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Abstract—The extinction and persistent property of a two
species noautonomous nonlinear competitive system is revisited
in this paper. By constructing some suitable Lyapunov type
extinction function, several set of new conditions which ensure
that one of the components will be driven to extinction are
established. By applying the differential inequality theory, two
set of sufficient conditions which ensure the permanence of
the system are obtained. It seems very amazing that the
dynamic behaviors of the system is similar to the system
without nonlinear constants, that is, αi, α2 have no influence
on the extinct and persistent property of the system. Our
results supplement and complement the results of Li and
Chen[Extinction in two dimensional nonautonomous Lotka-
Volterra systems with the effect of toxic substances, Applied
Mathematics and Computation, 182(2006)684-690] and Chen
et al.[ Extinction in two species nonautonomous nonlinear
competitive system, Applied Mathematics and Computation,
274(2016)119-124].

Index Terms—Extinction; Nonlinear; Competition; Toxic
substance.

I. I NTRODUCTION

T HROUGHOUT this paper, for a given functiong(t),
we let gL and gM denote inf−∞<t<∞ g(t) and

sup
−∞<t<∞

g(t), respectively. For continuousT -period
function g(t), setm[g] = 1

T

∫ T

0 g(t)dt.
Traditional two-species autonomous Lotka-Volterra com-

petition system takes the form [1]:

x′

1(t) = x1(t)(a1 − b11x1(t)− b12x2(t)),
x′

2(t) = x2(t)(a2 − b21x1(t)− b22x2(t)),
(1.1)

Concerned with the extinction property of the system (1.1),
we have:
(I) If the coefficients of the system(1.1) satisfy

a1

a2
<

b11

b21
,

a1

a2
<

b12

b22
, (1.2)

then the first species will be driven to extinction while the
other one will stabilize at the positive equilibrium of a
logistic equation.
(II) If the coefficients of the system(1.1) satisfy

a1

a2
>

b11

b21
,

a1

a2
>

b12

b22
, (1.3)

then the second species will be driven to extinction while the
other one will be stable.
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In[2], Shair Ahamd considered the following nonau-
tonomous system of differential equations:

u′(t) = u(t)
[

a(t)− b(t)u(t)− c(t)v(t)
]

,

v′(t) = v(t)
[

d(t)− e(t)u(t)− f(t)v(t)
]

,
(1.4)

where a(t), b(t), c(t), d(t), e(t) and f(t) are assumed to
be continuous and bounded above and below by positive
constants, andu(t), v(t) are population density of species
u, v at time t, respectively. Ahmad[2] showed that if the
coefficients of system (1.4) satisfies

aLfL > cMdM and bMdM ≤ aLeL, (1.5)

then speciesu will be permanent and speciesv will be
extinct.

The effect of toxic substances on ecological communities
is an important problem from the environmental point of
view, in [3], Li and Chen studied the following two species
competition system with toxic substance

ẋ1(t) = x1(t)[r1(t)− a1(t)x1(t)− b1(t)x2(t)

−c1(t)x1(t)x2(t)],

ẋ2(t) = x2(t)[r2(t)− a2(t)x1(t)− b2(t)x2(t)

−c2(t)x1(t)x2(t)],

(1.6)

where ri(t), ai(t), bi(t), ci(t), i = 1, 2 are assumed to be
continuous and bounded above and below by positive con-
stants, andx1(t), x2(t) are population density of speciesx1

andx2 at time t, respectively. Li and Chen [3] showed that
if the coefficients of system (1.1) satisfy

r1Lb2L > r2M b1M ,

r1La2L ≥ r2Ma1M ,

r1Lc2L ≥ r2Mc1M .

(1.7)

Then second species will be driven to extinction while the
first one will stabilize at a certain solution of a logistic
equation.

Recently, with the aim of relaxing the condition (1.7) and
considering a more suitable system, Chen et al [4] proposed
the following two species competitive model:

ẋ1(t) = x1(t)[r1(t)− a1(t)x
α1

1 (t)− b1(t)x
α2

2 (t)

−c1(t)x
α1

1 (t)xα2

2 (t)],

ẋ2(t) = x2(t)[r2(t)− a2(t)x
α1

1 (t)− b2(t)x
α2

2 (t)

−c2(t)x
α1

1 (t)xα2

2 (t)].

(1.8)

Assume that

Engineering Letters, 28:1, EL_28_1_16

Volume 28, Issue 1: March 2020

 
______________________________________________________________________________________ 



(H) ri(t), ai(t), bi(t) and ci(t) are continuous bounded
functions defined on[0,+∞); ri(t), ai(t) and bi(t) are
bounded above and below by positive constants;ai(t) ≥

0, bi(t) ≥ 0, ci(t) ≥ 0 for all t ∈ [0,+∞); αi, i = 1, 2 are
positive constants.

The authors showed that in addition to (H), if

lim sup
t→+∞

r2(t)

r1(t)
< lim inf

t→+∞

{a2(t)

a1(t)
,
b2(t)

b1(t)
,
c2(t)

c1(t)

}

(1.9)

hold, then speciesx2 will be driven to extinction, that is,
for any positive solution(x1(t), x2(t))

T of system (1.8),
x2(t) → 0 as t → +∞, and

∫ +∞

0
x2(t)dt < +∞.

Compare condition (1.3), (1.5), (1.7) and (1.9), one could
see that with the introduce of toxic substance, to ensure the
extinction of the second species, Li and Chen[3] and Chen et
al [4] introduced the following assumption on the coefficients
of toxic substance term, respectively.

r1Lc2L ≥ r2Mc1M (1.10)

and

lim sup
t→+∞

r2(t)

r1(t)
< lim inf

t→+∞

{c2(t)

c1(t)

}

(1.11)

Now, an interesting issue is proposed: what would happen
if condition (1.10) or (1.11) no longer hold?

Also, as was pointed out by Chen et al[4], “the growth rate
of species need not be always positive, this is realistic since
the environment may change on time (e. g. seasonal effects
of weather condition, temperature, mating habits and food
supplies) and then on some bad timeri(t) may be negative.”
In this case, the following assumption on system (1.8) seems
more plausible.

(H1) ri(t), i = 1, 2 are continuousT -period functions such
thatm[ri(t)] =

1
T

∫ T

0
ri(s)ds > 0, i = 1, 2, ai(t), bi(t) and

ci(t) are all continuous positiveT -period functions defined
on [0,+∞); αi, i = 1, 2 are positive constants.

Obviously, it is interesting to investigate the dynamic
behaviors of system (1.8) under the assumption (H1) holds,
since this is not studied in [4].

To bring some hints to above two issues, let’s consider the
following two examples.

Example 1.1.Consider the following two-species competi-
tive system

ẋ1(t) = x1(t)
[

4− 2 cos t− (
3

2
+ cos t)x1(t)

−(1 +
1

2
cos t)x2(t)− 0.3x1(t)x2(t)

]

,

ẋ2(t) = x2(t)
[

2− cos t− (3 +
sin t

2
)x1(t)

−(
3

2
+

1

2
sin t)x2(t)− 0.1x1(t)x2(t)

]

.

(1.12)

In this case,r1(t) = 4 − 2 cos t, r2(t) = 2 − cos t, a1(t) =
3
2 + cos t, b1(t) = 1 + 1

2 cos t, c1(t) = 0.3, a2(t) = 3 +
sin t
2 , b2(t) = 3

2 + 1
2 sin t, c2(t) = 0.1, α1 = α2 = 1. By

simple computation, one could see that

lim sup
t→+∞

r2(t)

r1(t)
=

1

2
>

1

3
= lim inf

t→+∞

c2(t)

c1(t)
, (1.13)

r1Lc2L = 2× 0.3 < 3× 0.3 = r2Mc1M . (1.14)

That is, neither (1.10) nor (1.11) holds, however, numeric
simulation (Fig.1) shows that in this case, the second species
will be driven to extinction.

Example 1.2.Consider the following two-species competi-

Fig. 1. Dynamics behaviors of speciesx2 in sys-
tem (1.12). Here, we take the initial condition-
s (x1(0), x2(0)) = (1, 1), (0.4, 0.4), (0.6, 0.6) and
(2, 2), respectively.

tive system

ẋ1(t) = x1(t)
[

4− 5 cos t− (
3

2
+ cos t)x1(t)

−(1 +
1

2
cos t)x2(t)− 0.3x1(t)x2(t)

]

,

ẋ2(t) = x2(t)
[

2− 3 cos t− (3 +
sin t

2
)x1(t)

−(
3

2
+

1

2
sin t)x2(t)− 0.1x1(t)x2(t)

]

.

(1.15)

In this case,r1(t) = 4 − 5 cos t, r2(t) = 2 − 3 cos t.
Obviously, ri(2kπ) = −1, i = 1, 2, that is, ri(t) maybe
negative. Hence, the results of Li and Chen[3] and Chen
et al [4] could not be applied to determine the dynamic
behaviors of the system (1.15). Numeric simulation (Fig. 2)
shows that in this case, the second species still be driven to
extinction.

Above two examples enlighten us to revisit the dynamic
behaviors of the system (1.8), and to find out some new
conditions which ensure the extinction of the second species
in system (1.8).

On the other hand, it brings to our attention that
Ahmad[2], Li and Chen[3] and Chen et al [4] did not
investigated the persistent property of the system they
investigated, which is one of the most important topics
in the study of population dynamics. For more papers on
permanence and extinction of population dynamics, one
could refer to [26]-[42] and the references cited therein.

In addition to this section, we arrange the paper as
follows: Some basic results are presented in the next
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Fig. 2. Dynamics behaviors of speciesx2 in sys-
tem (1.15). Here, we take the initial condition-
s (x1(0), x2(0)) = (1, 1), (0.4, 0.4), (0.6, 0.6) and
(2, 2), respectively.

section, we investigate the extinction property of system
(1.8) in the third section. The persistent property of the
system (1.8) is then investigated in Section 4. Some numeric
simulations are presented to verify the feasibility of the
main results in Section 5; We end this paper by a briefly
discussion. For more works on the competition system, one
could refer to [1]-[42] and the references cited therein.

II. BASIC RESULTS

In this section, we shall develop some preliminary results,
which will be used to prove the main result.
Lemma 2.1.[4] Let x(t) = (x1(t), x2(t))

T be any positive
solution of system (1.8) with initial conditionx1(0) >

0, x2(0) > 0, then

lim sup
t→+∞

x1(t) ≤

(r1M

a1L

)
1

α1 def
= M1,

lim sup
t→+∞

x2(t) ≤

(r2M

b2L

)
1

α2 def
= M2.

i.e, any positive solution of system (1.8) are ultimately
bounded above by some positive constant.

For the logistic equation

ẋ(t) = x(t)
(

r(t) − a(t)xα(t)
)

. (2.1)

From Lemma 2.1 of Zhao and Chen [26], we have

Lemma 2.2.Any positive solutions of Eq. (2.1) are defined
on [0,+∞), bounded above and below by positive constants
and globally attractive.

Lemma 2.3.[22] Assume thatr(t), a(t) are continuousT -
periodic function. If

∫ T

0
r(t)dt > 0, a(t) > 0, then system

(2.1) has a unique strictly positiveT -periodic solutionx(t)

which is globally asymptotically stable.

Let x(t) be the positive periodic solution of system (2.1),
there existst1 such thatx(t1) obtains its maximum value
and ẋ(t1) = 0, that is

x(t1)
(

r(t1)− a(t1)x
α(t1)

)

= 0. (2.2)

And so

x(t1) ≤

[( r

a

)u] 1

α

. (2.3)

LetM11,M22 be any positive numbers satisfies the following
inequalities,

M11 > M∗

1 =
[( r1

a1

)u] 1

α1

,

M22 > M∗

2 =
[( r2

a2

)u] 1

α2

.

(2.4)

Lemma 2.4. Assume that (H1) hold. Let (x1(t), x2(t)) be
any positive solution of system (1.8), then there exists an
enough largeT1 such that for allt ≥ T1

x1(t) ≤ M11, x2(t) ≤ M22. (2.5)

Proof. By using Lemma 2.3, the proof of Lemma 2.4 is
similar to the proof of Theorem 2.1 in [22], and we omit the
detail here.

Following Lemma 2.5 is a direct corollary of Lemma 2.2
of F. D. Chen [16].

Lemma 2.5. If a > 0, b > 0 and ẋ ≥ x(b− axα), whereα
is a positive constant, whent ≥ 0 and x(0) > 0, we have

lim inf
t→+∞

x(t) ≥
( b

a

)1/α

.

If a > 0, b > 0 and ẋ ≤ x(b − axα), whereα is a positive
constant, whent ≥ 0 andx(0) > 0, we have

lim sup
t→+∞

x(t) ≤
( b

a

)1/α

.

II I. EXTINCTION OF SYSTEM (1.8)

In this section, we study the extinction of speciesx2 in
system (1.8). Following are the main results of this section.

Theorem 3.1.In addition to (H), assume further that

lim sup
t→+∞

r2(t)

r1(t)
< lim inf

t→+∞

{ a2(t)

a1(t) + c1(t)M
α2

2

,
b2(t)

b1(t)

}

(3.1)

holds, then the speciesx2 will be driven to extinction, that
is, for any positive solution(x1(t), x2(t))

T of system (1.8),
x2(t) → 0 as t → +∞.

Proof. By (3.1) we can chooseα, τ, ε > 0 and enough
largeT2 such that for allt ≥ T2

r2(t)

r1(t)
<

α

τ
− ε <

α

τ
<

a2(t)

a1(t) + c1(t)(M2 + ε)α2

,

r2(t)

r1(t)
<

α

τ
− ε <

α

τ
<

b2(t)

b1(t)
.

(3.2)
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Let X(t) = (x1(t), x2(t))
T be a solution of system (1.8)

with xi(0) > 0, i = 1, 2. It follows from Lemma 2.1 that
there exists an enough largeT3 > T2 such that

xi(t) < Mi + ε for all t ≥ T3. (3.3)

And so, fort ≥ T3, we have

r2(t)τ − r1(t)α < −ετr1(t) < −ετr1L < 0, (3.4)

αa1(t) + αc1(t)(M2 + ε)α2 − τa2(t) < 0, (3.5)

αb1(t)− τb2(t) < 0. (3.6)

From (1.8) we have

ẋ1(t)

x1(t)
= r1(t)− a1(t)x

α1

1 (t)− b1(t)x
α2

2 (t)

−c1(t)x
α1

1 (t)xα2

2 (t),

ẋ2(t)

x2(t)
= r2(t)− a2(t)x

α2

1 (t)− b2(t)x
α2

2 (t)

−c2(t)x
α1

1 (t)xα2

2 (t).

(3.7)

Let
V (t) = x−α

1 (t)xτ
2(t).

From (3.2)-(3.6), it follows that

V̇ (t)

= V (t)
[

τr2(t)− αr1(t) + (αa1(t)− τa2(t))x
α1

1 (t)

+(αb1(t)− τb2(t))x
α2

2 (t)

+(αc1(t)− τc2(t))x
α1

1 (t)xα2

2 (t)
]

≤ V (t)
[

τr2(t)− αr1(t)

+
(

α(a1(t) + c1(t)(M2 + ε)α2)− τa2(t)
)

xα1

1 (t)

+(αb1(t)− τb2(t))x
α2

2 (t)− τc2(t)x
α1

1 (t)xα2

2 (t)
]

≤ V (t)(τr2(t)− αr1(t))

≤ −ετr1LV (t).

Integrating this inequality fromT3 to t(≥ T3), it follows

V (t) ≤ V (T3) exp(−ετr1L(t− T3)). (3.8)

and so,
x2(t) < C exp(−εr1L(t− T3)), (3.9)

where

C = (M1 + ε)α/τ (x1(T3))
−α/τx2(T3) > 0.

Therefore, we havex2(t) → 0 exponentially ast → +∞.

This ends the proof of Theorem 3.1.

Theorem 3.2.In addition to (H1), assume further that

m[r2]

m[r1]
< min

t∈[0,T ]

{ a2(t)

a1(t) + c1(t)M
α2

22

,
b2(t)

b1(t)

}

(3.10)

hold, then the speciesx2 will be driven to extinction, that
is, for any positive solution(x1(t), x2(t))

T of system (1.8),

x2(t) → 0 as t → +∞.

Proof. By (3.10) we can chooseα, τ, ε > 0 such that

m[r2]

m[r1]
<

α

τ
− ε <

α

τ

< min
t∈[0,T ]

{ a2(t)

a1(t) + c1(t)(M22 + ε)α2

,
b2(t)

b1(t)

}

.

(3.11)

Let X(t) = (x1(t), x2(t))
T be a solution of system (1.8)

with xi(0) > 0, i = 1, 2. It follows from Lemma 2.4 that
there exists an enough largeT4 > 0 such that

xi(t) < Mii for all t ≥ T4, i = 1, 2. (3.12)

Also, for all t ≥ T4, it follows from (3.11) that

m[r2]τ −m[r1]α < −ετm[r1] < 0. (3.13)

αa1(t) + αc1(t)(M22 + ε)α2 − τa2(t) < 0, (3.14)

αb1(t)− τb2(t) < 0. (3.15)

Let
V (t) = x−α

1 (t)xτ
2(t).

By using (3.7), (3.14)-(3.15), we have

V̇ (t) ≤ V (t)(τr2(t)− αr1(t)).

Integrating this inequality fromT4 to t(≥ T4), it follows

V (t) ≤ V (T4) exp
(

∫ t

T

(τr2(t)− αr1(t))dt
)

. (3.16)

Assume thatt ∈ [NT, (N + 1)T ), then

V (t)

≤ V (T4) exp

(

∫ T4+NT

T4

(τr2(t)− αr1(t))dt

∫ t

T4+NT

(τr2(t)− αr1(t))dt

)

≤ V (T4) exp
(

− ετm[r1]NT + (τru2 + αru1 )T
)

≤ V (T4) exp
(

− ετm[r1](t− T4) + ετm[r1]T

+(τru2 + αru1 )T
)

.

(3.17)
And so,

x2(t) < C1 exp
(

− εm[r1](t− T4)
)

, (3.18)

where

C1 = (M11)
α/τ (x1(T4))

−α/τx2(T4)×

exp
(

εm[r1]T + (ru2 + α
τ r

u
1 )T

)

> 0.

Therefore, we havex2(t) → 0 exponentially ast → +∞.

This ends the proof of Theorem 3.2.

Theorem 3.3.In addition to (H), assume further that

lim sup
t→+∞

r2(t)

r1(t)
< lim inf

t→+∞

{a2(t)

a1(t)
,

b2(t)

b1(t) + c1(t)M
α1

1

}

(3.19)
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holds, then the speciesx2 will be driven to extinction, that
is, for any positive solution(x1(t), x2(t))

T of system (1.8),
x2(t) → 0 as t → +∞.

Theorem 3.4.In addition to (H1), assume further that

m[r2]

m[r1]
< min

t∈[0,T ]

{a2(t)

a1(t)
,

b2(t)

b1(t) + c1(t)M
α1

11

}

(3.20)

hold, then the speciesx2 will be driven to extinction, that
is, for any positive solution(x1(t), x2(t))

T of system (1.8),
x2(t) → 0 as t → +∞.

Since the proof of Theorem 3.3 and 3.4 is similarly to that
of the proof of Theorem 3.1 and 3.2, we omit the detail here.

IV. PERMANENCE OF SYSTEM(1.8)

The aim of this section is to obtain sufficient conditions
to ensure the permanence of the system, which means that
the species could be coexist in a long run.

Theorem 4.1. In addition to (H), assume further that

r1L > b1M
r2M

b2L
,

r2L > a2M
r1M

a1L

(4.1)

holds, then system (1.8) is permanent, i.e., for any positive
solution(x1(t), x2(t))

T of system (1.8), there exists positive
constantsmi,Mi, i = 1, 2, which are independent of the
solution of system (1.8), such that

mi ≤ lim inf
t→+∞

xi(t) < lim sup
t→+∞

xi(t) ≤ Mi, i = 1, 2.

Proof. Condition (4.1) implies that for the given enough
small positive constantsε, the following inequalities hold:

r1L > b1M

[(r2M

b2L

)
1

α2

+ ε
]α2

,

r2L > a2M

[(r1M

a1L

)
1

α1

+ ε
]α1

(4.2)

holds. Indeed, we could chooseε be any positive constants
which satisfies the inequality

ε < min
{( r1L

b1M

)
1

α2

−

(r2M

b2L

)
1

α2

,
( r2L

a2M

)
1

α1

−

(r1M

a1L

)
1

α1

}

.

Let x(t) = (x1(t), x2(t))
T be any positive solution of system

(1.8) with initial conditionx1(0) > 0, x2(0) > 0, then from
Lemma 2.1, we have

lim sup
t→+∞

x1(t) ≤

(r1M

a1L

)
1

α1

,

lim sup
t→+∞

x2(t) ≤

(r2M

b2L

)
1

α2

.

(4.3)

For ε > 0 enough small which satisfies (4.2), it follows from
(4.3) that there exists enough largeT , such that for allt ≥ T ,

x1(t) ≤

(r1M

a1L

)
1

α1

+ ε,

x2(t) ≤

(r2M

b2L

)
1

α2

+ ε.

(4.4)

For t ≥ T, it follows from (4.4) and the first equation of
(1.8) that

ẋ1(t)

= x1(t)
[

r1(t)− a1(t)x
α1

1 (t)− b1(t)x
α2

2 (t)

−c1(t)x
α1

1 (t)xα2

2 (t)
]

≥ x1(t)

[

r1L − a1Mxα1

1 (t)

−b1M

((r2M

b2L

)
1

α2

+ ε
)α2

−c1M

((r2M

b2L

)
1

α2

+ ε
)α2

xα1

1 (t)

]

.

(4.5)

Applying Lemma 2.5, we have

lim inf
t→+∞

x1(t) ≥

(

A1ε

A2ε

)
1

α1

,

where

A1ε = r1L − b1M

((r2M

b2L

)
1

α2

+ ε
)α2

,

A2ε = a1M + c1M

((r2M

b2L

)
1

α2

+ ε
)α2

.

(4.6)

Sinceε is any enough small positive constants, settingε → 0
in (4.5) leads to

lim inf
t→+∞

x1(t) ≥
1

2

(

A1

A2

)
1

α1

, (4.7)

where

A1 = r1L − b1M
r2M

b2L
,

A2 = a1M + c1M
r2M

b2L
.

(4.8)

Similarly, by using the second inequality of (4.2) and the
second equation of (1.8), we could obtain

lim inf
t→+∞

x2(t) ≥
1

2

(

B1

B2

)
1

α2

, (4.9)

where

B1 = r2L − a2M
r1M

a1L
,

B2 = b2M + c2M
r1M

a1L
.

(4.10)

SinceA1, A2, B1, B2 are all independent of the solution of
system (1.8), it follows from (4.3), (4.7) and (4.8) that the
system (1.8) is permanent. This ends the proof of Theorem
4.1.

Remark 4.1. It seems amazing since the conditions (4.1)
is independent of the parametersα1, α2. Another finding
is that under the assumption (4.1), the toxic substance
term ci(t)x

α1

1 (t)xα2

2 (t), i = 1, 2 has no influence on the
permanence of the system.

Engineering Letters, 28:1, EL_28_1_16

Volume 28, Issue 1: March 2020

 
______________________________________________________________________________________ 



V. NUMERIC SIMULATIONS

The aim of this section is to verify that Example 1.1
and 1.2 satisfy the conditions of Theorem 3.1 and 3.2,
respectively. We also give a numeric example to show the
feasibility of the Theorem 4.1.

Example 5.1.For Example 1.1, one could easily verify that

Mα2

2 =
r2M

b2L
= 3.

Thus

lim inf
t→+∞

a2(t)

a1(t) + c1(t)M
α2

2

= lim inf
t→+∞

3 + sin t
2

3
2 + cos t+ 0.3× 3

≥

5
2

5
2 + 1

=
5

7
.

(5.1)

Also,

lim inf
t→+∞

b2(t)

11(t)
≥

1
3
2

=
2

3
. (5.2)

Above computation shows that the coefficients of Example
1.1 satisfies the inequality (3.1), thus, the second species will
be driven to extinction.

Example 5.2.Now let’s consider Example 1.2. Noting that

m[r2]

m[r1]
=

1

2
.

Also, in this case, one could easily verify that

Mα2

2 =
r2M

b2L
= 5.

Thus

lim inf
t→+∞

a2(t)

a1(t) + c1(t)M
α2

2

= lim inf
t→+∞

3 + sin t
2

3
2 + cos t+ 0.3× 5

≥

5
2

5
2 + 3

2

=
5

8
.

(5.3)

Also,

lim inf
t→+∞

b2(t)

b1(t)
≥

1
3
2

=
2

3
. (5.4)

Above computation shows that the coefficients of Example
1.2 satisfies the inequality (3.10), thus, the second species
will be driven to extinction.

Example 5.3.Consider the following two-species competi-
tive system

ẋ1(t) = x1(t)
[

4− 2 cos t− (
3

2
+

1

2
cos t)x2

1(t)

−(
1

4
+

1

4
cos t)x2(t)− x2

1(t)x2(t)
]

,

ẋ2(t) = x2(t)
[

2− (
1

8
+

sin t

8
)x2

1(t)

−(
3

2
+

1

2
sin t)x2(t)− x2

1(t)x2(t)
]

.

(5.5)

In this case,r1(t) = 4 − 2 cos t, r2(t) = 2, a1(t) =
3

2
+

1

2
cos t, b1(t) =

1

4
+

1

4
cos t, c1(t) = 1, a2(t) =

1

8
+

sin t

8
, b2(t) =

3

2
+

1

2
sin t, c2(t) = 1, α1 = 2, α2 = 1.

In (5.5), by simple computation, one could see that the
coefficients of the system satisfies the following inequalities

r1L = 2 >
1

2
×

2

1
= b1M

r2M

b2L
,

r2L = 2 >
1

4
×

6

1
= a2M

r1M

a1L
.

(5.6)

Hence, it follows from Theorem 4.1 that the system (5.5) is
permanent. Numeric simulations (Fig.3 and 4) shows that in
this case, the system is permanent.

Fig. 3. Dynamics behaviors of speciesx1 in sys-
tem (5.5). Here, we take the initial conditions
(x1(0), x2(0)) = (1, 1), (0.4, 0.4) and (0.6, 0.6), re-
spectively.

VI. CONCLUSION

In the previous works of Li and Chen [3] and Chen, Miao
and Pu [4], the authors gave sufficient conditions which
ensure the extinction of the second species in system (1.6)
and (1.8), however, as we can see from the numeric examples
of the introduction section, the species still maybe driven to
extinction if the conditions in [3] and [4] are not hold. This
motivated us to revisit the extinction property of system (1.8).

On the other hand, both Li and Chen [3] and Chen, Miao
and Pu [4] did not investigate the persistent property of the
system they considered, this motivated us to investigated the
persistent property of the system (1.8).

By further developing the analysis technique of [4] and
[3], more precisely, by constructing some suitable Lyapunov
type extinction function, we are able to establish two set
of new sufficient conditions which ensure the extinction of
the second species. Also, by using the differential inequality
theory, we obtain a set of sufficient conditions which ensure
the permanence of the system. It seems amazing that both
the nonlinear parametersα1, α2 and the toxic substance term
have no influence to the persistent property of the system.
Our results supplement the main results of [4] and [3].
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Fig. 4. Dynamics behaviors of speciesx2 in sys-
tem (5.5). Here, we take the initial conditions
(x1(0), x2(0)) = (1, 1), (0.4, 0.4) and (0.6, 0.6), re-
spectively.
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