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Characteristics of the Signal Parameters Joint
Estimates under the Violation of the Decision

Statistics Regularity Conditions
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Alexander A. Makarov

Abstract—We study the problem of the measurement of the
quasi-deterministic or stochastic signal with the unknown
discontinuous parameters against Gaussian interferences.
Our goal is to determine the characteristics of the joint
maximum likelihood estimates of the unknown parameters
under the violation of the decision statistics regularity
conditions. For this purpose, we introduce the local additive
approximation method. According to this method, the decision
statisticc being a multidimensional random field is
represented in the form of the sum of the products of the
independent Markov random processes. Such representation
proves to be valid in the small neighborhood of the point of
the true values of the unknown parameters. Further, by
applying the Markov random processes technique, it is
possible to obtain the asymptotic analytical expressions for the
probability density and the conditional moments of the
resulting estimates. The accuracy of the specified formulas
increases with the signal-to-noise ratio. Finally, we illustrate
how the local additive approximation method can be applied
when analyzing the performance of the two receiving devices:
the measurer of the time of appearance and the duration of
the quasi-deterministic video pulse and the measurer of the
time of appearance and the band center of the Gaussian radio
pulse. By means of statistical computer simulation, it is
established that the application of this method allows
obtaining the closed formulas for the accuracy characteristics
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of discontinuous signal measurers which are operable in a
wide range of signal-to-noise ratios.

Index Terms—Discontinuous signal parameter, maximum
likelihood method, local Markov approximation method, local
additive approximation method, accuracy characteristics of
estimate

I. INTRODUCTION

In various fields of physics and engineering, there is a
problem of measurement (estimation) of the parameters of
the information signals or images observed against random
interferences [1]-[3]. The signal parameters estimation
problem is of particular importance in radio physics, radio
astronomy, hydro acoustics, seismology and geology, as
well as in many radio engineering applications, such as
radio  communication, radio  control, telemetry,
radiolocation and radio navigation. Technical diagnostics
and process control are also the fields where this problem is
a challenge [4]-[8]. One of the most common methods of
synthesizing the algorithm for estimating the parameters of
the signals against interferences is the maximum likelihood
(ML) method [7]-[10]. Application of ML method allows us
to obtain both simple and sufficiently effective algorithms
for the estimation of the information signal parameters. A
special advantage of such algorithms is that they require
minimum amount of prior information. However, the final
conclusion about the appropriateness of the maximum
likelihood estimates (MLEs) application for the solution of
the certain practical tasks should be made only on the basis
of the analysis of the estimate characteristics.

To a great extent, the very possibility of the practical
application of the common methods for calculating the
characteristics of the joint estimates of the signal
parameters depends upon the analytical properties of the
decision statistics of the examined algorithm. In particular,
when analyzing the accuracy of MLEs, what we consider to
be a fundamental characteristic is the regularity of the
logarithm of the functional of the likelihood ratio (FLR) as
the function of the estimated signal parameters, which is
the decision statistics in this case [9]-[15]. That means that,
if, at least, the second derivatives of the first two moments
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of the logarithm of FLR by the specified parameter exist,
then the logarithm of FLR is regular by this parameter [9]-
[14]. The signal parameters that satisfy these conditions of
regularity are called the regular ones [10], [11]. By
applying the small parameter method [7]-[9] or the
Ibragimov-Has’minskii method [12]-[15] we can find the
asymptotically exact (with increasing the signal-to-noise
ratio (SNR)) expressions for the characteristics of the joint
MLEs of the regular parameters of the signal observed
against Gaussian noise.

At the same time, there is a wide class of the signals
commonly known as discontinuous, or nonanalytical [10]-
[14]. By certain discontinuous signal parameters the
conditions of regularity for the logarithm of FLR are not
satisfied. Following [11]-[16] we will call such parameters
the discontinuous ones. The simplest examples of the
discontinuous parameters are the time of arrival and the
duration of rectangular video and radio pulses, the band
center of the signal with the uniform band spectrum, the
time delay of some discrete complex signals, etc. [11], [14],
[17]-[21]. The small parameter method [7]-[9] cannot be
applied to find the MLEs characteristics of the
discontinuous parameters, because it presupposes the
regularity of the logarithm of FLR. Otherwise, we may get,
for example, the zero value of the variance of the
discontinuous parameter estimate and a number of other
incorrect results.

In order to calculate the asymptotically exact (with SNR
increasing) expressions for the MLEs characteristics of the
discontinuous signal parameter, the local Markov
approximation (LMA) method can be used [10], [11], [19].
The idea of the LMA method is to approximate the
logarithm of FLR, or its increment, by Markov or local
Markov random process. Then, by applying the
mathematical apparatus [24] of the Markov processes
theory, we can obtain the asymptotically exact expressions
for the MLEs characteristics of the discontinuous signal
parameters, including the anomalous effects. However, the
LMA method is only applicable for calculating the
characteristics of the separate MLEs of the discontinuous
signal parameters. Here the separate estimate refers to the
estimate found in case when other discontinuous signal
parameters are a priori known. The LMA method does not
apply, if we calculate the characteristics of the joint
estimates of several discontinuous parameters.

In practice, signal processing is implemented, as a rule,
in the conditions of prior uncertainty when we are unaware
of both the informative signal parameters to be estimated
and some other (spurious) parameters. Then we have to
carry out a joint estimation of several unknown signal
parameters which may be discontinuous. In [16], [22], the
procedure is proposed that makes it possible to calculate the
asymptotic (with SNR increasing) characteristics of the
joint MLEs of one discontinuous and several regular
parameters. In [13]-[15], based on the Ibragimov-
Has’minskii method generalized by Y.A. Kutoyants, the
procedure is presented that helps to describe how the joint
Bayesian and ML estimates of the discontinuous parameters

converge in the distribution by the specified random
variables. The said approach also provides determining the
rate of this convergence under SNR tending to infinity.
However, the universal methods for obtaining the analytical
expressions for the characteristics of the joint MLEs of the
several discontinuous signal parameters are still unknown.
At present, the approximate formulas for the characteristics
of the joint estimates of the discontinuous parameters can
be obtained for certain special tasks only [17], [20], [23].
That is why it is difficult to analyze and compare the
performance of measuring systems when using the
discontinuous signal models.

The specified difficulties faced while calculating the
characteristics of the joint MLEs of the discontinuous
signal parameters can be overcome, if the moments of the
logarithm of FLR allow the additive-multiplicative
representation. In this case, the mathematical expectation,
the correlation function and some other moments of the
logarithm of FLR are expressed as the sums of the finite
number of summands, each of which is the product of the
functions of one parameter only. Then, in order to find the
asymptotically exact (with SNR increasing) expressions for
the characteristics of the joint MLEs of the discontinuous
signal parameters, we can apply the local additive
approximation (LAA) method that is considered below. The
LAA method allows us to reduce the problem of calculating
the characteristics of the joint estimates of the
discontinuous signal parameters to the simpler problem of
finding the characteristics of the separate estimates of the
corresponding parameters. At that, to get the characteristics
of the separate MLEs of the discontinuous signal
parameters, we apply the LMA method taking into account
necessary generalizations.

The additive-multiplicative representation of the
moments of the logarithm of FLR is possible for a wide
class of various signals parameters. For example, when
estimating the parameters of the stochastic Gaussian pulse
[4], [18]-[21] occurring in radio and hydrolocation,
communications, radio astronomy, etc., such representation
of the moments of the logarithm of FLR is carried out by
time and frequency parameters of the pulse. These
parameters include time of arrival, duration, moments of
appearance and disappearance of the pulse as well as band
center and bandwidth of the spectral density of its random
substructure.

Below, on the basis of the LAA method, the
asymptotically exact (with SNR increasing) expressions are
obtained for the characteristics of the joint MLEs of the
discontinuous signal parameters, while the additive-
multiplicative representation of the moments of the
logarithm of FLR by the estimated parameters is valid. To
determine the MLEs characteristics, we find the probability
distribution of the position of the absolute (greatest)
maximum of the logarithm of FLR being the random field
and calculate the statistical moments of this distribution

[9]-[12].
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II. MAXIMUM LIKELIHOOD ESTIMATES AND LOCAL
REPRESENTATIONS OF THE MOMENTS OF DECISION
STATISTICS

Let the mix x(t) of the information signal s(t,lo) and the

noise n(t) is passed to the input of the processing unit.
Here 1, = "101,102,...,10 p” is the p-dimensional vector of the

unknown signal parameters which is a priori unknown and
possesses the values from the specified domain of the
definition R . Based on the observable realization x(t) and

the available prior information, it is necessary to measure
(estimate) the parameters /,;, i=12,...,p of the received

signal s(t,lo).
We designate L(1)=L{,l5...../,) the logarithm of FLR
being the functional from observed data x(t) as the

function of the current values l=||ll,12,...,lp|| of the

unknown parameters 1, [7]-[10]. Then, according to the
[7]-[10], [12]-[14], the joint MLEs
of the parameters [y;,l,,...,l, are the

definition
Los s sl pm
coordinates of the position of the absolute maximum of the
logarithm of FLR L(ll,lz,...,lp) within the prior domain
R . As a result, the vector of the signal parameters joint

MLES 1, =1L/

- pm” can be written in the form of

1, =argsupL(l). (1)
leR

The probability characteristics of the MLEs (1) are
uniquely defined by the statistical properties of the decision
statistics of the estimation algorithm, i.e. the logarithm of
FLR L(1). Therefore, we will now consider the

characteristics of the logarithm of FLR.
Following [9]-[12], [16]-[19], we presuppose that the
logarithm of FLR L(I) is Gaussian random field. We

present the functional L(1) as the sum L(1)=S(1)+ N(1) of
the signal (deterministic) component S(l)z (L(l)) and the
noise (fluctuating) component N(1)= L(l)—(L(l)), where
< > means the averaging over all the possible realizations

of the logarithm of FLR under fixed true values of 1, € R

of the estimated signal parameters [9], [10], [18]. Then,
while calculating the characteristics of the joint MLEs (1),
we see that, as the logarithm of FLR has Gaussian
character, we may confine its study to analyzing its first two
moments — signal component S(l) and the correlation

function K (ll,l 2) = (N (l1 )N (l2 )> of the noise component

N(l). Here the designations are: lj:||lj],lj2,...,l]p||,
j=12.

If any random variable is added to the logarithm of FLR,
then the values of the MLEs do not change. Therefore, the
estimates (1) can be always presented in the form of

1, =argsup A(l), where A(l)= A(,b,....7) )= L)~ L{") is
leR

Gaussian functional of the increments of the logarithm of
FLR and I" =

ll*,l;,. o H is some fixed value of the vector

of the parameters 1. Therefore, when we calculate the
characteristics of the MLEs (1) instead of the correlation
function K (ll,lz) of the logarithm of FLR L(l) , we turn to

the correlation function
KA(lplz):<[A(11)_(A(11)>][A(12)—<A(12)>]> of its
increments A(l).

Let the signal component § (l) has a unique maximum in
the point 1=1, of the true values of the estimated signal
parameters, while Ag :S(10)>0 and the realizations of
the noise component N(I) are continuous with the

probability equal to 1. In practice, these conditions are
usually satisfied [9]-[12], [17]. Then the output SNR for the
estimation algorithm (1) can be written in the form of

z= S(lo)/,/<1v2(1o)> = Ag/oy » )

where O'?V=<N2(lo)> is the dispersion of the noise

component under 1=1,. We presuppose that SNR (2) is so

big that the high posterior accuracy of the estimates can be
achieved [9]-[11]. In this case, the MLEs 1,, (1) are located

in the small neighborhood of the point 1=1, of the
maximum of the signal component, and the estimate 1,
converges to 1, in mean square [9], [10], [12]. Thus, to

determine the characteristics of the MLEs (1), it is
sufficient to study the behavior of the signal component
S(l) and the correlation function K A(11,12) of the
increments of the logarithm of FLR in the small
neighborhood of the point 1=1,. The size of this
neighborhood decreases with SNR z increasing.

It is well known that the analytical properties of the
logarithm of FLR L(l) in the neighborhood of the point

l:lo
regularity of this functional by each of the estimated
parameters /;, i=12,...,p [9]-[14]. Therefore, we specify

depend on the fulfillment of the conditions of

the local (in the small neighborhood of the point 1=1;)

representations of the first two moments of the logarithm of

FLR while estimating the discontinuous signal parameters.
Now we pass to the common class of the discontinuous

parameters. For it the sections

Si(li): S(l)|1k Lo k=12, pkri? LT

function S(l) by each of the parameters in the small

L,2,...,p of the signal

neighborhood of the point 1=1; of the maximum of the

signal component allow the asymptotic representations
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1-dy|l; =1y, 8,), I <ly; »

Si(li)=AS 1l|l 01|+O( <l (3)
1=dy |l — I +0(5,), I, = I,

under 9, = |l,» —IO,»| — 0. The corresponding sections

Kol ) = KA (11, |,A_,0k kel p ke, =12 of  the
correlation function K A(11,12) of the increments of the

FLR under
I —lOiU—> 0 take the form of

logarithm of
521‘ = maX(Vli _10i|’|l2i =1y

>

B, mianli s -1 ‘)+ Cyr+ol85,).
byl <lor
By, mianu =17 D+ Cy +ols)).
hisly 2

Ky (lli’IZi)z 4)

lOi ’
it (-0 )-r)=0,  while  Ky(hh)=0,
(-1 ) -2)<0. Here dy>0, By>0, C,>0,

k=12, i=12,...,p are some constants and 0(6) denotes

the higher-order infinitesimal terms compared with §. From
(3), (4), we can see that the moments of the decision
statistics A(l) are nondifferentiable by the discontinuous
parameters at the point 1=1, as the derivatives of the
functions (3), (4) at this point have discontinuities of the
first kind. This condition does not allow us to apply the
small parameter method [7]-[9] to calculate the
characteristics of the MLEs of the discontinuous signal
parameters.

We will notice that the correlation function K ( 1> ) of

the logarithm of FLR satisfies the expression (4), if, in

particular, its sections
i(lli oy ) - K(ll 1) ) |ljk =log s k=12,...,p, k#i, j=1,2 under

8, = max(l, — I, |l — 1) > 0 allow the following

asymptotic representations:

K, (L, 1) = Dy min(ly;, 1, )+ Dy, min(l;, 1y, 1o, )+ )

+ fli(llilei)+ fzi(lzislm)+ By + O(Sni)'

Here D;;>0, D,; >0, B, are some constants and the
functions £yl ;)
fiilloi-1o;)= 0. In this case, in (4), we have By, = Dy, + D,

B,; = D;; . The representation (5) of the correlation function

k =1,2 usually satisfy the condition

of the logarithm of FLR is frequently found when
estimating the discontinuous power signal parameter such
as, for example, duration, bandwidth, et. al. [10], [11], [17],
[18].

Another example of the correlation function satisfying
the expression (4) is the function with the sections allowing
the asymptotic representation like this:

l_pi|lli _l2i|_
—&i min(]l“ - lOi|’ |12i - lOi|)+ 0(5,'),

(0 =T Ny = 16,) 2 0, (6)
1- pi|lli _l2i| + 0(8 )

(lli —1ly; )(121' - lOi)< 0

Ki(luslz,')zcﬁv

where o, >0, p; >0, g;>0. Then, in (4), we should set
C;=Cy;=0, B; =By, = G%\/(zpi -
(6) is frequently found when estimating the discontinuous
non-power signal parameter such as, for example, time of
arrival, band center [10]-[12], [18]-[22].

We find the expressions (3), (4) general enough and
including a wide class of the discontinuous signal
parameters. Assuming in (3), (4) that A, =z, d}, =d,
B, =2d, Cy
the asymptotic representations of the moments of the
normalized logarithm of FLR, while estimating the
discontinuous parameters of quasi-deterministic signals,
[10], [11], [16], [17]. We also see that the general
expressions (3), (4) for the moments of the logarithm of
FLR are wvalid when estimating the discontinuous
parameters of the Gaussian pulse signals [18]-[21]. Such
parameters may include time of arrival, duration, moments
of appearance and disappearance of a pulse as well as band
center and bandwidth of the spectral density of its random
substructure.

As a condition for applicability of the LAA method, we
presuppose that the signal component S(l) and the

correlation function K (11,12) of the logarithm of FLR L(l)
in the small neighborhood of the point 1=1, allow the

g;). The representation

=0, k=12 we then obtain, as special case,

additive-multiplicative representations

/+1

z Z HUkz 111’121 (7)

k=1 j=1i=0 j +1

u Ay /+]

=22 17 K(ul,

kl;llt]k+1

where 0=ty <tpp <...<lg ik =P>

0=0y; <0y <...<8(,, 1) = p. Here the derivatives of the
functions Vki(l[), Uki(lli’IZi): i=12,...

on the left and on the right from the point /,; , but they can

,p are continuous

have discontinuities of the first kind at this point.
In special case, when a; =v; =1, from (7) we get

r

p
HUkz 1115121 (8)

k=1 i=1

S(l)= Zu: ﬁVki(li):

k=1 i=1

K(,.1,)=

If a=v,=1 and u=r=1, then the moments (7)
factorize by the estimated signal parameters and allow the

multiplicative representation
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S l)zf[Vli<li)=

11,12

~

where S,(;)=7,(;) and K(h;,1p;)= Uyl 1) are the
sections of the signal component and the correlation
function of the noise component of the logarithm of FLR.
Finally, under a, =v, =p, the additive-multiplicative
representation (7) of the moments of the logarithm of FLR
transforms into the additive representation

III. THE CHARACTERISTICS OF THE MAXIMUM LIKELIHOOD
ESTIMATES OF THE DISCONTINUOUS SIGNAL PARAMETERS

Let us find the asymptotically exact (with SNR (2)
increasing) expressions for the characteristics of the joint
MLEs (1) of the discontinuous parameters /;, i=1...p
when the additive-multiplicative representation (7) of the
moments of the logarithm of FLR holds. We presuppose
that SNR (2) is so big that the high posterior accuracy of
estimates is achieved [9], [10], [19]. For the calculation of
the characteristics of the MLEs (1), it is sufficient to
consider the local behavior of the moments of the logarithm
of FLR L(l) in the small neighborhood of the point 1=1,

[10], [18]. We expand the functions V}, (ll-) and U ki(lmlzi)

into the Taylor series on the left and on the right from the
points [,;. By substituting these expansions in (7) and

taking into account the summands of the first infinitesimal
order by 8, (or by §,;) only, we then obtain

P

S(l): ZSi(li)_AS(p

i=1

~1)+0(3)

underd =
(10)

max 8 ; —0.

under §,, =
i=1,2,.

Thus, the moments of the logarithm of FLR L(l) allow the
locally additive representation (10) in the
neighborhood of the point 1, .

Now we introduce Mi(li), i=12,...,
statistically independent Gaussian random processes for
which the mathematical expectations S Mi(li) and the

small

p that are the

correlation functions K, (l;,,;) in the neighborhoods of

the points /; =/, are expressed in the form of

SMi(ll) Sz(lz) AS( 1)/]7,
KMl(lll’IZl) i(lnalzi)_cfv(P—l)/F

Here the functions S,(,) and K,(};,l,;) satisfy the
conditions (3), (4). Then, according to (10), we get the
random field L(l) that converges in distribution to the sum

M0)=30,(4)

processes M,(/;) under §—0. As it is noted above, the

characteristics of the MLEs (1) under the big SNR z are
defined by the behavior of the logarithm of FLR L(l) in the

The size of this
neighborhood vanishes, if z — 0. We assume that SNR z

(11)

of the statistically independent random

small neighborhood of the point 1=1,.

is so big and the sizes 5, of the specified neighborhoods of
the points /; =/,, are so small that, within the intervals
L €ly=8;.1p; +8;], the (11) of the

moments of the random processes M, (/;) are valid. Then

representations

the joint probability density W(ll,lz,...,l p) of the estimates

Liwslypse 51,y (1) can be approximated by the product
P
Wil )]jm (12)

of the probablllty densmes W(ll-) of the separate estimates

1

Il =

ir (13)

argsup
lrello;=8; 10; +3;]

M), i=12..p.

Here §; is the size of the neighborhood of the points /; =/,
The
representations (12), (13) under the fixed §; increases with

SNR z.
Thus, the characteristics of the joint MLEs /,,

and 5, >0 while z—ow. accuracy of the

(1) of the
discontinuous parameters /,;, coincide asymptotically (with

SNR increasing) with the corresponding characteristics of
the separate estimates /,. (13) of the same parameters.

In order to find the characteristics of the separate
estimates /,. (13) of the discontinuous signal parameters,
we apply the LMA method [10], [11], [19]. In [10], [11],
[19], by means of the LMA method, the asymptotically
exact (with SNR increasing) expressions are obtained for
the distribution function of the single MLE of the
discontinuous parameter of quasi-deterministic or stochastic
signal as well as for the conditional bias and variance of the
estimate. In this, it is considered that the mathematical
expectation and the correlation function of the logarithm of
FLR allow the representations (3), (4), where A=z,

dy=d, B;=2d, C,; =0, k=12 . Further we will obtain
the asymptotically exact expressions for the characteristics

of the estimates [/, (13) in a general case when the
coefficients d;; >0, B,;>0, C,;=0 in (3), (4) are

arbitrary.
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Let us introduce Gaussian random processes
Ai(li):Mi(li)_Mi(li*)’ 1:6[101'_8;’[0;"‘8;] with
mathematical expectations S; (l[)—S ; (l,* ) and correlation
functions K Ai(lli’ZZi)' In this case, the distribution function
of the estimate /;. (13) can be presented in the form of [10],

[11],[19]

Fli)-

where P[A] is the probability of the event A. From (4), it
follows that the segments of the realizations of the random

A1,

Ai(;)>  sup

P[li,<l;]= Pl sup
I; E[I?,lol»ﬁ-ﬁ,-]

le[]o, 5; 1)

processes A,(l;) within the intervals [lm—éSi,l;k ),

[li* ,10i+8i] are not correlated, and therefore they are

statistically independent, as being Gaussian. Then [10],
[11]

o0

A )= [P} apy () =1 [ By ()dy ), (14)
0 0
where
Pli(u)ZP[ sup Ai(li)<u]’
liello;=8;, ﬁ) (15)
Py(u)=Pl sup  A()<u]
Lell! o +8; ]

are the distribution functions of the absolute maxima of the
random process A, (l ) within the intervals [101 l* ) and
[ll« ,1p; +90; |, respectively. In (14), we take into account that
supA,(1,)=0, B,(u)=0 and P,(u)=0, if
u<0.

Now we need to obtain the expression for the function
P2i(u), u>0 (15). For this purpose, we introduce the

therefore,

random processes 7(l;)=u—A,(l;). By applying the Doob’s
theorem [25] in the Kailath’s wording [26] and taking into
account the representations (3), (4) of the moments of the
logarithm of FLR, we can show that the random processes
Ai(l,») and 7 (l,») are the Gaussian Markov random

processes of the diffusion type [24], [25] within the interval
[zj‘ ,10,.+6i]. According to (3), (4), under [, >/, the drift
.+ and the diffusion T, coefficients of the processes 7(/;)

are equal to

Fli:{

Through applying Markov properties of the process ri(l,»)
as described in [24], we express the probability P2i(u) (15)

in the form of

Agdy; s L <y s

| By I <y,
2 = (16)
—Asdy;, 21y,

By, L >l

z(li) >0]:jm‘i(x710i+8i)dx’ (17)

Lel|lf , 1oi+5; 0

Pyw)=P 1,

where W,,(x,1) is the solution of the direct Fokker-Planck-

Kolmogorov equation [25]

ow.(x,1) o 10 _
T_a[rll(l)VVri(x’l)]_E?[FE(Z)VVH‘(X’I)]_0 (18)

with the coefficients (16) under the starting condition
W,[(x,l;): S(x—u) and the
w,.(0,1)=0, W,(0,])=0. Here 8(x) is the delta-function.
After solving the equation (18) similarly [10], [11], [18],
[19] and substituting the found solution into the formula

(17), we obtain
) exp{

I
0
_exp { u+ Agd,; 101 li)+(;)2] « (19)

boundary  conditions

o= 454, - 3—@)2]_

28,y -

2B, iy, -1 )

1

2Asdzz j [ASdZiSi_C
C|P dc
VB, ]}

under Iy, -8, <l <l and

Py(u)=@ ASdZi(IOi +9, —Z;)-Fu -

\/321'(]01' +9; _l;)
—exp[— 214;072" uj (o)
2

under I, <I <I,;+8,. Here (D(x)z Ix exp(—t2/2>dt/\/21t
is the probability integral.
It is not difficult to show that the probability F{l(u) (15)

is also determined from (19), (20) where the coefficients
d;;, j =12 should be changed for d;_;);, the coefficients

(20)
Asdzi(lol- +8, -1 )—u

v By (lol‘ +9; —1: j

B, j=12 —for B_; and the difference I, —I; — for

=1y, .
Then we substitute the expressions (19), (20) that have
been produced for the probabilities B, (u) and Py, () in the

formula (14) and find the conditional (under the fixed /)
distribution functions F(l;) of the estimates /, (13):

i Zzi»Xi)a lo; =98, <1 <l ,
i ZZi)VXi): lo; <L <1y +3;,

Wt~ 1o,

F(l)= Lo
1(1) {1_\P(Ili_10i,

21)
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where
1 T | (u_zli|li|_c)2
USRI BE T
( 21i»22 X) 275|@|Z['([ exp_ 2|li|
.
—exp(Zzh-u)eXp - (”_2121‘ j’ _C) ZZ“exp(—2zliu)><
<D 21,-<6i—|ll~|)—u

/ 2 (Zli(Si—|lt|)+”)2 y
I \/8i—|li| i ”(5:‘—|lt|)exp[_ 2(61‘_|li|) ]

25,0, +Cy; 25,0, —Cy;
@[—2' L2 expl(— 2z, € | 220 | | dudC,
3 J 3

and z; = Asdu/\/B—u: Zy; = Asdzi/\/B_zt: Xi :\/Bli/Bzi .

In practical calculations, the expression (21) appears to
be rather complicated and inconvenient. In this connection,
we take into account that the ratios z;; and z,; in (21) are

X

the values of z order. By assuming that SNR z is very big,
similarly to [10], [19], [24] we find the asymptotic
expressions for the conditional (under the fixed /)

probability densities 1¥(l;) of the estimates (13):

1

2 20 IR 1 <1
VV,(Z :{2211’ WO[zzli(lOi ll)’l/Rl]’ lz <lOz ’ l=1,2,...,p, (22)

22;’ Wo[zzgi(li _ZOi)’R ] l; 21y

7|

X 2+ 1+ x| 2+u
WO(X’”):q{@‘”#“‘{'"‘u—f) 1_@[ Q—J ’

where R; = BlidZi/BZidli = X[ZZi/Zli .

expression (22) increases with SNR z (with the ratios z;

The accuracy of the

and z,;).
Thus, the joint probability density of the MLEs
Limslboms---slp, (1) 1s presented in the form of the product

(12) of the probability densities (22) of the estimates (13).
We apply the distributions (22) and find the conditional

biases b, = <l,»m _10i> and variances V; = <(ll-m —Iy, ) > of the
estimates (1) as well as the third-order and the four-order
moments Y, = <(ll-m —ly; )3> and Q, = <(ll-m —lo; )4> of the
errors of these estimates:

__ 2R+l R(R+2)
Co222(R 417 222(R+1P

(23)
_SRI+6R+2 R (ZR,? +6R; + 5)
225, (R +1) 2z4(R +1)

i

6
22i

3 14R} + 28R} +20R, +5
4R, +1)*
R (5R? +20R2 + 28R, + 14)}

6
21§

24)

3 42R} +120R? +135R? +70R, +14 .
2(R, +1) ;

Z3i

8

N Ri(14Ri4 +70Ri3 +135Ri2 +120R, +42)}
21i

The accuracy of the formulas (23), (24) increases with SNR
z (with z;, z,;).

The formulas (22)-(24) become significantly simpler, if
d;=d,;=d;, B;=B,;=B;. In this in (22)
2y=2y;=2=Asd;[\[B,, R =1 and the probability
densities W,(l;) of the estimates (13) take the form of

1

case,

W)= 222w 22 - 1l),  i=1.2..p, 25)
()= o372 )1+ 3expl2la])[1- B2 |

while the moments (23), (24) are being written as

b,=0, ¥,=13/8z%, v,=0, 0, =1143/32z}. (26)

During the estimation of the discontinuous parameters of
the quasi-deterministic signal we still have z; =z [10],
[11], [19] and the expressions (26) get the following form:
b=0, V,=13/8z%, ¥, =0, 0, =1143/322% .

It is well known that the probability distributions of the
joint MLEs of the regular signal parameters are the
asymptotically Gaussian ones under z — oo [9], [12]-[15].
From (22), it follows that the asymptotic distributions of the
MLEs of the discontinuous signal parameters differ
significantly from the Gaussian distribution. In particular,
the coefficients of skewness y,; and excess y,; of the

distribution (22) are equal to

yy = Y, -3V, + 2B

i = = ,
Ve s

Vo = 3 Q, —4Yh +6V,p} =3b}
l 8§i (Vl_bzz)z

and not

3

equal to null, in general case. Here

g = <(ll.m —([l.m>)(f> is the central k-th moment of the
distribution (22). For example, under R, =1, z,, =z,; =z,

we get y,; =1779/169 ~10.527 .

It should be noted that the moments of the random
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processes Al-(li):M [(ll-)—M i(l,-* ) in the neighborhoods of
the points /; =/ coincide with the corresponding moments

of the random processes Ami(li):A(l)|zk:10,,k:l,z...pIm

being the sections of the functional of the increments
A(l): L(l)—L(l*) of the functional of FLR by the planes
passing through the point 1=1,. Therefore, the statistical
characteristics of both the estimates /, (13) and the joint
MLEs I,

increasing) with the characteristics of the separate MLEs of
the signal parameters /). It conforms to the similar

(1) coincide asymptotically (under SNR z

conclusions drawn in [27].

IV. THE APPLICATION OF THE LOCAL ADDITIVE
APPROXIMATION METHOD FOR DETERMINING THE
CHARACTERISTICS OF THE ESTIMATED SIGNAL PARAMETERS

A. The Joint Estimates of the Time of Arrival and the
Duration of the Video Pulse

As the first example of the application of the LAA method,
we consider the joint MLEs of the time of arrival A, and

the duration 1, of the rectangular video pulse with the
amplitude a [8], [9], [17]:

s(t,xo,ro):az("%j, z(x)={1’|x|g/z’ @)

0, |x|>1/2

observed against the Gaussian white noise n(t) with the
one-sided spectral density N, .

According to [8], [9], [17] the logarithm of FLR for the
realization of the observable data

x(6)=s(t, 0,7 )+ nlz) (28)
against alternative x(t) = n(t) is of the form
}\.+‘E/2 2
L0ut)=2% [x(t)de -4 29)
0 p—z/2 0

Here A, T are the current values of the unknown parameters
Ags Tg-

Let the time of arrival and the duration of the pulse (27)
possess the values from the prior intervals A, e [AI,AZ]
and 1, € [TI,T2]. Then the joint MLEs A,, and 1, of the

time of arrival and the duration of the pulse are the
coordinates of the position of the absolute maximum of the

functional (29) within the intervals A€ [AI,A 2],
Te [TI,TZ], ie.
(AsT,)= argsup L(x,7). (30)

re[A1.A, ] [Ty, T, ]

By applying the LAA method, we find the characteristics
of the joint MLEs A,, and t,,. For this purpose we present

the functional (29) as the sum of signal S(K,r)= (L(?»,r))
N(?», r) = L(k, r)— (L(?», 17))
L(x,t)=S(x,t)+ N(r,7). Performing averaging (29) over

all the possible realizations of the observed data (28), for
the signal component we find

and  noise components:

S(k,r):(zg/ro)[max(o,min(k+r/2,k0 +10/2)- 31)
—max(A—1/2,0¢ —70/2)-1/2)].

Here z{ =2a’t, /N0 is the output SNR (2) for the
algorithm (30) [9], [10]. The noise component N(?»,r) is

the Gaussian centered random field, its correlation function
is equal to

(N(xlsrl )N(kzyfz )> = (Zo/To)maX(O’

(32)
min(h; +1,/2,h; +1,/2) - max(h; —1,/2,4, —7,/2)).
In (30)-(32) we pass to the new parameters
0,=r-1/2, 0,=r+71/2. (33)

Then the expressions (31), (32) are overwritten as follows

5(0,.0,)=(2/2)[ (6, -8, )+ (B, - )-1].

(34)
K(911’921:912’922): <N(911a912)N(921’922 )> =
=2z, max(O, min(§11,§21)+ min(§12,§22 )— 611 - 521 ),
where C(x)= max(O,l | ), 001 =Ao—T0/2,

00, =ho +70/2, 6k =0,/70 > éjk =9jk/'fo , j=012,
k=12.

From (34) we can see that the derivatives of the
logarithm of FLR (29) by the current values 61 , 52 of the
normalized moments of appearance 601 and disappearance
602 of the pulse (27) have discontinuities of the first kind
at the point 51 = 601 , 62 = 502 . Therefore, the moments of
appearance 0, and disappearance 0,, of the pulse (27)

are the discontinuous parameters. In the conditions of high

posterior when  z§ >>1, the sections

S1(61>: S(91’902)’ Sz(éz): S(eopez)
K(OH,GZI)zK(911,921,602,902),
K(élz,ézz):K(901,901,912,922) of the signal component

accuracy,

and

and the correlation function (34) by the variables 61 , 62
allow the representations (3), (5), where
Ag 223/2: dy=dy =1,

Dy =z,, D, =0,
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fkl(ekl’ 901): 20(901 - ekl): sz(ekz’eoz): 0, k=12,
By = Zo(eoz - 2901):

It should be also noted that the moments (34) of the
decision statistics (29) allow the additive representation (9),

By, ==z¢0; -

where p=2, 03 =z,.

Thus, all the applicability conditions for the LAA
method are satisfied and the asymptotic characteristics of
the MLEs 0,,,, 0,,, of the moments of appearance 6,

and disappearance 6, of the pulse (27) can be determined
from (25), (26). Assuming in (26) that zl-2 = 23/2 , for the
conditional biases b =(0,, —6,,), b, =(0,, —0,) and

m

variances V| = <(61m - 601)2>, v, = <(62m -0y, )2> of the

estimates 9,,,, 0,, we get

by=by=0, V,=V,=2613/z¢. (35)

The estimates 0,,,, 6,,, are the statistically independent

ones and, according to (33), they are related to the
estimates (30) by the linear transformations:
Ay =00 +02,,)/25 T, =65, —0,,. Thus, taking into
account (35), for the conditional biases and variances of
MLEs A,,, T, , We can write

by =(hy =) =0,

by = (=20 )= 1, =133 2

m -

(36)
b‘c :<Tm _T0>:0’ V’L’ :<(Tm _T0)2>:Vl +V2 2521'(2]/23 .

From (36) it follows that the variances of the joint
estimates (30) is two times higher than the variances of the
corresponding separate estimates [12], [28], i.e. there is a
statistical dependence between the estimates A, and T,
[17].

In order to establish the limits of applicability of the
asymptotically exact formulas (36) for the characteristics of
the estimates A, and rt,, computer simulation of the
algorithm (30) has been carried out for the case that
Ty = (Tl +T, )/ 2. During the simulation, the samples of the
Gaussian random field (29) have been formed on the
uniform two dimensional grid with the discretization step
107 Ty, as it is described in [29]. Thus the mean-root-
square error of stepwise approximations of continuous field
realizations does not exceed 10 %. The number of
processed realizations of the random field (29) was taken
equal to 10*. As a result, with probability of 0.9 confidence
intervals boundaries deviate from experimental values no
more than for 5...10 %.

In Fig. 1, curve 1 represents dependence (36) of the

normalized variance ﬁx =V, / 15 of the estimate A, from

SNR z, (31), while curve 2 shows analogous dependence

of the normalized variance IZ =V, / 72 of the estimate T, .

The experimental values of the variances 177” V.

. are
designated by squares and crosses, respectively.
2
X
SO [
|
O ]\\ \J
m]
1072 j?‘m <!
J e
1
107 Sa e N,
By ]
10 i
1 3 5 7 9 1315 17 g

Fig. 1. The theoretical and experimental dependences of the variances of
the estimates of the time of arrival and the duration of the video pulse.

As it follows from Fig. 1, theoretical dependences (36)
for the variances of the estimates (30) well approximate
experimental data, if SNR z;>5. Under z,<5 the
theoretical dependences for V,, V. (36) deviates from
experimental data as the formulas (36) have been obtained
without considering the finite lengths of the prior definition
intervals [Al,Az], [Tl,Tz] of the parameters A,, 1. If
necessary, a more accurate calculation of the theoretical
values of the variances of the estimates can be made on the
basis of the probability densities (25) using numerical

integration formulas, as it is described, for example, in
[30].

B. The Joint Estimates of the Time of Arrival and the
Band Center of the Stochastic Radio Pulse

As the second example of the application of the LAA
method, we consider the joint MLEs of the time of arrival
Ao and the band center v, of the stochastic radio pulse

[18]-[21]

s(t, % vo) = &l0) 1[(e = )/]. (37)
Here 1 (x) is the unit duration indicator (27), 7 is the pulse
duration, é(t) is the high-frequency stationary centered

Gaussian random process possessing the spectral density

G(o)=(1/2){ 1llvy - o)/Q]+ Iflvy + o)/ }. (38)
In (38), the designations are: y is the intensity, Q is the
bandwidth of the spectral density.

As before, we assume that the interferences and the
registration errors are approximated by the Gaussian white
noise n(t) with the one-sided spectral density N,, so that

the mix
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x(6)=s(t, 0,7 )+ nlz) (39)
is available to observation. In addition, we presuppose that
the correlation time of the process &(t) is much less than
the pulse (37) duration 7, i.e. the following condition is
satisfied:
p=1Q/2r>>1. (40)

As the examples of the signals described by the stochastic
model (37), (38), (40) there can serve the reflected location
signal, the radio pulse distorting by modulating
interference, the signals in spectroscopy and astronomy [4],
[8], [31], etc. The random signals (37) can be used as the
noise carrier in data communication systems [32].

If the condition (40) holds, then the logarithm of FLR
L(X,v) as the function of the current values A, v of the

signal estimated parameters A,, v, can be presented in the
form of [18], [33]

B qM(?»,V) A+7/2
L(K,V)—m—pln(l+q), M()\,,V)Z}L:‘.‘E/_};z(t,V)dt, (41)

where ¢=y/N,, y(t,v)= f x(¢) (e~ v)de is the
response of the filter with pulse transition function h(t,v)
to the observed realization (39), while the transfer function
H ((x),\/) of this filter satisfies the condition
|H((x),v)2 =I[(v-0)/Q]+I[(v+©)/Q]. Then the joint
MLEs A, and v, of the time of arrival and the band

center of the pulse (37) are determined as follows

M(x,v). (42)

(Apsv,)=  argsup

re[Ar,A, ], velYr, Y ]
Here [Al,Az], [Y1sY2] are the prior intervals of the
possible values of the estimated parameters A,, Vv, .

In order to find the characteristics of the joint MLEs A,
and v,,, we apply the LAA method. Firstly we introduce
n=At, n; :kj/r, K=v/Q,
K, =V, / Q, j=0,1,2. Then we present the functional
M(L,v) (41) as the sum M(r,v)=S(n,k)+ N(n,x)+ B,
where S(T],K)=<M (m:,KQ))—B is the signal component,
N(n,x)=M(nt,kQ)-S(n,x)- B is the noise component
and B =uN, is the inessential summand. In fulfilling (40),
similarly to [18], [20], we obtain

the designations:

S, k)= S,C(n—np)Clk— ). (43)

where S, =ugN, and the function C(x) is determined in

the same way as in (34).

The noise component N(n,k) is the asymptotically
(under p—> o) Gaussian centered random field [18].

Therefore, while the condition (40) holds, we merely
consider the correlation function of the noise component:

K(nlan29KlaK2): <N(nlaK1)N(n29K2)> =

(44)
= DlR(nlanano)R(Klus’Ko)+ DoC(m - ﬂz)C(Kl - Kz)s

Dy =uNg Dy =pq(2+4)Ng .
R(xl,xz,x0)= max[O, 1 —max(]x1 —x2|,|x1 —x0|,|x2 —x0|)].

where

According to (43) the signal component S (n, K) tops
under n=mn,, K=X,, ... in the point of the true values of

the time of arrival and the band center of the received
pulse. Then, the output SNR (2) takes the form of

ZZZS(%/(D1+D0):WI2/(I+Q)2 : (45)

From (43), (44), it follows that the derivatives of the
moments of decision statistics M (X,v) (41) by the
normalized variables n and « have discontinuities of the
first kind at the point n=mn,, k=x,. Therefore, the time
of arrival and the band center of the stochastic pulse (37)

are the discontinuous parameters. When 22 >>1 (45), the
sections S, (n)=5(M.x,), S, ()= S(ng. x) and

Kl(m,nz)= K(nlanz"(o,‘(o): Kz(Klus): K(noﬂ]o"(la'{z)
of the signal component (43) and the correlation function
of the noise component (44) by the current values of the
time of arrival and the band center allow the
representations (3), (6), where

2
Ag =8y, dy;=dy =1, 0?\/ =D+ D, :uN§(1+q) )

(46)
pi=1, g =g=D/o% =q(2+q)/(1+q).

As it can be seen, the moments (43), (44) of the
decision statistics (41) allow the additive-multiplicative
representation  (8), where r=2, p=2,
()= SoCn—mo). Vo) = Clk =),
Ull(lllslzl): DlR(m,nz,no), Uzl(lllalzl): DoC(m —le):
Ulz(llzslzz): R(KDKZsKO)’ Uzz(llzslzz) = C(Kl —Kz) .

Thus, all the applicability conditions for the LAA
method are satisfied and the asymptotic characteristics of
the MLEs A,, and v,, can be determined from (25), (26).
Assuming in (26) that z7 = zz/(Z—g), we get the
conditional biases and variances of the joint MLEs of the

time of arrival and the band center of the stochastic pulse
(37):

u=1,

bl =<}\‘m _}\‘0>=0> Vl =<(>\’m —}\.0)2>=13T2(2—g)2/824,

(47)
by = (v, —vo) =0, 7, =<(vm —VO)2>=13QZ(2—g)2/824,
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where SNR z and the parameter g are determined from
(45), (46). The accuracy of the formulas (47) increases
with SNR (45).

In order to establish the limits of applicability of the
asymptotically exact formulas (47) for the characteristics of
the estimates A v computer simulation of the

algorithm (42) has been carried out. During the simulation,
following the procedure described in [29], the samples of
the Gaussian random field with mathematical expectation
(43) and correlation function (44) have been formed with
the discretization step Af=0.01 by the variables 1 and k.

m>

In this case, the mean-root-square error of stepwise
approximations of continuous field realizations does not
exceed 15 %. Thus one has the normalized estimates
determined as the coordinates of the greatest field sample
within the area of variables n e [O,ml], Ke [0,m2], where
m = (A2 —Al) T, my = (Y2 —Yl)/r. Based on processing
no less than 10* realizations of the random field, the
sample characteristics of the estimates n,, , k,, have been
calculated.

In Fig. 2, for ¢=0.1, m; =m, =10, ng =Ay/t=m, /2,
Ko =Vo/Q=m,/2 the of the

experimental values

normalized variance 171 =V / t% of the estimate A,, in the

absence of anomalous errors [19] are shown by squares.
Note that they practically coincide with the similar values

of the normalized variance 172 =V, / Q? of the estimate

v,,- By solid line there is represented the corresponding

theoretical dependence 17:1/1(2)/ =V, (z)/ Q* of the

normalized variances of the estimates (42) calculated by the
formulas (47).

v, f"l.:\
N
ol TN

.

M\&E;\E\

1073 e

107

1 2 3 4 3 6 7 8 g Z

Fig. 2. The theoretical and experimental dependences of the variances of
the estimates of the random pulse time-frequency parameters.

From the simulation results it follows that the
asymptotically exact expressions for the characteristics of
the estimates (42) satisfactorily approximate the
experimental data, if z>1.5...2. Thus, since in practice,
for high quality operation of the receiver it is necessary to
provide an output signal-to-noise ratio of about 10 or
greater, the formulas (36), (47) and their generalizations
(23), (26) can be used to calculate the characteristics of the
corresponding measurers without significant limitations.

It should be also noted that there is a number of other
examples of the application of the LAA method for
calculating the characteristics of the joint MLEs of the
discontinuous time and frequency parameters of the
stochastic pulse. Thus, in [34], the task is considered of
determining the joint MLEs of time of arrival, duration,
band center and bandwidth of the high-frequency pulse
(37), while in [35] the joint MLEs are studied of time of
arrival, duration and bandwidth of the low-frequency
Gaussian random pulse.

V. CONCLUSION

In order to determine the performance of the optimal
(maximum likelihood) measurers of the signals with the
unknown discontinuous parameters, the method based on
the additive-multiplicative representation of the moments of
the decision statistics (the method of locally additive
approximation) can be used. With the help of the specified
approach, the closed analytical expressions can be found for
the characteristics of the estimates of the discontinuous
quasi-deterministic and Gaussian random signals observed
against Gaussian interferences. These expressions
adequately describe the corresponding experimental data in
a wide range of the output signal-to-noise ratios. The
obtained results make it possible to theoretically evaluate
the practical application appropriateness of the particular
algorithms for processing the discontinuous signals in each
specific case.
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