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New Results on the Extinction and Permanence of
a Two Species Nonautonomous Nonlinear
Competitive System

Qin Yue Qiongzhi Wang

Abstract—The extinction and persistent property of a two In[2], Shair Ahamd considered the following nonau-
species noautonomous nonlinear competitive system is revisitedtonomous system of differential equations:
in this paper. By constructing some suitable Lyapunov type

extinction function, several set of new conditions which ensure u'(t) = u(t) |a(t) — bt)u(t) — c(t)v(t)], 14
that one of the components will be driven to extinction are V() = v(t)[d(t) — e(t)u(t) — f(t)v(t)], (1.4)
established. By applying the differential inequality theory, two

set of sufficient conditions which ensure the permanence of where a(t),b(¢),c(t),d(t),e(t) and f(¢) are assumed to

the system are obtained. It seems very amazing that the be continuous and bounded above and below by positive
dynamic behaviors of the system is similar to the system constants, and.(t), v(t) are population density of species

without nonlinear constants, that is, a;, a2 have no influence . . .
on the extinct and persistent property of the system. Our Y at time ¢, respectively. Ahmad[2] showed that if the

results supplement and complement the results of Li and COefficients of system (1.4) satisfies

Chen[Extinction in two dimensional nonautonomous Lotka- .
Volterra systems with the effect of toxic substances, Applied arfr > cmdy and bydyr < arer, (1.5)
Mathematics and Computation, 182(2006)684-690] and Chen
et al.[ Extinction in two species nonautonomous nonlinear .
competitive system, Applied Mathematics and Computation, €XtNct.

then species: will be permanent and specias will be

274(2016)119-124]. The effect of toxic substances on ecological communities
Index Terms—Extinction; Nonlinear; Competition: Toxic is an important problem from the environmental point of
substance. view, in [3], Li and Chen studied the following two species
competition system with toxic substance
I. INTRODUCTION a1(t) = @1()[ri(t) — ar ()21 (t) — ba(t)w2(t)
HROUGHOUT this paper, for a given functiog(t), —c1(t)a (w2 (1)),
we let g;, and gy denote inf_ <1< g(t) and (1.6)
SUP_ o400 9(t), respectively. For continuoud'-period Ta(t) = x2(t)[r2(t) — az(t)z1(t) — ba(t)za(?)
function g(t), set =L (T g(t)dt.
g( ) m[g] T fo g( ) —CQ(t)le(t)sL’g(t)],

Traditional two-species autonomous Lotka-Volterra com-
petition system takes the form [1]: where r;(t), a;(t),b;(t),c;(t),i = 1,2 are assumed to be
S _ B continuous and bounded above and below by positive con-
1 8 B xlgggal B Z”xlgg - 2121728;’ (1.1) stants, andr (t), z2(t) are population density of species
T2lt) = 221)1a2 = b 22L288))s andz, at timet, respectively. Li and Chen [3] showed that
Concerned with the extinction property of the system (1.1f,the coefficients of system (1.1) satisfy
we have:

() If the coefficients of the systerfil.1) satisfy riber > ranbua,

rTiLa2r, > TaMA1M, 1.7
a1 b1 a1 b (1.7)
S 2= -

(1.2)

as b1’ az by’ T1LC2L TOMCIM -

then the first species will be driven to extinction while th&@hen second species will be driven to extinction while the
other one will stabilize at the positive equilibrium of &first one will stabilize at a certain solution of a logistic
logistic equation. equation.

(I1) If the coefficients of the systerl.1) satisfy Recently, with the aim of relaxing the condition (1.7) and
considering a more suitable system, Chen et al [4] proposed

a b a b
R (1.3) the following two species competitive model:

a2 ba1 ’ a2 5227 ]
then the second species will be driven to extinction while thigt) = 21()[r1(t) = ar(t)z7" (t) = bi(t)23* (t)
other one will be stable.

—ci(t)xy" ()a5* (1)), 18
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(H) ri(t),a;(t), bi(t) and ¢;(t) are continuous boundedThat is, neither (1.10) nor (1.11) holds, however, numeric
functions defined on[0,+o00); 7;(t),a;(t) and b;(t) are simulation (Fig.1) shows that in this case, the second species

bounded above and below by positive constant$t) >  will be driven to extinction.
0,b;(t) > 0,¢;(t) > 0 for all t € [0, +00); av,t = 1,2 are
positive constants.

The authors showed that in addition t&Y if

Example 1.2.Consider the following two-species competi-

2.01

e pas(t) ba(t) caft) .
limsup gy < Hminf { a1(t) bi(t) ex(t) b 8

hold, then species, will be driven to extinction, that is,
for any positive solution( mlg $2 )T of system (1.8), 1.4
zo(t) = 0 ast — +o0, and | dt<+oo
Compare condition (1.3), (1. 5) (1 7) and (1.9), one could
see that with the introduce of toxic substance, to ensure the . 1.0+
extinction of the second species, Li and Chen[3] and Chen et

1.6

al [4] introduced the following assumption on the coefficients 087
of toxic substance term, respectively. 061
T1LC2L = T2MC1M (1.10) 0.4
and 021
t t
lim sup "2 <1im1nf{02( )} (1.11)
totoe T1(t) tmree Ler(t) 0 05 1 s 2

Now, an interesting issue is proposed: what would happen
if condition (1.10) or (1.11) no longer hold?

Also, as was pointed out by Chen et al[4], “the growth rate Fig. 1. Dynamics behaviors of species, in sys-
of species need not be always positive, this is realistic since tem (1.12). Here, we take the initial condition-
the environment may change on time (e. g. seasonal effectss (z;(0),z2(0)) = (1,1),(0.4,0.4),(0.6,0.6) and
of weather condition, temperature, mating habits and food (2,2), respectively.
supplies) and then on some bad timé) may be negative.”

In this case, the following assumption on system (1.8) seems
. tive system
more plausible.

. 3
(H:) ri(t),i = 1,2 are continuoud-period functions suchi1(t) = 1(?) {4 = Scost — (5 + cost)a ()
thatm[r;(t)] = & [ ri(s)ds > 0,3 = 1,2, a;(t), bi(t) and 1
ci(t) are all continuous positivé’-period functions defined —(1+ g €08 t)z2(t) — 0.3z1(t)z2 (t)]’

.. 1.1
on [0, +00); ay,i = 1,2 are positive constants. (1.15)

. sint
do(t)

Obviously, it is interesting to investigate the dynamic
behaviors of system (1.8) under the assumptifi)(holds,

since this is not studied in [4].

To bring some hints to above two issues, let's consider ti@viously, r; (2kn

following two examples.

Example 1.1.Consider the following two-species competi-

tive SyStem
z1(t) = x1(t) {4 — 2cost — (; + cost)x(t)
1
(14 5 cost)aa(t) — 0321 (t)z2 (t)},
sint

Pa(t) = a(t) [27c05t7(3+7)z1(t)

_(g + %sint)wg(ﬁ) — 0.1:c1(t):c2(t)} :

(1.12)

In this case;1(t) = 4 — 2cost,ro(t) = 2 — cost,a1(t) =

3 4 cost,bi(t) = 1+ Jcost,ci(t) = 0.3,as(t )

smt bg() = %+ %Sint,CQ(t) = 0.1,@1 = Q2 = 1. B

S|mple computation, one could see that

3+

<

x2(t) {2 —3cost — (3+ T)ml(t)

(g + L sintym () - o.1z1(t)z2(t)]

2
In this case,r1(t) = 4 — 5cost,r2(t) = 2 — 3cost.

) = —1,i = 1,2, that is, r;(t) maybe
negative. Hence, the results of Li and Chen[3] and Chen
et al [4] could not be applied to determine the dynamic
behaviors of the system (1.15). Numeric simulation (Fig. 2)
shows that in this case, the second species still be driven to
extinction.

Above two examples enlighten us to revisit the dynamic
behaviors of the system (1.8), and to find out some new
conditions which ensure the extinction of the second species
in system (1.8).

On the other hand, it brings to our attention that
Ahmad[2], Li and Chen[3] and Chen et al [4] did not
investigated the persistent property of the system they
investigated, which is one of the most important topics
in the study of population dynamics. For more papers on
permanence and extinction of population dynamics, one

¢ 1 1 ¢ could refer to [26]-[42] and the references cited therein.
lim sup TQEt; =3 > 3= 1tim+inf CQEti’ (1.13)
o T —T00 C .. . .
i ! ! In addition to this section, we arrange the paper as
rircar =2 % 0.3 <3x0.3=rapcipm. (1.14) follows: Some basic results are presented in the next
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1 which is globally asymptotically stable.
Let 2(¢) be the positive periodic solution of system (2.1),
0s] there existst; such thatx(t;) obtains its maximum value
' andz(t;) =0, that is
x(tl)(r(tl) - a(tl)x“(tl)) = 0. (2.2)
0.6
200 And so N
_ ¢ 2.3
" z(ty) < KQ) } : (2.3)
Let M1, M2o be any positive numbers satisfies the following
inequalities,
021 )
r Ul ar
o> M= ((3) ]
\ RO (2.4)
0 05 1 s 2 25 My > Mj= KT—Q) }az.
t a2

Lemma 2.4. Assume thatl{;) hold. Let (z1(¢),z2(¢)) be
Fig. 2. Dynamics behaviors of species, in sys- any positive solution of system (1.8), then there exists an
tem (1.15). Here, we take the initial condition- enough largel; such that for allt > Ty
s (z1(0),z2(0)) = (1,1),(0.4,04),(0.6,0.6) and
(2,2), respectively. w1(t) < M, za(t) < Mas. (2.5)

Proof. By using Lemma 2.3, the proof of Lemma 2.4 is
similar to the proof of Theorem 2.1 in [22], and we omit the
section, we investigate the extinction property of systedetail here.
(1.8) in the third section. The persistent property of the i . _
system (1.8) is then investigated in Section 4. Some numerid-©llowing Lemma 2.5 is a direct corollary of Lemma 2.2
simulations are presented to verify the feasibility of th8f F- D- Chen [16].

main results in Section 5; We end this paper by a brieflyanma 25 1f > 0.5 > 0 and i > (b — az®), wherea

discussion. For more works on the competition system, ope, positive constant, when> 0 and z(0) > 0, we have
could refer to [1]-[42] and the references cited therein. -

b\ 1/«
o S (b
ltlgn-klgofz(t) - (a) ’

If a >0,b>0andi < z(b— ax®), wherea is a positive

constant, whert > 0 and z(0) > 0, we have
In this section, we shall develop some preliminary results,

which will be used to prove the main result. lim sup (t) < (é)l/o‘.
Lemma 2.1[4] Let z(t) = (x1(t),z2(t))T be any positive t—+00 T \a
solution of system (1.8) with initial conditiom;(0) >

0,22(0) > 0, then

II. BASIC RESULTS

a IIl. EXTINCTION OF SYSTEM(1.8
limsupzi(t) < (Tl—M) v My, (18
t—+o0 air ) In this section, we study the extinction of speciesin
limsup o (t) < (7"b2M) oz def pp system (1.8). Following are the main results of this section.
t—+o00 2L

) - ) ) Theorem 3.1.In addition to (), assume further that
i.e, any positive solution of system (1.8) are ultimately

bounded above by some positive constant. Jim sup r2(t) < lim inf{ as(t) bz(t)} (3.1)
For the logistic equation troo T1(t) oo Lan () e (HM®ba(t)
. N holds, then the species, will be driven to extinction, that
(t) = x(t) (T(t) —a(t)z (t))- (2.1) s, for any positive solutiorta: (), z2(t))T of system (1.8),

From Lemma 2.1 of Zhao and Chen [26], we have z2(t) — 0 ast — +oo.

Lemma 2.2.Any positive solutions of Eq. (2.1) are definefroof. ~ By (3.1) we can choose, 7, > 0 and enough
on [0, +o00), bounded above and below by positive constan&ge 1> such that for allt > 75

and globally attractive. rat)  « o as(t)

Lemma 2.3[22] Assume that(t),a(t) are continuousl~ 1 (t) 7 7  ai(t) +ci(t)(My+¢e)e2’ (3.)
periodic function. IffOTr(t)dt > 0,a(t) > 0, then system ro(t) a  bat) '
(2.1) has a unique strictly positivE-periodic solutionz(t)  r(¢) < T T bi(t)
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Let X (t)
with z;(0) > 0,7 = 1,2. It follows from Lemma 2.1 that

there exists an enough lar@g > 7> such that
zi(t) < My +e for all t>Ts. (3.3)
And so, fort > T3, we have
ro(t)T — ri(t)a < —err1(t) < —eTryp <0, (3.4)
aaq (t) + acy (t)(Ma +€)*? — Taq(t) <0, (3.5)
aby (t) — Tha(t) < 0. (3.6)
From (1.8) we have
B = - @0 - b
—ar )z (g (1),
' (3.7)
= () - et (0) - baa ()

—ca(t)ayt (t)a5* (¢).
Let
V(t) =ay*(t)a3

From (3.2)-(3.6), it follows that
V()

(t)-

V(t)|1ra(t) — ari(t) + (aaq(t) — Tas(t))z]* (t)
+(abi(t) — Tb2(t))x3* ()

(e () = rea(t)af ()57 (1)]

< V() {7‘7‘2 (t) — ari(t)
+(a(ar(t) + er(t)(Mz +€)*2) — Taz(t)) 27" (t)
(b () = Tha(8))a5? (1) = Tea(t)af (£)8? (1)
< V() (rra(t) — ari(t))
< —erriV(¢).
Integrating this inequality fronTs to ¢(> T3), it follows
V(t) < V(Ts) exp(—e7rip(t — T3)). (3.8)
and so,
x2(t) < Cexp(—erin(t — T3)), (3.9)
where

C = (M1 + E)Q/T(l’l (Tg))ia/‘rl’Q(T3) > 0.

Therefore, we have,(t) — 0 exponentially ag — +oo.
This ends the proof of Theorem 3.1.

Theorem 3.2.In addition to (H1), assume further that
ag(f) bg(t)
t0.7] {al(t) e ()M bi(t) }

hold, then the species, will be driven to extinction, that
is, for any positive solutiofizy(t), z2(t))T of system (1.8),

mra]

o (3.10)

(w1(t),22(t))T be a solution of system (1.8)z2(t) — 0 ast — +oo.

Proof. By (3.10) we can choose, 7,¢ > 0 such that
miral o _ 2
mr] T T

(3.11)
< min { a2(ﬁ) bQ(t) }
te(0,T) al(t) +c1 (t)(MQQ + 5)0‘2 ’ bl(t)

Let X(t) = (z1(t),72(t))T be a solution of system (1.8)
with z;(0) > 0,7 = 1,2. It follows from Lemma 2.4 that
there exists an enough larg@g > 0 such that

2i(t) < My for all > Ty, i=1,2. (3.12)

Also, for all t > T}, it follows from (3.11) that
mlre]T — mlri]la < —eTm[r1] < 0. (3.13)
aar(t) + acy (t)(Maz + €)™ — Tas(t) <0, (3.14)
aby(t) — Tha(t) < 0. (3.15)

Let
V(t) =z (t)z3(1).
By using (3.7), (3.14)-(3.15), we have

V(t) < V() (rra(t) — ari(t)).

Integrating this inequality fronT}, to ¢(> T4), it follows

V(t) < V(Ty)exp (/Tt(m(t) —ar(t)dt).  (3.16)

Assume that € [NT, (N + 1)T), then
V(t)

IN

T4+NT
/ (7ra(t) — o (£))dt

Ty

/ (tr2(t) — ary (t))dt)
Ty+NT

V(Ty) exp ( —erm[ri]NT + (7r¥ + ozrlu)T)

V(Ty) exp <

IN

IN

V(Ty) exp ( —erm|r1](t — Ty) + eTm[r|T

+(rry + ar}‘)T).
(3.17)
And so,

z2(t) < Crexp (—em[r](t — Tu)), (3.18)

where
Ch

(Ma1)/7 (21 (T4)) =/ " 9 (Ty) x

exp (em[r]T + (r¥ + 2r{)T) > 0.

Therefore, we have,(t) — 0 exponentially ag — +oo.
This ends the proof of Theorem 3.2.

Theorem 3.3.In addition to (), assume further that

T2 (t) { a9 (t) bQ(t) }
(t) ay(t)” ba(t) + ex (t) M
(3.19)

< liminf
t——+o0

lim sup
t—+oo T1
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holds, then the species, will be driven to extinction, that For ¢t > T, it follows from (4.4) and the first equation of
is, for any positive solutiofiz;(t), z2(t))T of system (1.8), (1.8) that

x2(t) = 0 ast — +oo. .
1(t)
Theorem 3.4.In addition to (H1), assume further that

m[rs] {@2@) ba(t) ern = a(0)]r(0) — a5 0) ~ b (057 ()
< min , o 3.20
m[rl] tG[O,T] al(f) b1 (t) + C1 (t)Mll - (t)xtl)q (t)ll'gz (t):|
hold, then the species, will be driven to extinction, that

is, for any positive solutiortz; (t), z2(t))" of system (1.8), 21(8) |1z — arara® (8) (4.5)
x2(t) = 0 ast — +oo. = He M
L (0%
Since the proof of Theorem 3.3 and 3.4 is similarly to that —bim ((?—M) e 5) ’
of the proof of Theorem 3.1 and 3.2, we omit the detail here. 2L
ToM \ oz @2
—ClM((—) +E) 7).
IV. PERMANENCE OF SYSTEM(1.8) bar
The aim of this section is to obtain sufficier_n conditiongppying Lemma 2.5, we have
to ensure the permanence of the system, which means tha
the species could be coexist in a long run. A\
- li inf £ > le 7
Theorem 4.1. In addition to (H), assume further that e () 2 <A25>
T
riL > b1M%, where
M “ oM\ 53 @2
ror > GapM—— Al = rip— blM((—) + 5) )
air bar, (4.6)
holds, then system (1.8) is permanent, i.e., for any positive A ainp 4 ((TzM)a% +€)0‘2
solution (1 (t), 22(t))T of system (1.8), there exists positive e T T EMA

constantsm;, M;,i = 1,2, which are independent of the

solution of system (1.8), such that Sincee is any enough small positive constants, setting 0

in (4.5) leads to
m; < liminf z;(t) < limsupz;(t) < M;, i =1,2.

t—+o00 t—+oo o%
o 1A\ ™
> =
Proof.  Condition (4.1) implies that for the given enough
small positive constants, the following inequalities hold: where
1 A = T —b %
Toa \ o s 1 1L 1M bor
riL > bim [(b—) + 6} ; o (4.8)
2L 2M
(4.2) Ay = aim+ iy —-
TiM o 2L
T2L>a2M{(—) +€:| L. . . .
a1r Similarly, by using the second inequality of (4.2) and the
holds. Indeed, we could choosebe any positive constantsS€cond equation of (1.8), we could obtain
which satisfies the inequality a1
1 1 1 1 . . 1 Bl o
. T1L \az  (T2M\as (T2L \a1  (TiM a1 liminf xo(t) > — (—) , (4.9)
E<m1n{(b1M) (bgL) ,(Q2ILI) (alL) } e 2 BQ
Let 2(t) = (z1(t), 22(t))” be any positive solution of systemwhere
(1.8) with initial conditionz;(0) > 0,22(0) > 0, then from B, = 1o — QQM“_M,
Lemma 2.1, we have a1L (4.10)
1M ’
: T1IM a1 By = boy +cop—o.
limsupz(t) < (—) air
) a . . .
ot T”f e (4.3) Since A1, As, By, By are all independent of the solution of
limsupxa(t) < <b2—M) o system (1.8), it follows from (4.3), (4.7) and (4.8) that the
t—+o0 2L

system (1.8) is permanent. This ends the proof of Theorem
Fore > 0 enough small which satisfies (4.2), it follows fron¥.1.

(4.3) that there exists enough larfjesuch that for alt > T, ] ] N
Remark 4.1. It seems amazing since the conditions (4.1)

a(t) < (M)aﬁ te, ?s independent of the parameters, «. Anothe_r finding
- air (4.4) is that under the assumption (4.1), the toxic substance
Tor \ o5 term ¢; (¢t)z* (t)x5%(t),i = 1,2 has no influence on the
z2(t) < (E) < permanence of the system.
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V. NUMERIC SIMULATIONS In (5.5), by simple computation, one could see that the
The aim of this section is to verify that Example 1 foefficients of the system satisfies the following inequalities
and 1.2 satisfy the conditions of Theorem 3.1 and 3.2, 1 2 ToM
respectively. We also give a numeric example to show the rL=2> 23%1° binm bor
feasibility of the Theorem 4.1. . . (5.6)
. L o 1M
Example 5.1.For Example 1.1, one could easily verify that roL =2> 17T M a1y
M2 = oM _ g Hence, it follows from Theorem 4.1 that the system (5.5) is
bar permanent. Numeric simulations (Fig.3 and 4) shows that in
Thus 0 this case, the system is permanent.
- az
| f
itoo a1 (t) + c1(8) M2?
3 sint
= liminf 5 2 (5.1)
t—=+oco 5 +cost+0.3 x 3
5 2.0’
> 2 _5
- 1.8
Also, 6
1 2 ]
lim inf 2200 > ==, (5.2)
t—+oo 11(t) % 3

Above computation shows that the coefficients of Example *(7)
1.1 satisfies the inequality (3.1), thus, the second species will
be driven to extinction.

Example 5.2.Now let’s consider Example 1.2. Noting that

0.8
m[ra] _ 1
mlry] 2 0.6
Also, in this case, one could easily verify that oa
Mo — oM _ o "0 5 10 tl‘s 20 25
bar
Thus ) ) i .
lim i ax(t) Fig. 3. Dynamics behaviors of species in sys-
t=too ay(t) 4 c1(t)My"? tem (5.5). Here, we take the initial conditions
3 4 sint (21(0),22(0)) = (1,1),(0.4,0.4) and (0.6,0.6), re-
= liminf i spectively.
oo % +cost+0.3 x5 (5:3) P Y
S S
- 3+ 08
VI. CONCLUSION
Also, ) ) )
lim i ba(t) - 1 2 54 In the previous works of Li and Chen [3] and Chen, Miao
Py () = g T3 (54)  and Pu [4], the authors gave sufficient conditions which

. . nsure the extinction of the second species in system (1.6)
Above computation shows that the coefficients of Examp ed (1.8), however, as we can see from the numeric examples

1'.ﬁ ts)atldsf_les the '”"tq“‘?‘"ty (3.10), thus, the second SPECKtShe introduction section, the species still maybe driven to
will be driven to extinction. extinction if the conditions in [3] and [4] are not hold. This

E le 5.3.Consider the following tw . i motivated us to revisit the extinction property of system (1.8).
Xampie .3.Lonsider the 1o1lowing tWo-Species compeli- - o, the other hand, both Li and Chen [3] and Chen, Miao

tive system and Pu [4] did not investigate the persistent property of the
1 . . . . .
#t) = () {4  9cost — (§ + = cost)z2 (1) system they considered, this motivated us to investigated the
2 2 persistent property of the system (1.8).
_(l + lCOS o (t) — xf(ﬁ)m(t)}’ By further d_eveloping the anglysis techni.que of [4] and
4 4 L s (5.5) [3], more precisely, by constructing some suitable Lyapunov
ia(t) = x2(t) {2 — (§ + ant)z?(t) type extincFiqn functio_n_, we are able to establish tv_vo set
3 1 of new sufficient conditions which ensure the extinction of
—(5 + 5 sin t)xa(t) — xf(t):cg(t)] _ the second species. Also, by using the differential inequality
_ theory, we obtain a set of sufficient conditions which ensure
|§1 thlls case,r(t) n 4 - 2cost, ra(t) = 27a1(ﬁ)1 = the permanence of the system. It seems amazing that both
— + =cost,bi(t) = — + ~cost,ci(t) = 1,a2(t) = = + the nonlinear parameters, a; and the toxic substance term
gint 3 14 ) 8 have no influence to the persistent property of the system.
7,172(15) =37 §Smt702(t) = Law = 2,02 = 1. QOur results supplement the main results of [4] and [3].
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