Engineering Letters, 28:2, EL._28 2 08

The Influence of Positive Feedback Control to a
Single Species Stage Structure System

Qin Yue

Abstract—A single species stage structure system with pos- ([4]) are well investigated.
itive feedback control is proposed and studied in this paper. . . .
Local and global stability property of the boundary equilibrium Recently, Khajanchi and Banerjee[17] proposed the fol-
and the positive equilibrium are investigated, respectively. If the lowing stage structure predator-prey model with ratio depen-
system without feedback control is extinct, then we show thatby dent functional response
choosing suitable control variables, extinct species can become

globally stable, or still keep the property of extinction. If the @ _ _ _

system without feedback control is global stability, then to en- dt az2(t) = far(t) — (1),

sure the system admits a globally stable positive equilibrium, we dxo 5 9

should also restrict the feedback control variable to the suitable . By (t) — bawa(t) — ya3(t)

interval. An example together with its numeric simulations is 0 (1.2)
presented to verify the main results. n( — )z ()y(t)

Index Terms—Stage structure; Species; Local stability; Lya- g(1 = O)aa(t) + hy(t)

punov function; Global stability gy _ un(l — O)z>(B)y(t) 03y(t).
dt (1= 0)za(t) + hy(1)
I. INTRODUCTION Here, the authors assumed that the prey species has two

. . . . . .Stage: immature(;) and mature £3), and predator species
E'Eh a:;imr of ft?hls fpﬁp\(/evrinls t|cr)1 |Invest|giate ihe d%?ar?'rake mature prey species as its food. Obviously, if we did not
t rr?v?ithofs odb eko Ontr ? SINgie species stage STUCULS nsider the predator species in above system, then the prey
syste eedback control species satisfies the following single species stage structured

dry awy — fry — o171, system.
dt dl’l
d$2 E = OéCEQ(f) — ﬁml(t) — 511’1 (t),
P By — daws — ya3 + drau, (1.1) dzo ) (1.3)
. i = Puat) — daa(t) —ya3(t).
U
o T 9eus Jxa, The system admits two possible equilibri&(0,0) and

o A(xy,25). Xiao and Lei[16] showed that if
wherea, 3,01, 02,d, e, f, g and~y are all positive constants, (21, 23) [16]

x1(t) and z»(t) are the densities of the immature and af < 5B+ 1) (1.4)
mature species at timg « is feedback control variable. Theholds then the boundary equilibriui®

followi . de in f i h g4 (0,0) is globally
oflowing assumptions are made in formulating the mo %symptotically stable, which means that the species will be

(1.1): . . . . driven to extinction, and if
1. The per capita birth rate of the immature population Is
a > 0; The per capita death rate of the immature population af > 62(8 + 1) (1.5)

is 41 > 0; The per capita death rate of the mature plants fﬁ)lds, then the positive equilibrium (7, 23) is globally

proportional to the current mature plants population with gsymptotically stable, which means the species could be
proportionality constand; > 0; 8 > 0 denotes the surviving exists in the long run

rate of immaturity to reach maturity; The mature species Is On the other hand, since the pioneer work of Gopalsamy

density q§pendent with the para_me’(;eb 0 and Weng[18], the feedback control ecosystem become one
2. The bilinear feedback mechanism ¢dz is used to control ¢ 1o ain topics in the study of mathematics biology, see

the system, which can be interpreted as the stocking of tig) 1451 and the references therein. Xiao, Tang and Chen
mature species. [41] had proposed the following two species competitive
During the last decades, many scholars investigateystem with feedback controls:

the dynamic behaviors of the stag_e structur_ed ecosystem, - 1) = zi(ai(t) — b )z ()
see [1]-[15] and the references cited therein. Such top-
ics as the single species stage structure system ([11], —b1a(t)wa(t) — 1 (B)u (b)),
[13],[15],[16]), the stage structured predator prey system )
([11.[2].[3].[7].[8].[10],[12],[14],[49],[50]), the stage struc- zo(t) = x2(t)]az(t) — bar(t)z1(t)
tured competition system ([6]), the stage structured coopera- b (1 ; (1.6)
tive system ([5],[9]), the stage-structured food-chain system ~bxn(t)aa2(t) + c2()uz(t)];
Qin Yue is with the College of Finance and Mathematics, West An- u;(t) - *el(t)ul(t) +dy (t>$1(t)7
hui University, Liuan 237000, Anhui, Peoples Republic of China, E- ,
mails:zzj901010@163.com. ug(t) = f(t) —ea(t)ua(t) — da(t)z2(t).
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They showed that if Above two issues lead us to propose the system (1.1).
The paper is arranged as follows. We will investigate the
(1.7)  existence and locally stability property of the equilibria of
system (1.1) in section 2. In section 3, by constructing some
and suitable Lyapunov function, we are able to investigate the
global stability property of the equilibria. Section 4 presents
some numerical simulations to show the feasibility of the
main results. We end this paper by a briefly discussion.

a2 M air

air > leMb , aan < bair
221

biim

azpbiam
a — ——————
baor,

aamaimdine - biamcan fir

ewbur bazrezr (1.8) Il. LOCAL STABILITY
Car, - dapraanrear, + dancans For the rest of the paper, we will assume that inequality
eam baarear, (1.4) holds, that is, without the feedback control variable, the
a1arbai s system (1.3) will be driven to extinction.
> b azr, The system (1.1) always admits the boundary equilibrium

. . Al 0705 g)
hold, then system (1.6) is permanent. Noting that for the e

system without feedback controls, condition (1.7) is enough

to ensure the extinction of the second species. Therefore, thgs, | 97 B+6) > Ba> (62— dg B+6 21
results of [41] implies that by choosing a suitable feedbacke 2T )( 1) ( e )( 1) @1)

control mechanism, one could avoid the extinction of thgs|ds, then system (1.1) admits a unique positive equilibrium
species. The results of [41] is then generalized by Chen, i, 4, u,), where
and Huang [42] and Hu, Teng and Jiang[43] to the infinite

delay case. Ty, = e

Though there are many works on feedback control ecosys- B+
tem ([18]-[50]), there are still few works on stage structured a [e (aﬂ —5(B+ 51)) +dg(61 + ﬂ)}
ecosystem with feedback controls. Ding and Cheng[13] = @+ e B+ 0) ,
proposed the following single species stage-structured model & !
with feedback control: e(aﬂ — 68+ 51)) +dg(61 + B)

Tox =

d%p = axza(t) —yz1(t) — ae ™ Tz (t — 7), ’ (df +ev)(B+ 1)

dzo(t af dg

%() — e ot — ) — Br2(t) — cxa(t)ult), Gy 0t

- v+ dL ’
W) ) + baat).
dt g f
(1.9) Uy = = — =T

In [13], it was shown that under some suitable assumption, €
the system admits a unique positive equilibrium which is B _s 5 5
globally attractive. _ f(aﬂ 208+ 1)) + 97001 +8)

Now stimulated by the works of [11], [13], [37], [41],[42] (df +ev)(B+ 1)
and [43], and the fact that with the developing of modern o i (2.2)
society, many nature resources are overexploited, m&PEViously, 1., z2. andu. satisfies the equation
and more species become endangered, without the suitable T2 — B1s — 1214 = 0,
human beings protect, the species will finally be driven to
extinction. Thus, one interesting issue proposed: B1s — ooy — ya2, + drgeu, =0, (2.3)

For system (1.3), ifO(0,0) is globally asymptotically
stable, which implies the extinction of the species, is g — eux — fra. = 0.

it possible for us choosing suitable feedback control \ye shall now investigate the local stability property of the
variable, as was proposed by Xiao et al[41], to avoid the gpove equilibria.

extinction of the species? The variational matrix of the system (1.1) is
On the other hand, what would happen if we stock too

X . J(z1,22,u)
much mature species to the nature? That is:
For system (1.3), ifA(z, z5) is globally asymptotically —B =0 o 0 (2.4)
stable, which implies the survival of the species in the _ 3 —8y — 2yzy +du  dry
long run, what would happen if the feedback control
mechanism is too strong? whether the positive feedback 0 —f —€
control always has positive effect to the survival of the Theorem 2.1 Assume that
species? ' p
g
Ba< (8-2)(8+0) (2.5)
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holds, then A, (0, 0, 9Y is locally asymptotically stable. where
Proof. Condition (2.%) implies that

d By = —du.+2vx2.+5+d+6+e,

b — Y9 > 0,

e By = (B+01) (—dus + 27T + 02)

ard so, J B4 dao, f
—a B + dra.
_(6 +01+02)+ ?g < 0. (2.6) @ 2 (2'13)
- - - * 2 * )
From (2.4) we could see that the Jacobian matrix of the T (—dus 2920+ f 401+ 02) €
system about the equilibrium point; (O, 0, g) is given by By = (B+01)(—dus+2vx9. +d2)e
e
—B-6 a 0 —afe+ fdxa. (B+01).
d
B eg d 0 27 From (2.2) and (2.3), we have
0 —f —e
- . o —du, +2 %
The characteristic equation of above matrix is dux 2722 + 02
T1x
(A+e){>\2+(ﬂ+51+52*d—f)>\+ﬂ52 B 6962 i (2.14)
(2.8) B '
= Loy
6162 —af —U9(5 4 61)] = 0 Bra
> 0.

Hence, it has one negative characteristic rapt= —e¢ <
0, the other two characteristic roots are determined by tq'?nerefore
equation
2+(54—514—52—%))\+552+5152—045—% (54—51) =0. B =
(2.9)
Noting that under the assumption (2.5), (2.6) holds, and the =
two characteristic roots of equation (2.9) satisfy
By =
)\2+)\3:*<ﬂ+51+5g) Jr@ <0,
(2.10)
AoAg = By + 6162 —aff — — (5 + (51)

hence,\; < 0,A3 < 0. Above analysis shows that under

the assumption of Theorem 2.1, the three characteristic roots =
of the matrix (2.7) are all negative, hencé; (0,0, g -
. . €
locally asymptotically stable. This ends the proof of Theorem =
2.1. >
Remark 2.1 Obviously, under the assumption (1.4) holds, _
if % is enough small, then inequality (2.5) holds. That is, -
if the feedback control variable is enough small, the local
stability of the boundary equilibriur®(0, 0) of system (1.3)
is still holds. _
Theorem 2.2 Assume that
Ba > (52 - —) (ﬁ n 51) (2.11) .
holds, then As(x1., z2«, us) is locally asymptotically stable. -

Proof. From (2.4) we could see that the Jacobian matrix of
the system about the equilibrium poidb (1., Tox, u.) IS
given by

by using (2.13) and (2.14), we have

—duy +2yx2. +F+ 01+ 2+ e

ﬂofél St s + B+ 01 e >0,

af
6+ (555
7O‘ﬂ+dz2*f

+ 7z2*)

+(—dus +2y22. + B+ 01+ d2)e

dl’g*f—f—(—du* +2’YI’2* +B+61 +62)€
ap

dxa

T2 f+<5+5

0,

+ Y224 +5+51>

(B+01) (—dus + 2y 20, + 02) €
—afe+ fdra. (B+01)

(B+d1) (ﬁ _fg +’Y$2*)
—afe+ fdra. (B+61)
fdza. (B+61)

0.

SetA = —du, + 2y 2. + d2, then by using (2.14), and the

fact A > 0, we have

—B—d «a 0
B —02 = 2y@2x +dus  dxas (2.12) BBy — B
: -f ¢ = (A+51+ﬂ+e)[(ﬂ+51)A+(A+ﬂ+5l)e
The characteristic equation of system (1.1) at

A2(171*7 T2y U*) is

A+ BiA2 + Bod+ B3y =0,

—aB + fdua.| = (B4 61)Ae
+afe — fdxas (B + 1)

Volume 28, Issue 2: June 2020



Engineering Letters, 28:2, EL._28 2 08

- (A Y S e) [(5 i 51)(0‘_66 + yw.) holds, then A, (0, 0, g) is globally asymptotically stable.
Bto Proof. Condition (3&) is equal to
+(A+ B +d1)e — af + fdaz.] 08 . g
—5—2+—<0. (3.2)
—(B+61)Ae + aBe — fdra.(B+61) p+o e
We will prove Theorem 3.1 by constructing some suitable
> (A Y0+ 8+ e) [(5 o) af Lyapunov function. Let's define a Lyapunov function
- ﬂ + 51 6 d
+(A+ B+ d1)e — af + fdvs.] Vilor oz u) = gopm tae b gplu =), (33)
—(B+81)Ae + afle — fdza.(B+ ) where g
= (A to+ B+ e) [(A +B+d)e+ fdﬂ”?*} One could easily see that the functiéh is zero at the
—(B+ 61)Ae + afe — fdra (B + 1) equilibrium A, (0, 0, g) ard is positive for all other positive
values ofz; and :cg.eThe time derivative ofl; along the
> afe>0. trajectories of (1.1) is
By Hurwitz criterion, the three characteristic roots of the DTVi(t)
matrix (2.12) are all negative, hencéy(x1., xox, us) IS
locally asymptotically stable. This ends the proof of Theorem - B (OL$2 — Bz1 — 5361)
2.2. B+

_ _ 2
Remark 2.2.Noting that condition (2.11) is necessary condi- +Bz1 — d2z2 — Y3 + duzs

tion for the system (1.1) admits a unique positive equilibrium,

it then follows from Theorem 2.2 that once the system (1.1) +}(“ —u1)(g — eu — fzz)
admits the unique positive equilibrium, the equilibrium is B
locally asymptotically stable. = it e (04332 — Py — 5%1)
Remark 2.3.Assume that (1.4) holds, then without feedback +Bx1 — Saxe — Y23 + duxs
control, the species will be driven to extinction, however, d (3-5)
noting that under the assumption (1.4), the inequality +?(u —up)(eu; — eu — fas)
g7
< |02 + = 0
af (2+ f)(ﬁ+ 1) = (%—52)x27’yx§+duz2
always holds, hence i%g is enough large, then (2.1) always de )
holds, and the system (1.1) admits a unique positive equi- *7(“ —w)” = duwy + dur
librium, also, from Theorem 2.2 this equilibrium is locally af dg
stable, which means that the species will be survival. = (ﬂ A 0o + ?)332
Remark 2.4.Assume that (1.5) holds, then without feedback o _e( — )
control, the system (1.3) admits a unique positive equilibri- 2 f vy
um,-;{vhlch is ?Iolt)ally stabltﬁt. Noting that in this case, for any then follows from (3.2) thatD+Vi(t) < 0 strictly
positive constants, inequality for all z;,z9,u > 0 except the boundary equilibrium
d 9 + _
fa> (0~ 2)(5+6) 41(0,0,2), where D*Vi(t) = 0. Thus, Vi(w1,a2,u)

satisfies Lyapunov’s aS(/mptotic stability theorem, and the

aways holds, also, i-. is enough large, then inequality boundary equilibriuny; (0,0, g) of system (1.1) is globally
f asymptotically stable.

g7
(52 + 7) (ﬁ + 51) > fa This completes the proof of Theorem 3.1.

also holds, and the system (1.1) admits a unique positi@@mark 3.1. From Theorem 3.1, one could see that the
equilibrium, also, from Theorem 2.2 this equilibrium isconditions which ensure the locally asymptotically stable of

locally stable, which means that the species will be survivdhe boundary equilibrium is enough to ensure its e globally
asymptotically stability.

Remark 3.2. Theorem 3.1 shows that if the boundary
equilibrium O(0,0) in system (1.3) is globally stable, if the
feedback control variable is enough small, then in system

'I_'his section tries to obtain some sqfficient p_ondition 1), the boundary equilibriurs; (0,0, £) is also globally
Wh'(.:h C.OUId ensure the global asymptotical stability of th able. i.e., the species still will be driven to extinction.
equilibria of system (1.1).

IIl. GLOBAL STABILITY

Theorem 3.1 Assume that Theorem 3.2 Assume that
Ba < (527 %)(ﬂﬂn) (3.1) Ba > (527 %)(ﬂﬂn) (3.6)
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holds, then As (1., 22+, u.) is globally asymptotically sta-  Applying (3.8)-(3.10) to (3.7) leads to

ble.

. . D+
Proof. We will prove Theorem 3.2 by constructing some Va(t)
suitable Lyapunov function. Let's define a Lyapunov function BE1e T1 — T1a
= — (—:Ez(:m—ﬂm)

V2($1,$2,U) Ty X T T1x
_ P14 ($1 s — 7 In 1 ) +a1(z2 — 362*))
Tox X T1x
d Ty — X f (
x 2 - = —
+<x2 — Ty — T4 1In ﬁ) + ﬁ(u — uy)”. + Ty T 21 (T24 — T2)
One could easily see that the functidn is zero at the oz — xl*))

equilibrium As (214,224, u,) and is positive for all other
positive values ofry,zo andu. The time derivative ofl;

T2 — T2«
along the trajectories of (1.1) is R~ (zQ* B xQ)

DT Va(t) +kodxy T2 — T2 (u - u*)
. BT1x Tt — T1s . T2 — T2x . 2
= xr1 + €T d
Toxx Ty T2 +?(u—u*)(—e(u—u*)
d
+—(u — ux)t
f 57) —f(z2 — 552*))
Bris 1 — T1x 3.
= ———(aza— (B+01)x
T2+ T ( 2= (B+0) 1) = — faz (21 — 214)?
Ty — Tox 12
+— (ﬂl‘l — 52%2 — ’Y%g + dUIL'Q) Qﬁ
x2 +—(21 — 1) (w2 — X2 )
T2
d
+?(U*U*)(g*w*f$2)- By )
- (362 - 172*)
Noting that from the relationship afi., =2, andu, (see T2%2x
(3.2)), we have 77(@ 3 xQ*)Q B @(u )2
ATy — (ﬂ + 51>$1 f
a (3:8) - _B { T2
= . (—xg(acl —.171*)4—171(,%2 —.1’2*)), Toe T (xl 1'1*)
also, from (3.1) and (3.2), we have R ry— )}2 (3.11)
Br1 — oy — Y13 + dums -
2 de
; ol )
= (IE11E2* - $2$1*) + B2
T2+ T2+ Hence,D*V,(t) < 0 strictly for all 21, z2,u > 0 except the
—82x9 — Y23 + duxs positive equilibriumAs (z1., 22+, u. ), where DT Va(t) = 0.

Thus, Va(z1, 22, u) satisfies Lyapunov’s asymptotic stability
theorem, and the positive equilibriuts (x1., xox, u.) Of
system (1.1) is globally asymptotically stable.

= (IE11E2* — T1%2 + T1T2 — 1E2$1*)
T2x
+<O‘_ﬂ _ 52)332 — a2 + duzs (3.9)  This completes the proof of Theorem 3.2.

+9
P ! Remark 3.3. From Theorem 3.2, one could see that the

conditions which ensure the locally asymptotically stable of
the positive equilibrium is enough to ensure its e globally

= (51315132* — X1%2 + T1T2 — 302171*)
T2

f dg 9 asymptotically stability. Also, noting that condition (3.6) is
T [(7 T dg)f”?* - ?}m — %z + duz; necessary to ensure the existence of the positive equilibrium.
3 Hence, we can draw the conclusion: Once the system (1.1)
= o (561(:62* — x2) + x2(21 — 1:1*)) adrEIits the positive equilibrium, it is globally asymptotically
* stable.

E d — Wx ), . .
T2 (xQ xz) +ar (u b ) Remark 3.4.As was shown in Remark 2.3-2.4. If the species

from the third equation of (3.2), we have in system (1.3) is extinct, then by choosing suitable feedback
g—eu— fxo control variable, the system (1.1) may admits a unique pos-
itive equilibrium, Theorem 3.2 shows that this equilibrium
= —eu— fro+ eu, + fro, (3.10) is globally stable. Therefore, by choosing suitable feedback
control variable, the species could be avoid to extinction. If
= —e(u—us) — f(z2 — x24). the species in system (1.3) is permanent, then one should also
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choosing the suitable feedback control variable to maintain 147
the persistent property of the species.

IV. NUMERIC SIMULATIONS
Now let's consider the following example.

Example 4.1.Let's consider the following single species 087
stage structure system with feedback control:
0.6
d$1
— = T2 —T1— 1,
dt 2 ! ! 04]
d
£ — oy —ay — 22+ daou, (4.1) 02l
dt :
du
o dTumr 0 i 2 3 4 5

Here we chooser = f =0, = =y=e=f=1,4dyg g. 1. Phase portraits of system (4.2), the initial conditions
is determined later. For the system without feedback contr?l, — (5,1),(5,0.1) and (1, 1.4), respectively.

the system degenerate to

dx
d—tl = X2 —T1 — 21, ;:]
doy o, (4.2) N
dt = I i) Zsy. -
0.7
Since 0.6
af=1<2=20(5+pB), (4.3) o 05
the boundary equilibriun®(0, 0) of system (4.2) is globally 04}
asymptotically stable. Also, one could easily check that if
dg < 1, then 03
0.21
08=1<(5-2)5 +5). (4.4)
Therefore, condition of Theorem 3.1 is satisfied, and : e

A1(0,0, g) of system (4.1) is globally asymptotically stable. 1
(&

9 _ 1 1
As an example, now lets také = g = 3, then4:(0,0,3) gy 5 Dynamics behaviors of the first componen-
is globally asymptotically stable, Fig. 2-4 support those wl(t) of the system (4.1), here we takd —
findings. On the other hand, one could easily check that |f 1 the initial conditions (1 (0),2(0), u(0)) =

1
dg > 5, then (0 5 0.1,0.2),(0.1,0.1,0.1), (1,1,1) and (0.4, 0.4,0.4), re-
S ectivel .
af=1> (52 — —)(61 + B). (4.5) P Y

Therefore, condition of Theorem 3.2 satisfied, and . .
Ay (214, T2y, us) Of System (4.1) is globally asymptotlcally Since with the development of the human beings, more

stable. As an example, now let's take= 1,g = 2, then and more species becomes endangered, and without the
As(%, 3,1) is globally asymptotically stable, Fig. 5- 7supp0r§wtable help of human beings, those species will finally
those findings. be driven to extinction. This stimulated us to propose the
single species stage structured system with positive feedback
V. CONCLUSION control (system (1.1)). Here, by means of positive feedback

During the past decade, many scholars investigated t%oentrol, we means that the stocking of the species.

dynamic behaviors of the ecosystem with feedback controlOur results show that if the positive feedback control is
system (see [16]-[43]). However, there are few work olimited, such that inequality (2.5) holds, then despite the
stage structured system with feedback control([13]). In [13tocking (the help of human beings), the species still will
Ding and Cheng proposed the single species stage structuseddriven to extinction. However, if the positive feedback
system with feedback control (system (1.9)), the systeoontrol is enough large, such that inequality (2.11) holds,
always admits a unique positive equilibrium. To ensure thien such kind of mechanism is very useful, and the species
positive equilibrium be global asymptotically stable, the awwill finally living in long run. However, if the original system
thors needed some additional condition. Their result indicatesystem (1.3)) admits the unique positive equilibrium which
that the harvesting process of human being has no influengeglobally stable, then to ensure the system (1.1) admits
on the persistent property of the species, since the systanunique positive equilibrium, we also need to restrict the
always admits a unigue positive equilibrium which is localljeedback control variable to some suitable area. Such an
stable. finding may help us to choose some suitable mechanism to
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Fig. 3. Dynamics behaviors of the second compcrig.
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5. Dynamics behaviors of the first componen-

nent xz»(t) of the system (4.1), here we také = t xz,(t) of the system (4.1), here we takd =

g = %, the initial conditions (z1(0),z2(0),u(0)) = 1,9

= 3, the initial conditions (z1(0),z2(0),u(0)) =

(0.5,0.1,0.2),(0.1,0.1,0.1),(1,1,1) and (0.4,0.4,0.4), re- (0.5,0.1,0.2),(0.1,0.1,0.1),(1,1,1) and (0.4,0.4,0.4), re-
spectively. spectively.
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Fig. 4. Dynamics behaviors of the third componeift) of the  Fig.

1.0
0.9
0.8
0.7
0.6
x2(1)
0.5
04
03
0.2
0.14 : .
0 5 10
t

6. Dynamics behaviors of the second compo-

system (4.1), here we také= g = , the initial conditions nent z,(¢) of the system (4.1), here we také =

(1(0),22(0),u(0)) = (0.5,0.1,0.2),(0.1,0.1,0.1),(1,1,1) 1,9 = 3, the initial conditions (z;(0),z2(0),u(0)) =

and(0.4,0.4,0.4), respectively. (0.5,0.1,0.2),(0.1,0.1,0.1),(1,1,1) and (0.4,0.4,0.4), re-
spectively.

avoid the extinction of the endangered species.
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