 1 is usually much more better on practice
than the error situation when|ν̂ − ν0| > 1. Thus the
assumption (15) is usually fulfilled for the algorithms that
is useful in practice.

V. SIMULATIONS

Theoretical performance analysis of the QL algorithm (6)
presented in Section III needs to be confirmed. In this section
we describe the simulations of the algorithm (6). These
simulations provide an independent way to calculate the error
probability for the algorithm (6).

To simplify the presentation of our simulations, it is
presupposed that

(i) For all i and t, fi(t) = 1, Ψi(t) = 0 (in this case the
model (1) reduces to the sum of sinusoids)

(ii) For all i, a0i = a0, ω0i = (i− 1)ωst +ωb, ∆ai = ∆a,
∆ωi = ∆ω and∆ϕi = ∆ϕ.

In the provided simulations, the following true values of
signal and noise parameters are used:a0 = 0.4, ωst =
2πB/Ns, ωb = 0.4π, ω01 = 1.2075, ω02 = 1.2566,
ω03 = 1.3057, ω04 = 1.3548, ω05 = 1.4039, ϕ01 = 0,
ϕ02 = π/4, ϕ03 = π/3, ϕ04 = π/5, ϕ05 = π/6.

For all the simulations we use the classical definition for
the signal-to-noise ratio (SNR):

z = a20/2σ, z dB = 10 log10
(

a20/2σ
)

.

There are also used the relative errors for describing both
the amplitude error and the frequency error:δa = ∆a/a0
andδω = ∆ω/ωst, respectively.

In this paper, the simulations test the two cases:
(i) the true number of signals isν0 = 2, while the

maximum possible number of signals isνmax = 3. In
this case, the abridged error probability (11) is equal by
definition to the error probability. Therefore, one can check
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0.001
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a e
p p

Fig. 1. Error probability in the number of signals estimation.Parameter
settings:Ns = 128, δa = 0.25, ∆ϕ = 0.1, δω = 0.02. The following
notations are used: the solid curve is the theoretical curve predicted by
(13), the circles mark simulation results forνmax = 3 andν0 = 2, and the
squares mark simulation results forνmax = 5 andν0 = 3.

the theoretical formula for the abridged error probability
(13);

(ii) ν0 = 3, νmax = 5. This case is used to analyze
the error probability approximation precision in terms of the
abridged error probability.

The numerical studies are started with analyzing the ap-
proximation of the error probability in terms of the abridged
error probability. In this analysis we consider error proba-
bility as a function of the SNR. There has been performed
2·105 independent trials for each SNR. In Fig. 1. and 2, there
are represented some typical examples of the results of these
simulations forNs = 128 (Fig.1) andNs = 512 (Fig.2). Let
us list the settings for Fig 1., Fig 2.:δa = 0.25, ∆ϕ = 0.1,
δω = 0.02. The following notations are used: the solid curve
is the theoretical curve predicted by (13), the circles mark
simulation results forνmax = 3 andν0 = 2, and the squares
mark simulation results forνmax = 5 andν0 = 3.

From Fig. 1 and Fig. 2 one can conclude, for example,
that

(i) the simulations presented in Fig. 1 and Fig. 2 confirm
theoretical formula (13);

(ii) the error probability can be sufficiently approximated
by the abridged error probability (13) starting with a partic-
ular SNR, for example: ifNs = 128, νmax = 5 andν0 = 3,
then starting withz = −11 dB;

(iii) the error probability of the quasi-likelihood algorithm
tends to zero with the SNR increasing (as well as when the
number of samples is increasing), i.e., the algorithm (6) is a
consistent estimator (for the above settings).

The last conclusion can be obtained directly from the
formula (13) that can also help to theoretically determine the
errors in parameters so that the estimator (6) is a consistent
one. It is assumed that the estimator is consistent if its error
probability tends to zero with both the SNR and number of
samples increasing. Only a few among the commonly known
estimators satisfy both of these conditions [7].

Our further performance analysis is based on the theoret-

-30 -25 -20 -15

SNR, dB

0.01

0.1

1

,

a e
p p

Fig. 2. Error probability in the number of signals estimation.Parameter
settings:Ns = 512, δa = 0.25, ∆ϕ = 0.1, δω = 0.02. The following
notations are used: the solid curve is the theoretical curve predicted by
(13), the circles mark simulation results forνmax = 3 andν0 = 2, and the
squares mark simulation results forνmax = 5 andν0 = 3.

Fig. 3. Number of signals estimation accuracy losses due to theerrors in
the measurements of amplitudes and frequencies. Parameter settings:Ns =
128, SNR= −11 dB, ∆ϕ = 0. Line settings: bold solid line forδω = 0;
dash-dotted line forδω = 0.08; dotted line forδω = 0.12; dashed line for
δω = 0.16; solid line for δω = 0.2.

ical formula (13) only. We set the SNR to−11 dB for all
the simulations that are presented in Fig. 3-7.

In Fig. 3-5 we consider an abridged error probability (13)
as a function ofδa, i.e.,pa(δa). Moreover in these and further
figures we use the normalized abridged error probability that
can be defined aspa(δa)/pa(0).

In Fig. 3. the case of∆ϕ = 0 is presented with the
following designations for the different values ofδω: bold
solid line for δω = 0; dash-dotted line forδω = 0.08; dotted
line for δω = 0.12; dashed line forδω = 0.16; solid line for
δω = 0.2.

Fig. 4. shows the case whenδω = 0. Here the following
designations are used for the different values of∆ϕ: bold
solid line for∆ϕ = 0; dash-dotted line for∆ϕ = 0.3; dotted
line for ∆ϕ = 0.5; dashed line for∆ϕ = 1; solid line for
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Fig. 4. Number of signals estimation accuracy losses due to theerrors
in the measurements of amplitudes and initial phases. Parameter settings:
Ns = 128, SNR = −11 dB, δω = 0. Line settings: bold solid line for
∆ϕ = 0; dash-dotted line for∆ϕ = 0.3; dotted line for∆ϕ = 0.5; dashed
line for ∆ϕ = 1; solid line for∆ϕ = 1.3.

Fig. 5. Number of signals estimation accuracy losses due to theerrors in
the measurements of amplitudes, frequencies and initial phases. Parameter
settings:Ns = 128, SNR = −11 dB. Line settings: bold solid line for
∆ϕ = 0, δω = 0; dash-dotted line for∆ϕ = 0.3, δω = 0.08; dotted line
for ∆ϕ = 0.5, δω = 0.12; dashed line for∆ϕ = 1, δω = 0.16; solid line
for ∆ϕ = 1.3, δω = 0.2.

∆ϕ = 1.3.
In Fig. 5. the mixed case is presented when all the pa-

rameter errors may have non-zero values, and the following
designations are used for the different values of∆ϕ andδω:
bold solid line for∆ϕ = 0, δω = 0; dash-dotted line for
∆ϕ = 0.3, δω = 0.08; dotted line for∆ϕ = 0.5, δω = 0.12;
dashed line for∆ϕ = 1, δω = 0.16; solid line for∆ϕ = 1.3,
δω = 0.2.

Figs. 3-5 demonstrate that the case of the joint errors in
three parameters can be rather than the case when the joint
errors in two parameters take place.

Figs. 6. and 7 also show mixed cases. In Fig. 6. the
abridged error probability (13) is presented as a function
of the error in measurement of the phase∆ϕ, i.e., the

Fig. 6. Number of signals estimation accuracy losses due to theerrors in
the measurements of amplitudes, frequencies and initial phases. Parameter
settings:Ns = 128, SNR = −11 dB. Line settings: bold solid line for
δa = 0, δω = 0; dash-dotted line forδa = 0.01, δω = 0.04; dotted line
for δa = 0.04, δω = 0.08; dashed line forδa = 0.08, δω = 0.12; solid
line for δa = 0.16, δω = 0.16.

Fig. 7. Number of signals estimation accuracy losses due to theerrors in
the measurements of amplitudes, frequencies and initial phases. Parameter
settings:Ns = 128, SNR = −11 dB. Line settings: bold solid line for
δa = 0, ∆ϕ = 0; dash-dotted line forδa = 0.01, ∆ϕ = 0.1; dotted line
for δa = 0.04, ∆ϕ = 0.2; dashed line forδa = 0.08, ∆ϕ = 0.3; solid
line for δa = 0.16, ∆ϕ = 0.4.

normalized abridged error probability can be represented as

pa(∆ϕ)/pa(0).

The following designations are used in Fig.6.: bold solid line
for δa = 0, δω = 0; dash-dotted line forδa = 0.01, δω =
0.04; dotted line forδa = 0.04, δω = 0.08; dashed line for
δa = 0.08, δω = 0.12; solid line for δa = 0.16, δω = 0.16.

Next, in Fig. 7. the abridged error probability (13) is repre-
sented as a function of the relative error in measurement the
frequencyδω, and the normalized abridged error probability
is rewritten as

pa(δω)/pa(0).

We use the following designations in. Fig.7.: bold solid line
for δa = 0, ∆ϕ = 0; dash-dotted line forδa = 0.01, ∆ϕ =
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0.1; dotted line forδa = 0.04, ∆ϕ = 0.2; dashed line for
δa = 0.08, ∆ϕ = 0.3; solid line for δa = 0.16, ∆ϕ = 0.4.

From Fig. 7 one can find that the errors in frequencies with
the same values and the different signs may give different
impacts on the abridge error probability of the algorithm (6).

VI. PRACTICAL APPLICATIONS

Now let us write down a practical example. We suppose
that the allowable normalized abridged error probability is
less than3. In this case, from Fig. 7. one can conclude that
for all the handled cases of errors in the other parameters
the relative error in measurement of the frequency should be
less than0.01. Let also suppose that the sources of signals
can move and that the error in frequency measurement is
linked to the Doppler effect only. These conditions imply
the following speed limit for our sources

vs < 0.00025c,

wherevs is the speed of the source andc is the wave speed.
If the emission from our sources is an electromagnetic

emission, thenvs < 75000 m/s. It is a very wide range.
However, if the observed emission is a hydroacoustic emis-
sion, then the range of the allowable speed is very narrow
one:vs < 0.375 m/s.

The provided example shows that the introduced QL
algorithm (6) can be useful in many practical applications.
Let us list some examples of these applications. Firstly,
QL algorithm can be applied for the fast estimating of a
multipath channel in the 5G [18], and other technologies
(including IEEE 802.11p [19]). Secondly, one may use QL
algorithm for the fast DOA estimation in MIMO arrays
[20]. Next, the fast estimations of the parameters of the
air targets [21], [22] can be obtained by the introduced QL
algorithm. Note that, QL algorithm can be also useful for
estimating the parameters of the underwater targets [23] with
the above speed limits. Finally, QL algorithm can be a part
of the process monitoring algorithms [24] and the system
parameters estimation algorithms [25].

VII. C ONCLUSION

In this paper, there is introduced the QL algorithm for esti-
mating the number of signals with the unknown parameters.
The QL algorithm can be obtained from the ML algorithm for
estimating the number of signals with the known parameters
by substituting some arbitrary values for the true values
of the signal parameters. Next, there is presented both the
theoretical and numerical performance analysis of the quasi-
likelihood estimation of the number of signals. Firstly, a
closed formula is theoretically obtained for the abridged
error probability of the QL algorithm. Secondly, the obtained
formula is confirmed by the simulations that are also used to
provide a numerical study of the abridged error probability
as an approximation to the error probability. Finally, the
graphical analysis is presented of the obtained theoretical
formula and some of its properties are found. The results
that are obtained and confirmed in this paper can help in
making a reasonable choice between the QL algorithm and
any other algorithms for estimating the number of signals.
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