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Abstract—A single species stage structure system with pos-
itive feedback control is proposed and studied in this paper.
Local and global stability property of the boundary equilibrium
and the positive equilibrium are investigated, respectively. If the
system without feedback control is extinct, then we show that by
choosing suitable control variables, extinct species can become
globally stable, or still keep the property of extinction. If the
system without feedback control is global stability, then to en-
sure the system admits a globally stable positive equilibrium, we
should also restrict the feedback control variable to the suitable
interval. An example together with its numeric simulations is
presented to verify the main results.

Index Terms—Stage structure; Species; Local stability; Lya-
punov function; Global stability

I. I NTRODUCTION

T HE aim of this paper is to investigate the dynamic
behaviors of the following single species stage structure

system with feedback control:

dx1

dt
= αx2 − βx1 − δ1x1,

dx2

dt
= βx1 − δ2x2 − γx2

2 + dx2u,

du

dt
= g − eu− fx2,

(1.1)

whereα, β, δ1, δ2, d, e, f, g andγ are all positive constants,
x1(t) and x2(t) are the densities of the immature and
mature species at timet, u is feedback control variable. The
following assumptions are made in formulating the model
(1.1):
1. The per capita birth rate of the immature population is
α > 0; The per capita death rate of the immature population
is δ1 > 0; The per capita death rate of the mature plants is
proportional to the current mature plants population with a
proportionality constantδ2 > 0; β > 0 denotes the surviving
rate of immaturity to reach maturity; The mature species is
density dependent with the parameterγ > 0;
2. The bilinear feedback mechanism (dx2u) is used to control
the system, which can be interpreted as the stocking of the
mature species.

During the last decades, many scholars investigated
the dynamic behaviors of the stage structured ecosystem,
see [1]-[15] and the references cited therein. Such top-
ics as the single species stage structure system ([11],
[13],[15],[16]), the stage structured predator prey system
([1],[2],[3],[7],[8],[10],[12],[14],[49],[50]), the stage struc-
tured competition system ([6]), the stage structured coopera-
tive system ([5],[9]), the stage-structured food-chain system
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([4]) are well investigated.

Recently, Khajanchi and Banerjee[17] proposed the fol-
lowing stage structure predator-prey model with ratio depen-
dent functional response

dx1

dt
= αx2(t)− βx1(t)− δ1x1(t),

dx2

dt
= βx1(t)− δ2x2(t)− γx2

2(t)

−
η(1− θ)x2(t)y(t)

g(1− θ)x2(t) + hy(t)
,

dy

dt
=

uη(1− θ)x2(t)y(t)

g(1− θ)x2(t) + hy(t)
− δ3y(t).

(1.2)

Here, the authors assumed that the prey species has two
stage: immature(x1) and mature (x2), and predator species
take mature prey species as its food. Obviously, if we did not
consider the predator species in above system, then the prey
species satisfies the following single species stage structured
system.

dx1

dt
= αx2(t)− βx1(t)− δ1x1(t),

dx2

dt
= βx1(t)− δ2x2(t)− γx2

2(t).
(1.3)

The system admits two possible equilibria;O(0, 0) and
A(x∗

1, x
∗

2). Xiao and Lei[16] showed that if

αβ < δ2(β + δ1) (1.4)

holds, then the boundary equilibriumO(0, 0) is globally
asymptotically stable, which means that the species will be
driven to extinction, and if

αβ > δ2(β + δ1) (1.5)

holds, then the positive equilibriumA(x∗

1, x
∗

2) is globally
asymptotically stable, which means the species could be
exists in the long run.

On the other hand, since the pioneer work of Gopalsamy
and Weng[18], the feedback control ecosystem become one
of the main topics in the study of mathematics biology, see
[18]-[45] and the references therein. Xiao, Tang and Chen
[41] had proposed the following two species competitive
system with feedback controls:

x
′

1(t) = x1(t)[a1(t)− b11(t)x1(t)

−b12(t)x2(t)− c1(t)u1(t)],

x
′

2(t) = x2(t)[a2(t)− b21(t)x1(t)

−b22(t)x2(t) + c2(t)u2(t)],

u
′

1(t) = −e1(t)u1(t) + d1(t)x1(t),

u
′

2(t) = f(t)− e2(t)u2(t)− d2(t)x2(t).

(1.6)
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They showed that if

a1L > b12M
a2M

b22L
, a2M ≤ b21L

a1L

b11M
(1.7)

and

a1L −
a2M b12M

b22L

>
c1Ma1Md1M

e1Lb11L
+

b12Mc2MfM

b22Le2L
,

c2L

e2M

(

fL −
d2Ma2Me2L + d2Mc2MfM

b22Le2L

)

>
a1M b21M

b11L
− a2L,

(1.8)

hold, then system (1.6) is permanent. Noting that for the
system without feedback controls, condition (1.7) is enough
to ensure the extinction of the second species. Therefore, the
results of [41] implies that by choosing a suitable feedback
control mechanism, one could avoid the extinction of the
species. The results of [41] is then generalized by Chen, Li
and Huang [42] and Hu, Teng and Jiang[43] to the infinite
delay case.

Though there are many works on feedback control ecosys-
tem ([18]-[50]), there are still few works on stage structured
ecosystem with feedback controls. Ding and Cheng[13]
proposed the following single species stage-structured model
with feedback control:

dx1(t)

dt
= αx2(t)− γx1(t)− αe−γτx2(t− τ),

dx2(t)

dt
= αe−γτx2(t− τ)− βx2

2(t)− cx2(t)u(t),

du(t)

dt
= −au(t) + bx2(t).

(1.9)
In [13], it was shown that under some suitable assumption,
the system admits a unique positive equilibrium which is
globally attractive.

Now stimulated by the works of [11], [13], [37], [41],[42]
and [43], and the fact that with the developing of modern
society, many nature resources are overexploited, more
and more species become endangered, without the suitable
human beings protect, the species will finally be driven to
extinction. Thus, one interesting issue proposed:

For system (1.3), ifO(0, 0) is globally asymptotically
stable, which implies the extinction of the species, is
it possible for us choosing suitable feedback control
variable, as was proposed by Xiao et al[41], to avoid the
extinction of the species?

On the other hand, what would happen if we stock too
much mature species to the nature? That is:

For system (1.3), ifA(x∗

1, x
∗

2) is globally asymptotically
stable, which implies the survival of the species in the
long run, what would happen if the feedback control
mechanism is too strong? whether the positive feedback
control always has positive effect to the survival of the
species?

Above two issues lead us to propose the system (1.1).
The paper is arranged as follows. We will investigate the
existence and locally stability property of the equilibria of
system (1.1) in section 2. In section 3, by constructing some
suitable Lyapunov function, we are able to investigate the
global stability property of the equilibria. Section 4 presents
some numerical simulations to show the feasibility of the
main results. We end this paper by a briefly discussion.

II. L OCAL STABILITY

For the rest of the paper, we will assume that inequality
(1.4) holds, that is, without the feedback control variable, the
system (1.3) will be driven to extinction.

The system (1.1) always admits the boundary equilibrium
A1

(

0, 0,
g

e

)

.
If
(

δ2 +
gγ

f

)(

β + δ1

)

> βα >
(

δ2 −
dg

e

)(

β + δ1

)

(2.1)

holds, then system (1.1) admits a unique positive equilibrium
A2(x1∗, x2∗, u∗), where

x1∗ =
αx2∗

β + δ1

=
α
[

e
(

αβ − δ2(β + δ1)
)

+ dg(δ1 + β)
]

(df + eγ)(β + δ1)2
,

x2∗ =
e
(

αβ − δ2(β + δ1)
)

+ dg(δ1 + β)

(df + eγ)(β + δ1)

=

αβ

β + δ1
− δ2 +

dg

e

γ + d f
e

,

u∗ =
g

e
−

f

e
x2∗

=
−f
(

αβ − δ2(β + δ1)
)

+ gγ(δ1 + β)

(df + eγ)(β + δ1)
.

(2.2)
Obviously,x1∗, x2∗ andu∗ satisfies the equation



















αx2∗ − βx1∗ − δ1x1∗ = 0,

βx1∗ − δ2x2∗ − γx2
2∗ + dx2∗u∗ = 0,

g − eu∗ − fx2∗ = 0.

(2.3)

We shall now investigate the local stability property of the
above equilibria.

The variational matrix of the system (1.1) is

J(x1, x2, u)

=









−β − δ1 α 0

β −δ2 − 2γx2 + du dx2

0 −f −e









.

(2.4)

Theorem 2.1Assume that

βα <
(

δ2 −
dg

e

)(

β + δ1

)

(2.5)
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holds, then A1

(

0, 0,
g

e

)

is locally asymptotically stable.

Proof. Condition (2.5) implies that

δ2 −
dg

e
> 0,

and so,

−(β + δ1 + δ2) +
dg

e
< 0. (2.6)

From (2.4) we could see that the Jacobian matrix of the
system about the equilibrium pointA1

(

0, 0,
g

e

)

is given by









−β − δ1 α 0

β
dg

e
− δ2 0

0 −f −e









. (2.7)

The characteristic equation of above matrix is

(λ + e)
[

λ2 +
(

β + δ1 + δ2 −
dg
e

)

λ+ βδ2

+δ1δ2 − αβ −
dg
e
(β + δ1)

]

= 0.

(2.8)

Hence, it has one negative characteristic rootλ1 = −e <

0, the other two characteristic roots are determined by the
equation

λ2+
(

β+δ1+δ2−
dg

e

)

λ+βδ2+δ1δ2−αβ−
dg

e

(

β+δ1

)

= 0.

(2.9)
Noting that under the assumption (2.5), (2.6) holds, and the
two characteristic roots of equation (2.9) satisfy

λ2 + λ3 = −

(

β + δ1 + δ2

)

+
dg

e
< 0,

λ2λ3 = βδ2 + δ1δ2 − αβ −
dg

e

(

β + δ1

)

> 0.
(2.10)

hence,λ2 < 0, λ3 < 0. Above analysis shows that under
the assumption of Theorem 2.1, the three characteristic roots
of the matrix (2.7) are all negative, hence,A1

(

0, 0,
g

e

)

is
locally asymptotically stable. This ends the proof of Theorem
2.1.

Remark 2.1 Obviously, under the assumption (1.4) holds,
if dg

e
is enough small, then inequality (2.5) holds. That is,

if the feedback control variable is enough small, the local
stability of the boundary equilibriumO(0, 0) of system (1.3)
is still holds.

Theorem 2.2Assume that

βα >
(

δ2 −
dg

e

)(

β + δ1

)

(2.11)

holds, then A2(x1∗, x2∗, u∗) is locally asymptotically stable.
Proof. From (2.4) we could see that the Jacobian matrix of
the system about the equilibrium pointA2(x1∗, x2∗, u∗) is
given by








−β − δ1 α 0

β −δ2 − 2γx2∗ + du∗ dx2∗

0 −f −e









. (2.12)

The characteristic equation of system (1.1) at
A2(x1∗, x2∗, u∗) is

λ3 +B1λ
2 +B2λ+B3 = 0,

where

B1 = −du∗ + 2 γ x2∗ + β + δ1 + δ2 + e,

B2 = (β + δ1) (−du∗ + 2 γ x2∗ + δ2)

−αβ + dx2∗ f

+ (−du∗ + 2 γ x2∗ + β + δ1 + δ2) e,

B3 = (β + δ1) (−du∗ + 2 γ x2∗ + δ2) e

−αβ e+ fdx2∗ (β + δ1) .

(2.13)

From (2.2) and (2.3), we have

−du∗ + 2 γ x2∗ + δ2

= β
x1∗

x2∗

+ γx2∗

=
αβ

β + δ1
+ γx2∗

> 0.

(2.14)

Therefore, by using (2.13) and (2.14), we have

B1 = −du∗ + 2 γ x2∗ + β + δ1 + δ2 + e

=
αβ

β + δ1
+ γx2∗ + β + δ1 + e > 0,

B2 = (β + δ1)
( αβ

β + δ1
+ γx2∗

)

−αβ + dx2∗ f

+ (−du∗ + 2 γ x2∗ + β + δ1 + δ2) e

≥ dx2∗ f + (−du∗ + 2 γ x2∗ + β + δ1 + δ2) e

≥ dx2∗ f +

(

αβ

β + δ1
+ γx2∗ + β + δ1

)

e

> 0,

B3 = (β + δ1) (−du∗ + 2 γ x2∗ + δ2) e

−αβ e+ fdx2∗ (β + δ1)

= (β + δ1)
( αβ

β + δ1
+ γx2∗

)

e

−αβ e+ fdx2∗ (β + δ1)

≥ fdx2∗ (β + δ1)

> 0.

Set∆ = −du∗ +2 γ x2∗ + δ2, then by using (2.14), and the
fact ∆ > 0, we have

B1B2 −B3

=
(

∆+ δ1 + β + e
)[

(β + δ1)∆ + (∆ + β + δ1)e

−αβ + fdx2∗

]

− (β + δ1)∆e

+αβe− fdx2∗(β + δ1)
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=
(

∆+ δ1 + β + e
)[

(β + δ1)
( αβ

β + δ1
+ γx2∗

)

+(∆ + β + δ1)e− αβ + fdx2∗

]

−(β + δ1)∆e + αβe − fdx2∗(β + δ1)

≥

(

∆+ δ1 + β + e
)[

(β + δ1)
αβ

β + δ1

+(∆ + β + δ1)e− αβ + fdx2∗

]

−(β + δ1)∆e + αβe − fdx2∗(β + δ1)

≥

(

∆+ δ1 + β + e
)[

(∆ + β + δ1)e + fdx2∗

]

−(β + δ1)∆e + αβe − fdx2∗(β + δ1)

≥ αβe > 0.

By Hurwitz criterion, the three characteristic roots of the
matrix (2.12) are all negative, hence,A2(x1∗, x2∗, u∗) is
locally asymptotically stable. This ends the proof of Theorem
2.2.

Remark 2.2.Noting that condition (2.11) is necessary condi-
tion for the system (1.1) admits a unique positive equilibrium,
it then follows from Theorem 2.2 that once the system (1.1)
admits the unique positive equilibrium, the equilibrium is
locally asymptotically stable.

Remark 2.3.Assume that (1.4) holds, then without feedback
control, the species will be driven to extinction, however,
noting that under the assumption (1.4), the inequality

αβ <
(

δ2 +
gγ

f

)(

β + δ1

)

always holds, hence ifdg
e

is enough large, then (2.1) always
holds, and the system (1.1) admits a unique positive equi-
librium, also, from Theorem 2.2 this equilibrium is locally
stable, which means that the species will be survival.

Remark 2.4.Assume that (1.5) holds, then without feedback
control, the system (1.3) admits a unique positive equilibri-
um, which is globally stable. Noting that in this case, for any
positive constants, inequality

βα >
(

δ2 −
dg

e

)(

β + δ1

)

always holds, also, if
gγ

f
is enough large, then inequality

(

δ2 +
gγ

f

)(

β + δ1

)

> βα

also holds, and the system (1.1) admits a unique positive
equilibrium, also, from Theorem 2.2 this equilibrium is
locally stable, which means that the species will be survival.

III. G LOBAL STABILITY

This section tries to obtain some sufficient conditions
which could ensure the global asymptotical stability of the
equilibria of system (1.1).

Theorem 3.1Assume that

βα <
(

δ2 −
dg

e

)(

β + δ1

)

(3.1)

holds, then A1

(

0, 0,
g

e

)

is globally asymptotically stable.

Proof. Condition (3.1) is equal to

αβ

β + δ1
− δ2 +

gd

e
< 0. (3.2)

We will prove Theorem 3.1 by constructing some suitable
Lyapunov function. Let’s define a Lyapunov function

V1(x1, x2, u) =
β

β + δ1
x1 + x2 +

d

2f
(u − u1)

2, (3.3)

where
u1 =

g

e
. (3.4)

One could easily see that the functionV1 is zero at the
equilibriumA1

(

0, 0,
g

e

)

and is positive for all other positive
values ofx1 and x2. The time derivative ofV1 along the
trajectories of (1.1) is

D+V1(t)

=
β

β + δ1

(

αx2 − βx1 − δx1

)

+βx1 − δ2x2 − γx2
2 + dux2

+
d

f
(u− u1)(g − eu− fx2)

=
β

β + δ1

(

αx2 − βx1 − δx1

)

+βx1 − δ2x2 − γx2
2 + dux2

+
d

f
(u− u1)(eu1 − eu− fx2)

=
( αβ

β + δ1
− δ2

)

x2 − γx2
2 + dux2

−
de

f
(u− u1)

2
− dux2 + du1x2

=
( αβ

β + δ1
− δ2 +

dg

e

)

x2

−γx2
2 −

de

f
(u− u1)

2.

(3.5)

It then follows from (3.2) thatD+V1(t) < 0 strictly
for all x1, x2, u > 0 except the boundary equilibrium
A1

(

0, 0,
g

e

)

, where D+V1(t) = 0. Thus, V1(x1, x2, u)

satisfies Lyapunov’s asymptotic stability theorem, and the
boundary equilibriumA1

(

0, 0,
g

e

)

of system (1.1) is globally
asymptotically stable.

This completes the proof of Theorem 3.1.

Remark 3.1. From Theorem 3.1, one could see that the
conditions which ensure the locally asymptotically stable of
the boundary equilibrium is enough to ensure its e globally
asymptotically stability.

Remark 3.2. Theorem 3.1 shows that if the boundary
equilibriumO(0, 0) in system (1.3) is globally stable, if the
feedback control variable is enough small, then in system
(1.1), the boundary equilibriumA1(0, 0,

g
e
) is also globally

stable. i.e., the species still will be driven to extinction.

Theorem 3.2Assume that

βα >
(

δ2 −
dg

e

)(

β + δ1

)

(3.6)
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holds, then A2(x1∗, x2∗, u∗) is globally asymptotically sta-
ble.
Proof. We will prove Theorem 3.2 by constructing some
suitable Lyapunov function. Let’s define a Lyapunov function

V2(x1, x2, u)

=
βx1∗

x2∗α

(

x1 − x1∗ − x1∗ ln
x1

x1∗

)

+
(

x2 − x2∗ − x2∗ ln
x2

x2∗

)

+
d

2f
(u− u∗)

2.

One could easily see that the functionV2 is zero at the
equilibrium A2(x1∗, x2∗, u∗) and is positive for all other
positive values ofx1, x2 and u. The time derivative ofV2

along the trajectories of (1.1) is

D+V2(t)

=
βx1∗

x2∗α

x1 − x1∗

x1

ẋ1 +
x2 − x2∗

x2

ẋ

+
d

f
(u − u∗)u̇

=
βx1∗

x2∗α

x1 − x1∗

x1

(

αx2 − (β + δ1)x1

)

+
x2 − x2∗

x2

(

βx1 − δ2x2 − γx2
2 + dux2

)

+
d

f
(u − u∗)(g − eu− fx2).

(3.7)

Noting that from the relationship ofx1∗, x2∗ and u∗ (see
(3.2)), we have

αx2 − (β + δ1)x1

=
α

x1∗

(

− x2(x1 − x1∗) + x1(x2 − x2∗)
)

,
(3.8)

also, from (3.1) and (3.2), we have

βx1 − δ2x2 − γx2
2 + dux2

=
β

x2∗

(

x1x2∗ − x2x1∗

)

+ βx2

x1∗

x2∗

−δ2x2 − γx2
2 + dux2

=
β

x2∗

(

x1x2∗ − x1x2 + x1x2 − x2x1∗

)

+
( αβ

β + δ1
− δ2

)

x2 − γx2
2 + dux2

=
β

x2∗

(

x1x2∗ − x1x2 + x1x2 − x2x1∗

)

+
[(

γ + d
f

e

)

x2∗ −
dg

e

]

x2 − γx2
2 + dux2

=
β

x2∗

(

x1(x2∗ − x2) + x2(x1 − x1∗)
)

+γx2

(

x2∗ − x2

)

+ dx2

(

u− u∗

)

,

(3.9)

from the third equation of (3.2), we have

g − eu− fx2

= −eu− fx2 + eu∗ + fx2∗

= −e(u− u∗)− f(x2 − x2∗).

(3.10)

Applying (3.8)-(3.10) to (3.7) leads to

D+V2(t)

=
βx1∗

x2∗α

x1 − x1∗

x1

α

x1∗

(

− x2(x1 − x1∗)

+x1(x2 − x2∗)
)

+
x2 − x2∗

x2

β

x2∗

(

x1(x2∗ − x2)

+x2(x1 − x1∗)
)

+γx2

x2 − x2∗

x2

(

x2∗ − x2

)

+k2dx2

x2 − x2∗

x2

(

u− u∗

)

+
d

f
(u− u∗)

(

− e(u− u∗)

−f(x2 − x2∗)
)

= −
βx2

x1x2∗

(x1 − x1∗)
2

+
2β

x2∗

(x1 − x1∗)(x2 − x2∗)

−
βx1

x2x2∗

(x2 − x2∗)
2

−γ
(

x2 − x2∗

)2

−
de

f
(u− u∗)

2

= −
β

x2∗

[

√

x2

x1

(x1 − x1∗)

−

√

x1

x2

(x2 − x2∗)
]2

−γ
(

x2 − x2∗

)2

−
de

f
(u− u∗)

2.

(3.11)

Hence,D+V2(t) < 0 strictly for all x1, x2, u > 0 except the
positive equilibriumA2(x1∗, x2∗, u∗), whereD+V2(t) = 0.
Thus,V2(x1, x2, u) satisfies Lyapunov’s asymptotic stability
theorem, and the positive equilibriumA2(x1∗, x2∗, u∗) of
system (1.1) is globally asymptotically stable.

This completes the proof of Theorem 3.2.

Remark 3.3. From Theorem 3.2, one could see that the
conditions which ensure the locally asymptotically stable of
the positive equilibrium is enough to ensure its e globally
asymptotically stability. Also, noting that condition (3.6) is
necessary to ensure the existence of the positive equilibrium.
Hence, we can draw the conclusion: Once the system (1.1)
admits the positive equilibrium, it is globally asymptotically
stable.

Remark 3.4.As was shown in Remark 2.3-2.4. If the species
in system (1.3) is extinct, then by choosing suitable feedback
control variable, the system (1.1) may admits a unique pos-
itive equilibrium, Theorem 3.2 shows that this equilibrium
is globally stable. Therefore, by choosing suitable feedback
control variable, the species could be avoid to extinction. If
the species in system (1.3) is permanent, then one should also
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choosing the suitable feedback control variable to maintain
the persistent property of the species.

IV. N UMERIC SIMULATIONS

Now let’s consider the following example.

Example 4.1. Let’s consider the following single species
stage structure system with feedback control:

dx1

dt
= x2 − x1 − x1,

dx2

dt
= x1 − x2 − x2

2 + dx2u,

du

dt
= g − u− x.

(4.1)

Here we chooseα = β = δ1 = δ2 = γ = e = f = 1, d, g
is determined later. For the system without feedback control,
the system degenerate to

dx1

dt
= x2 − x1 − x1,

dx2

dt
= x1 − x2 − x2

2.
(4.2)

Since
αβ = 1 < 2 = δ2

(

δ + β1), (4.3)

the boundary equilibriumO(0, 0) of system (4.2) is globally
asymptotically stable. Also, one could easily check that if
dg < 1

2
, then

αβ = 1 <
(

δ2 −
dg

e

)

(δ1 + β). (4.4)

Therefore, condition of Theorem 3.1 is satisfied, and
A1(0, 0,

g

e
) of system (4.1) is globally asymptotically stable.

As an example, now let’s taked = g = 1

2
, thenA1(0, 0,

1

2
)

is globally asymptotically stable, Fig. 2-4 support those
findings. On the other hand, one could easily check that if
dg > 1

2
, then

αβ = 1 >
(

δ2 −
dg

e

)

(δ1 + β). (4.5)

Therefore, condition of Theorem 3.2 satisfied, and
A2(x1∗, x2∗, u∗) of system (4.1) is globally asymptotically
stable. As an example, now let’s taked = 1, g = 3

2
, then

A2(
1

4
, 1

2
, 1) is globally asymptotically stable, Fig. 5-7 support

those findings.

V. CONCLUSION

During the past decade, many scholars investigated the
dynamic behaviors of the ecosystem with feedback control
system (see [16]-[43]). However, there are few work on
stage structured system with feedback control([13]). In [13],
Ding and Cheng proposed the single species stage structured
system with feedback control (system (1.9)), the system
always admits a unique positive equilibrium. To ensure the
positive equilibrium be global asymptotically stable, the au-
thors needed some additional condition. Their result indicates
that the harvesting process of human being has no influence
on the persistent property of the species, since the system
always admits a unique positive equilibrium which is locally
stable.

Fig. 1. Phase portraits of system (4.2), the initial conditions
(x1(0), x2(0))= (5, 1),(5, 0.1) and (1, 1.4), respectively.

Fig. 2. Dynamics behaviors of the first componen-
t x1(t) of the system (4.1), here we taked =
g = 1

2
, the initial conditions (x1(0), x2(0), u(0)) =

(0.5, 0.1, 0.2), (0.1, 0.1, 0.1), (1, 1, 1) and (0.4, 0.4, 0.4), re-
spectively.

Since with the development of the human beings, more
and more species becomes endangered, and without the
suitable help of human beings, those species will finally
be driven to extinction. This stimulated us to propose the
single species stage structured system with positive feedback
control (system (1.1)). Here, by means of positive feedback
control, we means that the stocking of the species.

Our results show that if the positive feedback control is
limited, such that inequality (2.5) holds, then despite the
stocking (the help of human beings), the species still will
be driven to extinction. However, if the positive feedback
control is enough large, such that inequality (2.11) holds,
then such kind of mechanism is very useful, and the species
will finally living in long run. However, if the original system
( system (1.3)) admits the unique positive equilibrium which
is globally stable, then to ensure the system (1.1) admits
a unique positive equilibrium, we also need to restrict the
feedback control variable to some suitable area. Such an
finding may help us to choose some suitable mechanism to
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Fig. 3. Dynamics behaviors of the second compo-
nent x2(t) of the system (4.1), here we taked =
g = 1

2
, the initial conditions (x1(0), x2(0), u(0)) =

(0.5, 0.1, 0.2), (0.1, 0.1, 0.1), (1, 1, 1) and (0.4, 0.4, 0.4), re-
spectively.

Fig. 4. Dynamics behaviors of the third componentu(t) of the
system (4.1), here we taked = g = 1

2
, the initial conditions

(x1(0), x2(0), u(0)) = (0.5, 0.1, 0.2), (0.1, 0.1, 0.1), (1, 1, 1)
and (0.4, 0.4, 0.4), respectively.

avoid the extinction of the endangered species.
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Fig. 5. Dynamics behaviors of the first componen-
t x1(t) of the system (4.1), here we taked =
1, g = 3

2
, the initial conditions (x1(0), x2(0), u(0)) =

(0.5, 0.1, 0.2), (0.1, 0.1, 0.1), (1, 1, 1) and (0.4, 0.4, 0.4), re-
spectively.

Fig. 6. Dynamics behaviors of the second compo-
nent x2(t) of the system (4.1), here we taked =
1, g = 3

2
, the initial conditions (x1(0), x2(0), u(0)) =

(0.5, 0.1, 0.2), (0.1, 0.1, 0.1), (1, 1, 1) and (0.4, 0.4, 0.4), re-
spectively.

REFERENCES

[1] F. D. Chen, W. L. Chen, Y. M. Wu and Z. Z. Ma, “Permanece of
a stage-structured predator-prey system,” Applied Mathematics and
Computation, vol. 219, no. 17, pp.8856-8862, 2013.

[2] F. D. Chen, X. D. Xie and Z. Li, “Partial survival and extinction of a de-
layed predator-prey model with stage structure,” Applied Mathematics
and Computation, vol. 219, no. 8, pp. 4157-4162, 2012.

[3] F. D. Chen, H. N. Wang, Y. H. Lin, W. L. Chen, “Global stability
of a stage-structured predator-prey system,” Applied Mathematics and
Computation, vol. 223, no.1, pp.45-53, 2013.

[4] Z. H. Ma, S. F. Wang, “Permanence of a food-chain system with stage
structure and time delay,” Communications in Mathematical Biology
and Neuroscience, vol 2017, no.1, article ID: 15, 2017.

[5] T. T. Li, F. D. Chen, J. H. Chen and Q. X. Lin, “Stability of a
mutualism model in plant-pollinator system with stage-structure and
the Beddington-DeAngelis functional response,” Journal of Nonlinear
Functional Analysis, vol. 2017, no. 1, article ID: 50, 2017.

[6] Z. Li, F. D. Chen, “Extinction in periodic competitive stage-structured
Lotka-Volterra model with the effects of toxic substances,” Journal of
Computational and Applied Mathemathics, vol.231, no.1, pp.143-153,
2009.

Engineering Letters, 28:2, EL_28_2_08

Volume 28, Issue 2: June 2020

 
______________________________________________________________________________________ 



Fig. 7. Dynamics behaviors of the third componentu(t) of the
system (4.1), here we taked = 1, g = 3

2
, the initial conditions

(x1(0), x2(0), u(0)) = (0.5, 0.1, 0.2), (0.1, 0.1, 0.1), (1, 1, 1)
and (0.4, 0.4, 0.4), respectively.

[7] Z. Li, M. A. Han and F. D. Chen, “Global stability of stage-structured
predator-prey model with modified Leslie-Gower and Holling-type II
schemes,” International Journal of Biomathematics, vol. 6, no.1, article
ID: 1250057, 13pp, 2012.

[8] Z. Li, M. Han, F. Chen, “Global stability of a predator-prey system
with stage structure and mutual interference,” Discrete and Continuous
Dynamical Systems-Series B (DCDS-B), vol. 19, no. 1, pp.173-187,
2014.

[9] F. D. Chen, X. D. Xie, X. F. Chen, “Dynamic behaviors of a stage-
structured cooperation model,” Communications in Mathematical Biol-
ogy and Neuroscience, vol 2015, no.1, article ID: 4, 2015.

[10] X. Lin, X. Xie, F. Chen, et al, “Convergences of a stage-structured
predator-prey model with modified Leslie-Gower and Holling-type II
schemes,” Advances in Difference Equations, vol. 2016, no.1, article
ID: 181. 2016.

[11] R. Y. Han, L. Y. Yang, Y. L. Xue, “Global attractivity of a single
species stage-structured model with feedback control and infinite delay,”
Communications in Mathematical Biology and Neuroscience, vol 2015,
no.1, article ID: 6, 2015.

[12] L. Q. Pu, Z. S. Miao, R. Y. Han, “Global stability of a stage-structured
predator-prey model,” Communications in Mathematical Biology and
Neuroscience, vol 2015, no.1, article ID: 5, 2015.

[13] X. Q. Ding, S. H. Cheng, “The stability of a delayed stage-structured
population growth model with feedback controls,” Journal of Biomath-
ematics, vol. 21, no.2, pp.225-232, 2006.

[14] X. Song, L. Cai, U. Neumann, “Ratio-dependent predator-prey system
with stage structure for prey,” Discrete and Continuous Dynamical
Systems - Series B (DCDS-B), vol.4, no.3, pp.747-758, 2012.

[15] H. L. Wu, F. D. Chen, “Harvesting of a single-species system incor-
porating stage structure and toxicity,” Discrete Dynamics in Nature and
Society, volume 2009, no.1, article ID 290123, 16 pages, 2009.

[16] A. Xiao, C. Lei, “Dynamic behaviors of a non-selective harvesting
single species stage-structured system incorporating partial closure for
the populations,” Advances in Difference Equations, vol. 2018, no.1,
article ID: 245, 2018.

[17] S. Khajanchi, S. Banerjee, “Role of constant prey refuge on stage
structure predator-prey model with ratio dependent functional response,”
Applied Mathematics and Computation, vol. 314, no.1, pp.193-198,
2017.

[18] K. Gopalsamy, P. X. Weng, “Feedback regulation of Logistic growth,”
International Journal of Mathematics Sciences, vol. 16, no.1, pp.177-
192, 1993.

[19] L. J. Chen, L. J. Chen, Z. Li, “Permanence of a delayed discrete mutu-
alism model with feedback controls,” Mathematical and Computational
Modelling, vol. 50, no. 5, pp.1083-1089, 2009.

[20] J. B. Xu, Z. D. Teng, “Permanence for a nonautonomous discrete
single-species system with delays and feedback control,” Applied Math-
ematics Letter, vol.23, no.5, pp.949-954, 2010.

[21] T. W. Zhang, Y. K. Li, Y. Ye, “Persistence and almost periodic solution-
s for a discrete fishing model with feedback control,” Communications
in Nonlinear Science and Numerical Simulation, vol.16, no. 6, pp.1564-
1573, 2011.

[22] F. D. Chen, J. H. Yang and L. J. Chen, “Note on the persistent property
of a feedback control system with delays,” Nonlinear Analysis: Real
World Applications, vol. 11, no. 5, pp. 1061-1066, 2010.

[23] Y. H. Fan, L. L. Wang, “Global asymptotical stability of a Logistic
model with feedback control,” Nonlinear Analysis: Real World Appli-
cations, vol. 11, no.4, pp.2686-2697, 2010.

[24] Y. Wang, “Periodic and almost periodic solutions of a nonlinear single
species discrete model with feedback control,” Applied Mathematics
and Computation, vol. 219, no. 10, pp.5480-5486, 2013.

[25] Z. Li, M. He, “Hopf bifurcation in a delayed food-limited model with
feedback control,” Nonlinear Dynamics, vol.76, no.2, pp.1215-1224,
2014.

[26] L. Chen, F. Chen, “Global stability of a Leslie-Gower predator-prey
model with feedback controls,” Applied Mathematics Letters, vol. 22,
no.9, pp.1330-1334, 2009.

[27] S. Yu, “Extinction for a discrete competition system with feedback
controls,” Advances in Difference Equations, vol. 2017, no.1, article
ID: 9, 2017.

[28] L. J. Chen, J. T. Sun, “Global stability of an SI epidemic model with
feedback controls,” Applied Mathematics Letters, vol. 28, no.1, pp.53-
55, 2014.

[29] Z. Miao, F. Chen, J. Liu, et al, “Dynamic behaviors of a discrete
Lotka-Volterra competitive system with the effect of toxic substances
and feedback controls,” Advances in Difference Equations, vol. 2017,
no.1, article ID:112, 2017.

[30] R. Han, X. Xie, F. Chen, “Permanence and global attractivity of a
discrete pollination mutualism in plant-pollinator system with feedback
controls,” Advances in Difference Equations, vol. 2016, no.1, article
ID: 199, 2016.

[31] L. J. Chen, F. D. Chen. “Extinction in a discrete Lotka-Volterra
competitive system with the effect of toxic substances and feedback
controls,” International Journal of Biomathematics, vol. 8, no. 1, pp.149-
161, 2015.

[32] X. Chen, C. Shi, Y. Wang, “Almost periodic solution of a discrete
Nicholsons blowflies model with delay and feedback control,” Advances
in Difference Equations, vol.2016, no. 1, pp.1-15, 2016.

[33] C. L. Shi, X. Y. Chen and Y. Q. Wang, “Feedback control effect on the
Lotka-Volterra prey-predator system with discrete delays,” Advances in
Difference Equations, vol. 2017, no. 1, article ID: 373, 2017.

[34] C. Shi, Z. Li, F. Chen, “Extinction in a nonautonomous Lotka-
Volterra competitive system with infinite delay and feedback controls,”
Nonlinear Analysis Real World Applications, vol. 13, no.5, pp.2214-
2226, 2012.

[35] X. Gong, X. Xie, R. Han, et al, “Hopf bifurcation in a delayed lo-
gistic growth with feedback control,” Communications in Mathematical
Biology and Neuroscience, vol. 2015, no. 1, article ID: 1, 2015.

[36] R. Han, F. Chen, X. Xie, et al. “Global stability of May cooperative
system with feedback controls,” Advances in Difference Equations,
vol.2015, no.1, article ID:360, 2015.

[37] Z. Li, M. H. Han, F. D. Chen, “Influence of feedback controls on an
autonomous Lotka-Volterra competitive system with infinite delays,”
Nonlinear Analysis Real World Applications, vol. 14, no. 3, pp.402-
413, 2013.

[38] F. D. Chen, H. N. Wang, “Dynamic behaviors of a Lotka-Volterra
competitive system with infinite delay and single feedback control,”
Journal of Nonlinear Functional Analysis, vol. 2016, no.1, article ID
43, 2016.

[39] K. Yang, Z. S. Miao et al, “Influence of single feedback control
variable on an autonomous Holling II type cooperative system,” Journal
of Mathematical Analysis and Applications, vol.435, no.5, pp.874-888,
2016.

[40] R. Y. Han, F. D. Chen, “Global stability of a commensal symbio-
sis model with feedback controls,” Communications in Mathematical
Biology and Neuroscience, vol.2015, no. 1, article ID:15, 2015.

[41] Y. N. Xiao, S. Y. Tang and J. F. Chen, “Permanence and periodic
solution in competitive system with feedback controls,” Math. Comput.
Modelling, vol. 27, no. 6, pp. 33-37, 1998.

[42] F. D. Chen, Z. Li, Y. J. Huang, “Note on the permanence of a com-
petitive system with infinite delay and feedback controls,” Nonlinear
Analysis: Real World Applications, vol. 8, no.2, pp.680-687, 2007.

[43] H. X. Hu, Z. D. Teng, H. J. Jiang, “Permanence of the nonautonomous
competitive systems with infinite delay and feedback controls,” Non-
linear Analysis: Real World Applications, vol.10, no.4, pp.2420-2433,
2009.

[44] Y. Z. Liao, “Dynamics of two-species harvesting model of almost
periodic facultative mutualism with discrete and distributed delays,”
Engineering Letters, vol.26, no.1, pp.7-13, 2018.

[45] Y. L. Yu, L. Ru, K. Fang, “Bio-inspired mobility prediction clustering
algorithm for ad hoc uav networks,” Engineering Letters, vol.24, no.3,
pp.328-337, 2016.

Engineering Letters, 28:2, EL_28_2_08

Volume 28, Issue 2: June 2020

 
______________________________________________________________________________________ 



[46] Y. Q. Li, L. J. Xu, T. W. Zhang, “Dynamics of almost periodic
mutualism model with time delays,” IAENG International Journal of
Applied Mathematics, vol. 48, no.2, pp.168-176, 2018.

[47] S. B. Yu, “Effect of predator mutual interference on an autonomous
Leslie-Gower predator-prey model,” IAENG International Journal of
Applied Mathematics, vol. 49, no.2, pp. 229-233, 2019.

[48] B. G. Chen, “The influence of density dependent birth rate to a
commensal symbiosis model with Holling type functional response,”
Engineering Letters, vol. 27, no.2, pp. 295-302, 2019.

[49] Q. Yue, “Permanence of a delayed biological system with stage struc-
ture and density-dependent juvenile birth rate,” Engineering Letters, vol.
27, no. 2, pp. 263-268, 2019.

[50] Z. W. Xiao, Z. Li, “Stability and bifurcation in a stage-structured
predator-prey model with Allee effect and time delay,” IAENG Inter-
national Journal of Applied Mathematics, vol.49, no.1, pp. 6-13, 2019.

Engineering Letters, 28:2, EL_28_2_08

Volume 28, Issue 2: June 2020

 
______________________________________________________________________________________ 




