
 

  
Abstract—We study the problem of the measurement of the 

quasi-deterministic or stochastic signal with the unknown 
discontinuous parameters against Gaussian interferences. 
Our goal is to determine the characteristics of the joint 
maximum likelihood estimates of the unknown parameters 
under the violation of the decision statistics regularity 
conditions. For this purpose, we introduce the local additive 
approximation method. According to this method, the decision 
statistics being a multidimensional random field is 
represented in the form of the sum of the products of the 
independent Markov random processes. Such representation 
proves to be valid in the small neighborhood of the point of 
the true values of the unknown parameters. Further, by 
applying the Markov random processes technique, it is 
possible to obtain the asymptotic analytical expressions for the 
probability density and the conditional moments of the 
resulting estimates. The accuracy of the specified formulas 
increases with the signal-to-noise ratio. Finally, we illustrate 
how the local additive approximation method can be applied 
when analyzing the performance of the two receiving devices: 
the measurer of the time of appearance and the duration of 
the quasi-deterministic video pulse and the measurer of the 
time of appearance and the band center of the Gaussian radio 
pulse. By means of statistical computer simulation, it is 
established that the application of this method allows 
obtaining the closed formulas for the accuracy characteristics 
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of discontinuous signal measurers which are operable in a 
wide range of signal-to-noise ratios. 
 

Index Terms—Discontinuous signal parameter, maximum 
likelihood method, local Markov approximation method, local 
additive approximation method, accuracy characteristics of 
estimate 
 

I. INTRODUCTION 
In various fields of physics and engineering, there is a 
problem of measurement (estimation) of the parameters of 
the information signals or images observed against random 
interferences [1]-[3]. The signal parameters estimation 
problem is of particular importance in radio physics, radio 
astronomy, hydro acoustics, seismology and geology, as 
well as in many radio engineering applications, such as 
radio communication, radio control, telemetry, 
radiolocation and radio navigation. Technical diagnostics 
and process control are also the fields where this problem is 
a challenge [4]-[8]. One of the most common methods of 
synthesizing the algorithm for estimating the parameters of 
the signals against interferences is the maximum likelihood 
(ML) method [7]-[10]. Application of ML method allows us 
to obtain both simple and sufficiently effective algorithms 
for the estimation of the information signal parameters. A 
special advantage of such algorithms is that they require 
minimum amount of prior information. However, the final 
conclusion about the appropriateness of the maximum 
likelihood estimates (MLEs) application for the solution of 
the certain practical tasks should be made only on the basis 
of the analysis of the estimate characteristics. 

To a great extent, the very possibility of the practical 
application of the common methods for calculating the 
characteristics of the joint estimates of the signal 
parameters depends upon the analytical properties of the 
decision statistics of the examined algorithm. In particular, 
when analyzing the accuracy of MLEs, what we consider to 
be a fundamental characteristic is the regularity of the 
logarithm of the functional of the likelihood ratio (FLR) as 
the function of the estimated signal parameters, which is 
the decision statistics in this case [9]-[15]. That means that, 
if, at least, the second derivatives of the first two moments 
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of the logarithm of FLR by the specified parameter exist, 
then the logarithm of FLR is regular by this parameter [9]-
[14]. The signal parameters that satisfy these conditions of 
regularity are called the regular ones [10], [11]. By 
applying the small parameter method [7]-[9] or the 
Ibragimov-Has’minskii method [12]-[15] we can find the 
asymptotically exact (with increasing the signal-to-noise 
ratio (SNR)) expressions for the characteristics of the joint 
MLEs of the regular parameters of the signal observed 
against Gaussian noise. 

At the same time, there is a wide class of the signals 
commonly known as discontinuous, or nonanalytical [10]-
[14]. By certain discontinuous signal parameters the 
conditions of regularity for the logarithm of FLR are not 
satisfied. Following [11]-[16] we will call such parameters 
the discontinuous ones. The simplest examples of the 
discontinuous parameters are the time of arrival and the 
duration of rectangular video and radio pulses, the band 
center of the signal with the uniform band spectrum, the 
time delay of some discrete complex signals, etc. [11], [14], 
[17]-[21]. The small parameter method [7]-[9] cannot be 
applied to find the MLEs characteristics of the 
discontinuous parameters, because it presupposes the 
regularity of the logarithm of FLR. Otherwise, we may get, 
for example, the zero value of the variance of the 
discontinuous parameter estimate and a number of other 
incorrect results. 

In order to calculate the asymptotically exact (with SNR 
increasing) expressions for the MLEs characteristics of the 
discontinuous signal parameter, the local Markov 
approximation (LMA) method can be used [10], [11], [19]. 
The idea of the LMA method is to approximate the 
logarithm of FLR, or its increment, by Markov or local 
Markov random process. Then, by applying the 
mathematical apparatus [24] of the Markov processes 
theory, we can obtain the asymptotically exact expressions 
for the MLEs characteristics of the discontinuous signal 
parameters, including the anomalous effects. However, the 
LMA method is only applicable for calculating the 
characteristics of the separate MLEs of the discontinuous 
signal parameters. Here the separate estimate refers to the 
estimate found in case when other discontinuous signal 
parameters are a priori known. The LMA method does not 
apply, if we calculate the characteristics of the joint 
estimates of several discontinuous parameters. 

In practice, signal processing is implemented, as a rule, 
in the conditions of prior uncertainty when we are unaware 
of both the informative signal parameters to be estimated 
and some other (spurious) parameters. Then we have to 
carry out a joint estimation of several unknown signal 
parameters which may be discontinuous. In [16], [22], the 
procedure is proposed that makes it possible to calculate the 
asymptotic (with SNR increasing) characteristics of the 
joint MLEs of one discontinuous and several regular 
parameters. In [13]-[15], based on the Ibragimov-
Has’minskii method generalized by Y.A. Kutoyants, the 
procedure is presented that helps to describe how the joint 
Bayesian and ML estimates of the discontinuous parameters 

converge in the distribution by the specified random 
variables. The said approach also provides determining the 
rate of this convergence under SNR tending to infinity. 
However, the universal methods for obtaining the analytical 
expressions for the characteristics of the joint MLEs of the 
several discontinuous signal parameters are still unknown. 
At present, the approximate formulas for the characteristics 
of the joint estimates of the discontinuous parameters can 
be obtained for certain special tasks only [17], [20], [23]. 
That is why it is difficult to analyze and compare the 
performance of measuring systems when using the 
discontinuous signal models. 

The specified difficulties faced while calculating the 
characteristics of the joint MLEs of the discontinuous 
signal parameters can be overcome, if the moments of the 
logarithm of FLR allow the additive-multiplicative 
representation. In this case, the mathematical expectation, 
the correlation function and some other moments of the 
logarithm of FLR are expressed as the sums of the finite 
number of summands, each of which is the product of the 
functions of one parameter only. Then, in order to find the 
asymptotically exact (with SNR increasing) expressions for 
the characteristics of the joint MLEs of the discontinuous 
signal parameters, we can apply the local additive 
approximation (LAA) method that is considered below. The 
LAA method allows us to reduce the problem of calculating 
the characteristics of the joint estimates of the 
discontinuous signal parameters to the simpler problem of 
finding the characteristics of the separate estimates of the 
corresponding parameters. At that, to get the characteristics 
of the separate MLEs of the discontinuous signal 
parameters, we apply the LMA method taking into account 
necessary generalizations. 

The additive-multiplicative representation of the 
moments of the logarithm of FLR is possible for a wide 
class of various signals parameters. For example, when 
estimating the parameters of the stochastic Gaussian pulse 
[4], [18]-[21] occurring in radio and hydrolocation, 
communications, radio astronomy, etc., such representation 
of the moments of the logarithm of FLR is carried out by 
time and frequency parameters of the pulse. These 
parameters include time of arrival, duration, moments of 
appearance and disappearance of the pulse as well as band 
center and bandwidth of the spectral density of its random 
substructure. 

Below, on the basis of the LAA method, the 
asymptotically exact (with SNR increasing) expressions are 
obtained for the characteristics of the joint MLEs of the 
discontinuous signal parameters, while the additive-
multiplicative representation of the moments of the 
logarithm of FLR by the estimated parameters is valid. To 
determine the MLEs characteristics, we find the probability 
distribution of the position of the absolute (greatest) 
maximum of the logarithm of FLR being the random field 
and calculate the statistical moments of this distribution 
[9]-[12]. 
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II. MAXIMUM LIKELIHOOD ESTIMATES AND LOCAL 
REPRESENTATIONS OF THE MOMENTS OF DECISION 

STATISTICS 
Let the mix ( )tx  of the information signal ( )0, lts  and the 
noise ( )tn  is passed to the input of the processing unit. 

Here plll 002010 ,,, =l  is the p-dimensional vector of the 

unknown signal parameters which is a priori unknown and 
possesses the values from the specified domain of the 
definition ℜ . Based on the observable realization ( )tx  and 
the available prior information, it is necessary to measure 
(estimate) the parameters il0 , pi ,,2,1 =  of the received 
signal ( )0, lts . 

We designate ( ) ( )plllLL ,,, 21 ≡l  the logarithm of FLR 

being the functional from observed data ( )tx  as the 

function of the current values plll ,,, 21 =l  of the 

unknown parameters 0l  [7]-[10]. Then, according to the 
definition [7]-[10], [12]-[14], the joint MLEs 

pmmm lll ,,, 21   of the parameters  plll 00201 ,,,   are the 

coordinates of the position of the absolute maximum of the 
logarithm of FLR ( )plllL ,,, 21   within the prior domain 

ℜ . As a result, the vector of the signal parameters joint 

MLEs pmmmm lll ,,, 21 =l  can be written in the form of 

 
( )ll

l
Lm

ℜ∈
= suparg . (1) 

 
The probability characteristics of the MLEs (1) are 

uniquely defined by the statistical properties of the decision 
statistics of the estimation algorithm, i.e. the logarithm of 
FLR ( )lL . Therefore, we will now consider the 
characteristics of the logarithm of FLR. 

Following [9]-[12], [16]-[19], we presuppose that the 
logarithm of FLR ( )lL  is Gaussian random field. We 
present the functional ( )lL  as the sum ( ) ( ) ( )lll NSL +=  of 

the signal (deterministic) component ( ) ( )ll LS =  and the 

noise (fluctuating) component ( ) ( ) ( )lll LLN −= , where 

 means the averaging over all the possible realizations 

of the logarithm of FLR under fixed true values of ℜ∈0l  
of the estimated signal parameters [9], [10], [18]. Then, 
while calculating the characteristics of the joint MLEs (1), 
we see that, as the logarithm of FLR has Gaussian 
character, we may confine its study to analyzing its first two 
moments – signal component ( )lS  and the correlation 

function ( ) ( ) ( )2121, llll NNK =  of the noise component 

( )lN . Here the designations are: jpjjj lll ,,, 21 =l , 

2,1=j . 
If any random variable is added to the logarithm of FLR, 

then the values of the MLEs do not change. Therefore, the 
estimates (1) can be always presented in the form of 

( )ll
l

∆=
ℜ∈
supargm , where ( ) ( ) ( ) ( )*

21 ,,, lll LLlll p −=∆≡∆   is 

Gaussian functional of the increments of the logarithm of 
FLR and **

2
*
1

* ,,, plll =l  is some fixed value of the vector 

of the parameters l. Therefore, when we calculate the 
characteristics of the MLEs (1) instead of the correlation 
function ( )2ll ,1K  of the logarithm of FLR ( )lL , we turn to 
the correlation function 

( ) ( ) ( )[ ] ( ) ( )[ ]221121  , llllll ∆−∆∆−∆=∆K  of its 

increments ( )l∆ . 
Let the signal component ( )lS  has a unique maximum in 

the point 0ll =  of the true values of the estimated signal 
parameters, while ( ) 00 >= lSAS  and the realizations of 
the noise component ( )lN  are continuous with the 
probability equal to 1. In practice, these conditions are 
usually satisfied [9]-[12], [17]. Then the output SNR for the 
estimation algorithm (1) can be written in the form of 

 

( ) ( ) NSANSz σ== 0
2

0 ll , (2) 

 
where ( )0

22 lNN =σ  is the dispersion of the noise 

component under 0ll = . We presuppose that SNR (2) is so 
big that the high posterior accuracy of the estimates can be 
achieved [9]-[11]. In this case, the MLEs ml  (1) are located 
in the small neighborhood of the point 0ll =  of the 
maximum of the signal component, and the estimate ml  
converges to 0l  in mean square [9], [10], [12]. Thus, to 
determine the characteristics of the MLEs (1), it is 
sufficient to study the behavior of the signal component 

( )lS  and the correlation function ( )21, ll∆K  of the 
increments of the logarithm of FLR in the small 
neighborhood of the point 0ll = . The size of this 
neighborhood decreases with SNR z increasing. 

It is well known that the analytical properties of the 
logarithm of FLR ( )lL  in the neighborhood of the point 

0ll =  depend on the fulfillment of the conditions of 
regularity of this functional by each of the estimated 
parameters il , pi ,,2,1 =  [9]-[14]. Therefore, we specify 
the local (in the small neighborhood of the point 0ll = ) 
representations of the first two moments of the logarithm of 
FLR while estimating the discontinuous signal parameters. 

Now we pass to the common class of the discontinuous 
parameters. For it the sections 

( ) ( ) ikpkllii kk
SlS

≠==
=  ,,,2,1 ,0 

l , pi ,,2,1 =  of the signal 

function ( )lS  by each of the parameters in the small 
neighborhood of the point 0ll =  of the maximum of the 
signal component allow the asymptotic representations 
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( )
( )
( )





≥δο+−−

<δο+−−
=

iiiiii

iiiiii
Sii lllld

lllld
AlS

002

001

  , 1

,   , 1
 (3) 

 
under 00 →−=δ iii ll . The corresponding sections 

( ) ( ) 2,1 , ,,,2,1 ,2121 0
,,

=≠==∆∆ = jikpklliii kjk
KllK


ll  of the 

correlation function ( )21, ll∆K  of the increments of the 
logarithm of FLR under 

( ) 0,,max 0
*

0201
* →−−−=δ iiiiiini llllll  take the form of 

 

( )

( ) ( )

( ) ( )













≥

δο++−−

<

δο++−−

=∆

, ,                                           

, ,min

, ,                                           

, ,min

,

021

*
2

*
2

*
12

021

*
1

*
2

*
11

21

iii

niiiiiii

iii

niiiiiii

iii

lll

CllllB

lll

CllllB

llK  (4) 

 
if ( )( ) 0 *

2
*

1 ≥−− iiii llll , while ( ) 0, 21 =∆ iii llK , 

( )( ) 0 *
2

*
1 <−− iiii llll . Here 0>kid , 0>kiB , 0≥kiC , 

2,1=k , pi ,,2,1 =  are some constants and ( )δο  denotes 
the higher-order infinitesimal terms compared with δ. From 
(3), (4), we can see that the moments of the decision 
statistics ( )l∆  are nondifferentiable by the discontinuous 
parameters at the point 0ll =  as the derivatives of the 
functions (3), (4) at this point have discontinuities of the 
first kind. This condition does not allow us to apply the 
small parameter method [7]-[9] to calculate the 
characteristics of the MLEs of the discontinuous signal 
parameters. 

We will notice that the correlation function ( )2ll ,1K  of 
the logarithm of FLR satisfies the expression (4), if, in 
particular, its sections 

( ) ( ) 2,1 , ,,,2,1 ,2121 0
 ,,

=≠==
= jikpklliii kjk

KllK


ll  under 

( ) 0,max 0201 →−−=δ iiiini llll  allow the following 
asymptotic representations: 

 
( ) ( ) ( )

( ) ( ) ( ). ,,
,,min,min,

0022011

021221121

niiiiiiii

iiiiiiiiii

Bllfllf
lllDllDllK

δο++++
++=

 (5) 

 
Here 01 >iD , 02 ≥iD , iB0  are some constants and the 
functions ( )ikiki llf 0, , 2,1=k  usually satisfy the condition 

( ) 0, 00 =iiki llf . In this case, in (4), we have iii DDB 211 += , 

ii DB 12 = . The representation (5) of the correlation function 
of the logarithm of FLR is frequently found when 
estimating the discontinuous power signal parameter such 
as, for example, duration, bandwidth, et. al. [10], [11], [17], 
[18]. 

Another example of the correlation function satisfying 
the expression (4) is the function with the sections allowing 
the asymptotic representation like this: 

 

( )
( ) ( )

( )( )
( )

( )( )













<−−

δο+−ρ−

≥−−

δο+−−−

−−ρ−

σ=

, 0                    
, 1

, 0                    
, ,min

1

,

0201

21

0201

0201

21

2
21

iiii

iiii

iiii

iiiiii

iii

Niii

llll
ll

llll
llllg

ll

llK  (6) 

 
where 0>σN , 0>ρi , 0≥ig . Then, in (4), we should set 

021 == ii CC , ( )iiNii gBB −ρσ== 22
21 . The representation 

(6) is frequently found when estimating the discontinuous 
non-power signal parameter such as, for example, time of 
arrival, band center [10]-[12], [18]-[22]. 

We find the expressions (3), (4) general enough and 
including a wide class of the discontinuous signal 
parameters. Assuming in (3), (4) that zAS = , ddki = , 

dBki 2= , 0=kiC , 2,1=k  we then obtain, as special case, 
the asymptotic representations of the moments of the 
normalized logarithm of FLR, while estimating the 
discontinuous parameters of quasi-deterministic signals, 
[10], [11], [16], [17]. We also see that the general 
expressions (3), (4) for the moments of the logarithm of 
FLR are valid when estimating the discontinuous 
parameters of the Gaussian pulse signals [18]-[21]. Such 
parameters may include time of arrival, duration, moments 
of appearance and disappearance of a pulse as well as band 
center and bandwidth of the spectral density of its random 
substructure. 

As a condition for applicability of the LAA method, we 
presuppose that the signal component ( )lS  and the 
correlation function ( )21, llK  of the logarithm of FLR ( )lL  
in the small neighborhood of the point 0ll =  allow the 
additive-multiplicative representations 

 

( ) ( )
( )

∑ ∑ ∏
= = +=

+

=
u

k

a

j

t

ti
iki

k kj

jk

lVS
1 1 1

1

  l , ( ) ( )
( )

∑ ∑ ∏
= =

θ

+θ=

+

=
r

k

v

j i
iiki

k kj

jk

llUK
1 1 1

2121

1

,  , ll , (7) 

 
where ( ) pttt kakk k

=<<<= +1210  , 

( ) pkvkk k
=θ<<θ<θ= +1210  . Here the derivatives of the 

functions ( )iki lV , ( )iiki llU 21 , , pi ,,2,1 =  are continuous 
on the left and on the right from the point il0 , but they can 
have discontinuities of the first kind at this point. 

In special case, when 1== kk va , from (7) we get 
 

( ) ( )∑ ∏
= =

=
u

k

p

i
iki lVS

1 1
 l ,     ( ) ( )∑ ∏

= =

=
r

k

p

i
iiki llUK

1 1
2121 , , ll . (8) 

 
If 1== kk va  and 1== ru , then the moments (7) 

factorize by the estimated signal parameters and allow the 
multiplicative representation 
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( ) ( ) ( )

( ) ( ) ( ) , ,,,

, 

1
21

1
21121

11
1

∏∏

∏∏

==

==

==

==

p

i
iii

p

i
iii

p

i
ii

p

i
ii

llKllUK

lSlVS

ll

l
  

 
where ( ) ( )iiii lVlS 1=  and ( ) ( )iiiiii llUllK 21121 ,, =  are the 
sections of the signal component and the correlation 
function of the noise component of the logarithm of FLR. 
Finally, under pva kk == , the additive-multiplicative 
representation (7) of the moments of the logarithm of FLR 
transforms into the additive representation 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ). 1,, ,

, 1 

2

1
21

1 1
2121

11 1

−σ−==

−−==

∑∑ ∑

∑∑ ∑

== =

== =

pllKllUK

pAlSlVS

N

p

i
iii

r

k

p

i
iiki

S

p

i
ii

u

k

p

i
iki

ll

l
 (9) 

  

III. THE CHARACTERISTICS OF THE MAXIMUM LIKELIHOOD 
ESTIMATES OF THE DISCONTINUOUS SIGNAL PARAMETERS 

Let us find the asymptotically exact (with SNR (2) 
increasing) expressions for the characteristics of the joint 
MLEs (1) of the discontinuous parameters il , pi 1=  
when the additive-multiplicative representation (7) of the 
moments of the logarithm of FLR holds. We presuppose 
that SNR (2) is so big that the high posterior accuracy of 
estimates is achieved [9], [10], [19]. For the calculation of 
the characteristics of the MLEs (1), it is sufficient to 
consider the local behavior of the moments of the logarithm 
of FLR ( )lL  in the small neighborhood of the point 0ll =  
[10], [18]. We expand the functions ( )iki lV  and ( )iiki llU 21 ,  
into the Taylor series on the left and on the right from the 
points il0 . By substituting these expansions in (7) and 
taking into account the summands of the first infinitesimal 
order by iδ  (or by niδ ) only, we then obtain 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

. 0maxunder                             

1,,

, 0maxunder                              

1

,,2,1

2

1
2121

,,2,1

1

→δ=δ

δο+−σ−=

→δ=δ

δο+−−=

=

=

=

=

∑

∑

ni
pi

n

nN

p

i
iii

i
pi

S

p

i
ii

pllKK

pAlSS





ll

l

 (10) 

 
Thus, the moments of the logarithm of FLR ( )lL  allow the 
locally additive representation (10) in the small 
neighborhood of the point 0l . 

Now we introduce ( )ii lM , pi ,,2,1 =  that are the 
statistically independent Gaussian random processes for 
which the mathematical expectations ( )iMi lS  and the 
correlation functions ( )iiMi llK 21 ,  in the neighborhoods of 
the points ii ll 0=  are expressed in the form of 

 
( ) ( ) ( )
( ) ( ) ( ) . 1,,

, 1
2

2121 ppllKllK

ppAlSlS

NiiiiiMi

SiiiMi

−σ−=

−−=
 (11) 

 
Here the functions ( )ii lS  and ( )iii llK 21 ,  satisfy the 
conditions (3), (4). Then, according to (10), we get the 
random field ( )lL  that converges in distribution to the sum 

( ) ( )∑
=

=
p

i
ii lMM

1
l  of the statistically independent random 

processes ( )ii lM  under 0→δ . As it is noted above, the 
characteristics of the MLEs (1) under the big SNR z are 
defined by the behavior of the logarithm of FLR ( )lL  in the 
small neighborhood of the point 0ll = . The size of this 
neighborhood vanishes, if ∞→z . We assume that SNR z 
is so big and the sizes iδ  of the specified neighborhoods of 
the points ii ll 0=  are so small that, within the intervals 

[ ]iiiii lll δ+δ−∈ 00 , , the representations (11) of the 
moments of the random processes ( )ii lM  are valid. Then 
the joint probability density ( )plllW ,,, 21   of the estimates 

pmmm lll ,,, 21   (1) can be approximated by the product 
 

( ) ( )∏
=

=
p

i
iip lWlllW

1
21 ,,,   (12) 

of the probability densities ( )ii lW  of the separate estimates 
 

[ ]
( )ii

lll
ir lMl

iiiii δ+δ−∈
=

00 ,
suparg ,     pi ,,2,1 = . (13) 

 
Here iδ  is the size of the neighborhood of the points ii ll 0=  
and 0→δi  while ∞→z . The accuracy of the 
representations (12), (13) under the fixed iδ  increases with 
SNR z. 

Thus, the characteristics of the joint MLEs iml  (1) of the 
discontinuous parameters il0  coincide asymptotically (with 
SNR increasing) with the corresponding characteristics of 
the separate estimates irl  (13) of the same parameters. 

In order to find the characteristics of the separate 
estimates irl  (13) of the discontinuous signal parameters, 
we apply the LMA method [10], [11], [19]. In [10], [11], 
[19], by means of the LMA method, the asymptotically 
exact (with SNR increasing) expressions are obtained for 
the distribution function of the single MLE of the 
discontinuous parameter of quasi-deterministic or stochastic 
signal as well as for the conditional bias and variance of the 
estimate. In this, it is considered that the mathematical 
expectation and the correlation function of the logarithm of 
FLR allow the representations (3), (4), where zAS = , 

ddki = , dBki 2= , 0=kiC , 2,1=k . Further we will obtain 
the asymptotically exact expressions for the characteristics 
of the estimates irl  (13) in a general case when the 
coefficients 0>kid , 0>kiB , 0≥kiC  in (3), (4) are 
arbitrary. 
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Let us introduce Gaussian random processes 
( ) ( ) ( )*

iiiiii lMlMl −=∆ , [ ]iiiii lll δ+δ−∈ 00
* ,  with 

mathematical expectations ( ) ( )*
iiii lSlS −  and correlation 

functions ( )iii llK 21 ,∆ . In this case, the distribution function 
of the estimate irl  (13) can be presented in the form of [10], 
[11], [19] 

 
( ) [ ]

[ )
( )

[ ]
( )] supsup[

0
**

0 ,,

**
ii

lll
ii

lll
iirii llPllPlF

iiiiiiii

∆>∆=<=
δ+∈δ−∈

,  

 
where [ ]AP  is the probability of the event A. From (4), it 
follows that the segments of the realizations of the random 
processes ( )ii l∆  within the intervals [ )*

0 , iii ll δ− , 

[ ]iii ll δ+0
*,  are not correlated, and therefore they are 

statistically independent, as being Gaussian. Then [10], 
[11] 

 

( ) ( ) ( ) ( ) ( )∫∫
∞∞

−==
0

21
0

12
* d 1d uPuPuPuPlF iiiiii , (14) 

 
where 
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 (15) 

are the distribution functions of the absolute maxima of the 
random process ( )ii l∆  within the intervals [ )*

0 , iii ll δ−  and 

[ ]iii ll δ+0
*, , respectively. In (14), we take into account that 

( ) 0sup ≥∆ ii l , therefore, ( ) 01 =uPi  and ( ) 02 =uP i , if 
0<u . 

Now we need to obtain the expression for the function 
( )uP i2 , 0≥u  (15). For this purpose, we introduce the 

random processes ( ) ( )iiii lulr ∆−= . By applying the Doob’s 
theorem [25] in the Kailath’s wording [26] and taking into 
account the representations (3), (4) of the moments of the 
logarithm of FLR, we can show that the random processes 

( )ii l∆  and ( )ii lr  are the Gaussian Markov random 
processes of the diffusion type [24], [25] within the interval 

[ ]iii ll δ+0
*, . According to (3), (4), under *

ii ll > , the drift 

i1Γ  and the diffusion i2Γ  coefficients of the processes ( )ii lr  
are equal to 
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 (16) 

 
Through applying Markov properties of the process ( )ii lr  

as described in [24], we express the probability ( )uP i2  (15) 
in the form of 

 

( ) ( )
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∞
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δ+=>=
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0
,

2 d ,] 0[
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, (17) 

 
where ( )lxWri ,  is the solution of the direct Fokker-Planck-
Kolmogorov equation [25] 
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with the coefficients (16) under the starting condition 

( ) ( )uxlxW iri −δ=*,  and the boundary conditions 
( ) 0,0 =lWri , ( ) 0, =∞ lWri . Here ( )xδ  is the delta-function. 

After solving the equation (18) similarly [10], [11], [18], 
[19] and substituting the found solution into the formula 
(17), we obtain 
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under  iiii lll 0

*
0 <≤δ−  and 
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under iiii lll δ+≤≤ 0
*

0 . Here ( ) ( )∫ ∞−
π−=Φ

x
ttx 2d 2exp 2  

is the probability integral. 
It is not difficult to show that the probability ( )uPi1  (15) 

is also determined from (19), (20) where the coefficients 
jid , 2,1=j  should be changed for ( )ijd −3 , the coefficients 

jiB , 2,1=j  – for ( )ijB −3  and the difference *
0 ii ll −  – for 

ii ll 0
* − . 

Then we substitute the expressions (19), (20) that have 
been produced for the probabilities ( )uPi1  and ( )uP i2  in the 
formula (14) and find the conditional (under the fixed il0 ) 
distribution functions ( )ii lF  of the estimates irl  (13): 
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where 
 

( ) ( )

( ) ( ) ( )

( )
( )

( )( )
( )

( ) , dd 2exp

2
exp2

2exp2z
2

exp2exp

2
exp

2
1,,,

2
2

2

2
11

11i

2
1

1

0 0

2
1

21

ζ


























δ

ζχ−δ
Φζχ−−















δ

ζχ+δ
Φ×

×


















−δ

+−δ
−

−δπ
+















−δ

−−δ
Φ×









×−
















 ζ−−
−−







−










 ζ−−
−

π
=χΨ ∫ ∫

∞ ∞

uzzz

l
ulz

ll

ulz

uz
l
lzu

uz

l
lzu

l
zzl

i

iii
ii

i

iii

ii

iii

iiii

iii

i
i

ii
i

i

ii

i
iiii

  

 
and iiSi BdAz 111 = , iiSi BdAz 222 = , iii BB 21=χ . 

In practical calculations, the expression (21) appears to 
be rather complicated and inconvenient. In this connection, 
we take into account that the ratios iz1  and iz2  in (21) are 
the values of z order. By assuming that SNR z is very big, 
similarly to [10], [19], [24] we find the asymptotic 
expressions for the conditional (under the fixed il0 ) 
probability densities ( )ii lW  of the estimates (13): 
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where iiiiiiii zzdBdBR 121221 χ== . The accuracy of the 
expression (22) increases with SNR z (with the ratios iz1  
and iz2 ). 

Thus, the joint probability density of the MLEs 
pmmm lll ,,, 21   (1) is presented in the form of the product 

(12) of the probability densities (22) of the estimates (13). 
We apply the distributions (22) and find the conditional 

biases iimi llb 0−=  and variances ( )2
0iimi llV −=  of the 

estimates (1) as well as the third-order and the four-order 

moments ( )30iimi llY −=  and ( )4
0iimi llQ −=  of the 

errors of these estimates: 
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The accuracy of the formulas (23), (24) increases with SNR 
z (with iz1 , iz2 ). 

The formulas (22)-(24) become significantly simpler, if 
iii ddd == 21 , iii BBB == 21 . In this case, in (22) 

iiSiii BdAzzz === 21 , 1=iR  and the probability 

densities ( )ii lW  of the estimates (13) take the form of 
 
( ) ( )iiiiii llzWzlW 0

2
01

2 2 2 −= ,      pi ,,2,1 = , (25) 

( ) ( ) ( ) ( )[ ] 231  2exp31201 xxxxW Φ−+−Φ= ,  

 
while the moments (23), (24) are being written as 

 
0=ib ,  4813 ii zV = ,  0=iY ,  8321143 ii zQ = . (26) 

 
During the estimation of the discontinuous parameters of 

the quasi-deterministic signal we still have zzi =  [10], 
[11], [19] and the expressions (26) get the following form: 

0=ib , 4813 zVi = , 0=iY , 8321143 zQi = . 
It is well known that the probability distributions of the 

joint MLEs of the regular signal parameters are the 
asymptotically Gaussian ones under ∞→z  [9], [12]-[15]. 
From (22), it follows that the asymptotic distributions of the 
MLEs of the discontinuous signal parameters differ 
significantly from the Gaussian distribution. In particular, 
the coefficients of skewness i1γ  and excess i2γ  of the 
distribution (22) are equal to 
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and not equal to null, in general case. Here 

( )kimimki ll −=ε  is the central k-th moment of the 

distribution (22). For example, under 1=iR , zzz ii == 21 , 
we get 527.1016917792 ≈=γ i . 

It should be noted that the moments of the random 
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processes ( ) ( ) ( )*
iiiiii lMlMl −=∆  in the neighborhoods of 

the points ii ll 0=  coincide with the corresponding moments 
of the random processes ( ) ( ) ikpkllimi kk

l
≠==

∆=∆  ,,,2,1 ,0 
l  

being the sections of the functional of the increments 
( ) ( ) ( )*lll LL −=∆  of the functional of FLR by the planes 

passing through the point 0ll = . Therefore, the statistical 
characteristics of both the estimates irl  (13) and the joint 
MLEs iml  (1) coincide asymptotically (under SNR z 
increasing) with the characteristics of the separate MLEs of 
the signal parameters il0 . It conforms to the similar 
conclusions drawn in [27]. 

IV. THE APPLICATION OF THE LOCAL ADDITIVE 
APPROXIMATION METHOD FOR DETERMINING THE 

CHARACTERISTICS OF THE ESTIMATED SIGNAL PARAMETERS 

A. The Joint Estimates of the Time of Arrival and the 
Duration of the Video Pulse 

As the first example of the application of the LAA method, 
we consider the joint MLEs of the time of arrival 0λ  and 
the duration 0τ  of the rectangular video pulse with the 
amplitude a [8], [9], [17]: 
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observed against the Gaussian white noise ( )tn  with the 
one-sided spectral density 0N . 

According to [8], [9], [17] the logarithm of FLR for the 
realization of the observable data 

 
( ) ( ) ( )tntstx +τλ= 00 ,,  (28) 

 
against alternative ( ) ( )tntx =  is of the form 
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N
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N
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τ+λ
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. (29) 

 
Here λ, τ are the current values of the unknown parameters 

0λ , 0τ . 
Let the time of arrival and the duration of the pulse (27) 

possess the values from the prior intervals [ ]210 , ΛΛ∈λ  
and [ ]210 ,ΤΤ∈τ . Then the joint MLEs mλ  and mτ  of the 
time of arrival and the duration of the pulse are the 
coordinates of the position of the absolute maximum of the 
functional (29) within the intervals [ ]21,ΛΛ∈λ , 

[ ]21,ΤΤ∈τ , i.e. 
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[ ] [ ]

( )τλ=τλ
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,suparg,
2121 ,,,

Lmm . (30) 

 

By applying the LAA method, we find the characteristics 
of the joint MLEs mλ  and mτ . For this purpose we present 

the functional (29) as the sum of signal ( ) ( )τλ=τλ ,, LS  

and noise ( ) ( ) ( )τλ−τλ=τλ ,,, LLN  components: 

( ) ( ) ( )τλ+τλ=τλ ,,, NSL . Performing averaging (29) over 
all the possible realizations of the observed data (28), for 
the signal component we find 
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Here 00

22
0 2 Naz τ=  is the output SNR (2) for the 

algorithm (30) [9], [10]. The noise component ( )τλ,N  is 
the Gaussian centered random field, its correlation function 
is equal to 
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In (30)-(32) we pass to the new parameters 
 

21 τ−λ=θ ,      22 τ+λ=θ . (33) 
 
Then the expressions (31), (32) are overwritten as follows 
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where ( ) ( )xxC −= 1,0max , 20001 τ−λ=θ , 

20002 τ+λ=θ , 0
~

τθ=θ kk , 0
~

τθ=θ jkjk , 2,1,0=j , 

2,1=k . 
From (34) we can see that the derivatives of the 

logarithm of FLR (29) by the current values 1
~
θ , 2

~
θ  of the 

normalized moments of appearance 01
~
θ  and disappearance 

02
~
θ  of the pulse (27) have discontinuities of the first kind 

at the point 011
~~
θ=θ , 022

~~
θ=θ . Therefore, the moments of 

appearance 01θ  and disappearance 02θ  of the pulse (27) 
are the discontinuous parameters. In the conditions of high 
posterior accuracy, when 12

0 >>z , the sections 

( ) ( )02111 ,~
θθ=θ SS , ( ) ( )20122 ,~

θθ=θ SS  and 

( ) ( )020221112111 ,,,~,~
θθθθ=θθ KK , 

( ) ( )221201012212 ,,,~,~
θθθθ=θθ KK  of the signal component  

and the correlation function  (34) by the variables 1
~
θ , 2

~
θ  

allow the representations (3), (5), where 
22

0zAS = ,    121 == ii dd ,    01 zD i = ,     02 =iD ,  
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( ) ( )10100111
~~~,~

kkk zf θ−θ=θθ ,   ( ) 0~,~
0222 =θθkkf ,   2,1=k ,      

( )0102001
~2~
θ−θ= zB ,      01002

~
θ−= zB . 

It should be also noted that the moments (34) of the 
decision statistics (29) allow the additive representation (9), 
where 2=p , 0

2 zN =σ . 
Thus, all the applicability conditions for the LAA 

method are satisfied and the asymptotic characteristics of 
the MLEs  m1θ , m2θ  of the moments of appearance 01θ  
and disappearance 02θ  of the pulse (27) can be determined 

from (25), (26). Assuming in (26) that 22
0

2 zzi = , for the 

conditional biases 0111 θ−θ= mb , 0222 θ−θ= mb  and 

variances ( )2
0111 θ−θ= mV , ( )2

0222 θ−θ= mV  of the 

estimates m1θ , m2θ  we get 
 

021 == bb ,      4
0

2
021 26 zVV τ== . (35) 

 
The estimates m1θ , m2θ  are the statistically independent 

ones and, according to (33), they are related to the 
estimates (30) by the linear transformations: 

( ) 221 mmm θ+θ=λ , mmm 12 θ−θ=τ . Thus, taking into 
account (35), for the conditional biases and variances of 
MLEs mλ , mτ , we can write 

00 =λ−λ=λ mb , 

( ) ( ) 4
0

2
021

2
0 134 zVVV m τ=+=λ−λ=λ , 

(36) 

00 =τ−τ=τ mb ,  ( ) 4
0

2
021

2
0 52 zVVV m τ=+=τ−τ=τ . 

From (36) it follows that the variances of the joint 
estimates (30) is two times higher than the variances of the 
corresponding separate estimates [12], [28], i.e. there is a 
statistical dependence between the estimates mλ  and mτ  
[17]. 

In order to establish the limits of applicability of the 
asymptotically exact formulas (36) for the characteristics of 
the estimates mλ  and mτ , computer simulation of the 
algorithm (30) has been carried out for the case that 

2011 τ=Τ=Λ , 23 022 τ=Τ=Λ , ( ) 2210 Λ+Λ=λ , 
( ) 2210 Τ+Τ=τ . During the simulation, the samples of the 

Gaussian random field (29) have been formed on the 
uniform two dimensional grid with the discretization step 

0
310 τ− , as it is described in [29]. Thus the mean-root-

square error of stepwise approximations of continuous field 
realizations does not exceed 10 %. The number of 
processed realizations of the random field (29) was taken 
equal to 410 . As a result, with probability of 0.9 confidence 
intervals boundaries deviate from experimental values no 
more than for 5...10 %. 

In Fig. 1, curve 1 represents dependence (36) of the 
normalized variance 2

0
~

τ= λλ VV  of the estimate mλ  from 
SNR 0z  (31), while curve 2 shows analogous dependence 

of the normalized variance 2
0

~
τ= ττ VV  of the estimate mτ . 

The experimental values of the variances λV~ , τV~  are 
designated by squares and crosses, respectively. 

 
As it follows from Fig. 1, theoretical dependences (36) 

for the variances of the estimates (30) well approximate 
experimental data, if SNR 50 ≥z . Under 50 <z  the 
theoretical dependences for λV , τV  (36) deviates from 
experimental data as the formulas (36) have been obtained 
without considering the finite lengths of the prior definition 
intervals [ ]21, ΛΛ , [ ]21,ΤΤ  of the parameters 0λ , 0τ . If 
necessary, a more accurate calculation of the theoretical 
values of the variances of the estimates can be made on the 
basis of the probability densities (25) using numerical 
integration formulas, as it is described, for example, in 
[30]. 
 

B. The Joint Estimates of the Time of Arrival and the 
Band Center of the Stochastic Radio Pulse 

As the second example of the application of the LAA 
method, we consider the joint MLEs of the time of arrival 

0λ  and the band center 0ν  of the stochastic radio pulse 
[18]-[21] 

 
( ) ( ) ( )[ ]τλ−ξ=νλ 000  ,, tItts . (37) 

 
Here ( )xI  is the unit duration indicator (27), τ is the pulse 
duration, ( )tξ  is the high-frequency stationary centered 
Gaussian random process possessing the spectral density 

 
( ) ( ) ( )[ ] ( )[ ]{ }   2 00 Ωω+ν+Ωω−νγ=ω IIG . (38) 

 
In (38), the designations are: γ is the intensity, Ω is the 
bandwidth of the spectral density.  

As before, we assume that the interferences and the 
registration errors are approximated by the Gaussian white 
noise ( )tn  with the one-sided spectral density 0N , so that 
the mix 

 

 
Fig. 1.  The theoretical and experimental dependences of the variances of 
the estimates of the time of arrival and the duration of the video pulse. 
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( ) ( ) ( )tntstx +τλ= 00 ,,  (39) 
 
is available to observation. In addition, we presuppose that 
the correlation time of the process ( )tξ  is much less than 
the pulse (37) duration τ, i.e. the following condition is 
satisfied: 

 
12 >>πΩτ=µ . (40) 

 
As the examples of the signals described by the stochastic 

model (37), (38), (40) there can serve the reflected location 
signal, the radio pulse distorting by modulating 
interference, the signals in spectroscopy and astronomy [4], 
[8], [31], etc. The random signals (37) can be used as the 
noise carrier in data communication systems [32]. 

If the condition (40) holds, then the logarithm of FLR 
( )νλ,L  as the function of the current values λ, ν of the 

signal estimated parameters 0λ , 0ν  can be presented in the 
form of [18], [33] 

 

( ) ( )
( ) ( )q

qN
qML +µ−

+
νλ

=νλ 1ln
1

,,
0

, ( ) ( )∫
τ+λ

τ−λ

ν=νλ
2

2

2 d ,, ttyM , (41) 

 

where 0Nq γ= , ( ) ( ) ( )∫
∞

∞−
′ν′−′=ν ttthtxty d , ,  is the 

response of the filter with pulse transition function ( )ν,th  
to the observed realization (39), while the transfer function 

( )νω,H  of this filter satisfies the condition 

( ) ( )[ ] ( )[ ]Ωω+ν+Ωω−ν=νω IIH 2, . Then the joint 

MLEs mλ  and mν  of the time of arrival and the band 
center of the pulse (37) are determined as follows 

 
( )

[ ] [ ]
( )νλ=νλ

ΥΥ∈νΛΛ∈λ
,suparg,

2121 ,,,
Mmm .  (42) 

 
Here [ ]21, ΛΛ , [ ]21,ΥΥ  are the prior intervals of the 
possible values of the estimated parameters 0λ , 0ν . 

In order to find the characteristics of the joint MLEs mλ  
and mν , we apply the LAA method. Firstly we introduce 
the designations: τλ=η , τλ=η jj , Ων=κ , 

Ων=κ jj , 2,1,0=j . Then we present the functional 

( )νλ,M  (41) as the sum ( ) ( ) ( ) BNSM +κη+κη=νλ ,,, , 

where ( ) ( ) BMS −Ωκητ=κη ,,  is the signal component, 

( ) ( ) ( ) BSMN −κη−Ωκητ=κη ,,,  is the noise component 
and 0NB µ=  is the inessential summand. In fulfilling (40), 
similarly to [18], [20], we obtain 

 
( ) ( ) ( )000, κ−κη−η=κη CCSS ,  (43) 

 
where 00 qNS µ=  and the function ( )xC  is determined in 
the same way as in (34). 

The noise component ( )κη,N  is the asymptotically 
(under ∞→µ ) Gaussian centered random field [18]. 
Therefore, while the condition (40) holds, we merely 
consider the correlation function of the noise component: 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) , ,,,,
,,,,,

212100210211

22112121

κ−κη−η+κκκηηη=

=κηκη=κκηη

CCDRRD
NNK

  (44) 

 
where 2

00 ND µ= , ( ) 2
01 2 NqqD +µ= , 

( ) ( )[ ] ,,max1 ,0 max,, 020121021 xxxxxxxxxR −−−−= . 

According to  (43) the signal component ( )κη,S  tops 
under 0η=η , 0κ=κ , i.e. in the point of the true values of 
the time of arrival and the band center of the received 
pulse. Then, the output SNR (2) takes the form of 

 
( ) ( )22

01
2
0

2 1 qqDDSz +µ=+= .  (45) 
 

From  (43),  (44), it follows that the derivatives of the 
moments of decision statistics ( )νλ,M  (41) by the 
normalized variables η and κ have discontinuities of the 
first kind at the point 0η=η , 0κ=κ . Therefore, the time 
of arrival and the band center of the stochastic pulse (37) 
are the discontinuous parameters. When 12 >>z  (45), the 
sections ( ) ( )01 , κη=η SS , ( ) ( )κη=κ ,02 SS  and 

( ) ( )0021211 ,,,, κκηη=ηη KK , ( ) ( )2100212 ,,,, κκηη=κκ KK  
of the signal component  (43) and the correlation function 
of the noise component (44) by the current values of the 
time of arrival and the band center allow the 
representations (3), (6), where 

 
( )

( ) ( ) .12, 1

,1,1, 
22

1

22
001

2
210

qqqDgg

qNDDddSA

Nii

NiiS

++=σ===ρ

+µ=+=σ===
  (46) 

 
As it can be seen, the moments  (43),  (44) of the 

decision statistics (41) allow the additive-multiplicative 
representation (8), where 1=u , 2=r , 2=p , 

( ) ( )00111 η−η= CSlV , ( ) ( )0212 κ−κ= ClV , 
( ) ( )0211211111 ,,, ηηη= RDllU , ( ) ( )210211121 , η−η= CDllU , 
( ) ( )021221212 ,,, κκκ= RllU , ( ) ( )21221222 , κ−κ= CllU . 
Thus, all the applicability conditions for the LAA 

method are satisfied and the asymptotic characteristics of 
the MLEs  mλ  and mν  can be determined from (25), (26). 

Assuming in (26) that ( )gzzi −= 222 , we get the 
conditional biases and variances of the joint MLEs of the 
time of arrival and the band center of the stochastic pulse 
(37): 

 

( ) ( )

( ) ( ) ,8213  , 0

,8213  , 0

4222
0202

4222
0101

zgVb

zgVb

mm

mm

−Ω=ν−ν==ν−ν=

−τ=λ−λ==λ−λ=
 (47) 
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where SNR z and the parameter g are determined from  
(45),  (46). The accuracy of the formulas (47) increases 
with SNR  (45). 

In order to establish the limits of applicability of the 
asymptotically exact formulas (47) for the characteristics of 
the estimates mλ , mν , computer simulation of the 
algorithm (42) has been carried out. During the simulation, 
following the procedure described in [29], the samples of 
the Gaussian random field with mathematical expectation 
(43) and correlation function (44) have been formed with 
the discretization step 01.0=∆t  by the variables η and κ. 
In this case, the mean-root-square error of stepwise 
approximations of continuous field realizations does not 
exceed 15 %. Thus one has the normalized estimates 
determined as the coordinates of the greatest field sample 
within the area of variables [ ]1,0 m∈η , [ ]2,0 m∈κ , where 

( ) τΛ−Λ= 121m , ( ) τΥ−Υ= 122m . Based on processing 

no less than 410  realizations of the random field, the 
sample characteristics of the estimates mη , mκ  have been 
calculated. 

In Fig. 2, for 1.0=q , 1021 == mm , 2100 m=τλ=η , 
2200 m=Ων=κ  the experimental values of the 

normalized variance 2
11

~
τ= VV  of the estimate mλ  in the 

absence of anomalous errors [19] are shown by squares. 
Note that they practically coincide with the similar values 
of the normalized variance 2

22
~

Ω= VV  of the estimate 

mν . By solid line there is represented the corresponding 

theoretical dependence ( ) ( ) 2
2

2
1

~
Ω=τ= zVzVV  of the 

normalized variances of the estimates (42) calculated by the 
formulas (47). 

 
From the simulation results it follows that the 

asymptotically exact expressions for the characteristics of 
the estimates (42) satisfactorily approximate the 
experimental data, if 25.1 >z . Thus, since in practice, 
for high quality operation of the receiver it is necessary to 
provide an output signal-to-noise ratio of about 10 or 
greater, the formulas (36), (47) and their generalizations 
(23), (26) can be used to calculate the characteristics of the 
corresponding measurers without significant limitations. 

It should be also noted that there is a number of other 
examples of the application of the LAA method for 
calculating the characteristics of the joint MLEs of the 
discontinuous time and frequency parameters of the 
stochastic pulse. Thus, in [34], the task is considered of 
determining the joint MLEs of time of arrival, duration, 
band center and bandwidth of the high-frequency pulse 
(37), while in [35] the joint MLEs are studied of time of 
arrival, duration and bandwidth of the low-frequency 
Gaussian random pulse. 

V. CONCLUSION 
In order to determine the performance of the optimal 
(maximum likelihood) measurers of the signals with the 
unknown discontinuous parameters, the method based on 
the additive-multiplicative representation of the moments of 
the decision statistics (the method of locally additive 
approximation) can be used. With the help of the specified 
approach, the closed analytical expressions can be found for 
the characteristics of the estimates of the discontinuous 
quasi-deterministic and Gaussian random signals observed 
against Gaussian interferences. These expressions 
adequately describe the corresponding experimental data in 
a wide range of the output signal-to-noise ratios. The 
obtained results make it possible to theoretically evaluate 
the practical application appropriateness of the particular 
algorithms for processing the discontinuous signals in each 
specific case.  
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