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Abstract—Vast studies on action analysis with spatio-
temporal features and deep learning algorithms have proposed
countless improvements over the years. This paper presents a
domain model with continuous and spatio-temporal features
based on object detection for the industrial pipeline scenario.
In this way, we can conduct a comprehensive evaluation: action
pose accuracy in the spatial dimension and action efficiency in
the temporal dimension. The method is applicable to scenarios
that require semantic recognition of action in a short time,
without any dedicated action capture devices. Firstly, the dis-
cretized images are combined into spatio-temporal, structured
and continuous action sequences. Then we apply the model
to the sequences to get the spatial action information through
video streams with only two-dimensional information, and then
complete the analysis of the action specification based on these
action streams with temporal features. Furthermore, this paper
performs several ablation experiments on training strategies
and hyperparameters to improve accuracy. Experimental per-
formances show that it achieves an average recognition accuracy
of about 96.45%.

Index Terms—semantic analysis of action, action specifica-
tion, spatio-temporal features, deep learning, object detection.

I. INTRODUCTION

THE research of human behavior recognition and analy-
sis plays a significant role at present. Aaron F. Bobick

and James W. Davis studied simple human behavior based
on Temporal Templates and Dynamic Time Warping [1].
The method requires the temporal and spatial action features
simultaneously and extracts the whole video information
for recognition. However, when the movement interval of
the same movement is inconsistent, its recognition accuracy
varies greatly. Then, the variable sequences produced by
human behavior began to become the hinge of research.
Hidden Markov Model (HMM) and Bayes Model are most
representative. B. Matthew, O. Nuria and P. Alex used the
coupled hidden Markov model to simulate the interaction
process [2]. It proves its superiority over traditional HMM
in the task of bimanual action classification. N. Oliver,
E. Horvitz and A. Garg applied HMM to implement a
hierarchical probability model for perception and learning
temporal inference at multiple levels [3]. C. Sminchisescu, A.
Kanaujia and D. Metaxas studied human action recognition
algorithms based on Conditional Random Field (CRF) and
Maximum Entropy Markov (EM) in video sequences [4]. But
it no longer meets the demand for long-scale action scenarios.

The continuous study of human brain nerves inspired deep
learning, and it has aroused an upsurge [5]. The research
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of human behavior analysis based on deep learning method
has received increasingly attention. S. Lin et al. provided
an algorithm, two-layered SFA learning structure with 3D
convolution and maximum pool layer, to capture abstract and
structural features from video and build action recognition
models [6]. In 2018, A. Mathis et al. proposed an efficient
method for markerless pose estimation based on deep neural
network, which achieved excellent results with the least
training data [7]. There are many difficulties to capture
human behavior with large-scale and low-cost equipment,
which also lead to huge problems in the study of human
behavior analysis, including industrial scenarios. So far, there
have been few public available datasets from industrial field.

In this paper, the front-end video capture device is easy to
deploy, and is not a dedicated action capture device, which
provides the possibility to deploy standard action work at
large scale and low cost. We collect the dataset from the
real workshops. All images are manually labelled, which
makes it a good benchmark to evaluate object algorithms.
The difficulty of the research is to extract the region of
interest and build an appropriate and accurate recognition
model. Therefore, the focus shifts to the recognition and
real-time tracking of the hand gesture of the actors in the
video.

Here is a list of our main contributions series:
1) We present a domain model with continuous and

spatio-temporal features based on object detection for
the industrial pipeline scenario. It can also be applied to
other analogous scenarios that require semantic recog-
nition of the action in a short time, e.g. sign language
recognition scenarios. The results and analysis are
given for a guideline.

2) Without the special camera device, we extract the
two-dimensional information from the collected video
stream to get the spatial action information, and then
complete semantic analysis of action based on the
action information with time flow. In this case, it
provides a possibility to deploy standard action work
at large scale and low cost.

II. RELATED WORK

A. Datasets

Numerous datasets and benchmarks for object detection
have been released in the past 10 years. For instance,
the datasets of PASCAL VOC Challenges(e.g., VOC2007,
VOC2012)( [8], [9]), ImageNet Large Scale Visual Recogni-
tion Challenge (e.g., ILSVRC2014 [10]), MS-COCO Detec-
tion Challenge [11], etc. The datasets of PASCAL VOC, and
the two versions of Pascal-VOC are mostly used in object
detection: VOC07 and VOC12, where the former consists of
5k images and 12k annotated objects, and the latter consists
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of 11k images and 27k annotated objects. These large action
datasets helped the development of recognition algorithms on
action analysis. Thus, it is necessary to collect and produce
datasets in our scenario.

We first record and collect video data using Hikvision
DS-2CD2051-1 network camera. The uniform frame rate is
25fps. The video data size is 1280×720. Without affecting
the normal operation of the camera, we require adjusting
and fixing the camera’s angle, height and distance, and
maximizing the distance between the camera and the actor
to ensure an effective maximum ratio of information in the
video screen. For each action type, there are no erroneous
actions, only single object information and no other interfer-
ence items as much as possible. Then each video is divided
into several small clips based on basic actions type. In this
way, each clip is a single basic unit. If there exist complex
basic actions or subset of the basic action class, we will
consider dividing them into subclasses or cutting. Then we
extract one frame per second from the episodes and save the
images extracted by appropriate skipping frames.

B. Object Detection Algorithms

DPM [12], the peak of the traditional object detection
methods, was originally proposed by P. Felzenszwalb, D.
McAllester and D. Ramanan as an extension of the HOG
detector [13] in 2008, and then a variety of improvements
have been made by Ross B. Girshick, Pedro F. Felzenszwalb
and D. McAllester [14]. But the traditional method encoun-
tered bottlenecks soon. Later, the rapid development of deep
learning technology injected new blood into the researches
of object detection, leading to remarkable break throughs
and pushing it forward to a search hot-spot with unprece-
dented attention. After 2014, there are usually two popular
algorithms based on object detection. One is named one-
stage detector algorithms that directly detects and recognizes
objects in images in a single run, typically including SSD
[15], YOLO(v1/2/3)( [16]–[18]), RetinaNet [19], CornerNet
[20] and CenterNet [21], et al. They have a faster detection
speed. The other is called a two-stage detector algorithm,
which first uses the network to extract the objects features
in the image that are bounded by the bounding box, and
then performs learning based on these features, and finally
recognizes each bounding box and obtains the category of
each object. Typical algorithms include R-CNN [22], SPPNet
[23], Faster R-CNN [24], R-FCN [25], Mask R-CNN [26],
TridentNet [27], NAS-FPN [28] and Cascade R-CNN [29], et
al. Compared with the former, these methods have a higher
recognition accuracy.

However, not all of the above algorithms are suitable
for action detection and recognition in industrial pipeline
operation scenarios. The differences in time and complexity
of each action can cause large intra-class distances, whereas
several actions with similar processes can result in small
inter-class distances. Thus, how to construct a model by
selecting some baselines to accurately recognize the workers
actions in real time is a challenging problem.

III. METHODS

To complete the entire detection and recognition task for
this scenario, this section mainly contributes to a method for
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Fig. 1. The Key idea of Action Decomposition Strategy.

processing raw dataset, baselines based on object detection
algorithms, and whole scheme for action recognition.

A. Training and Test Samples

For action detection tasks, we need to introduce labelled
training and test samples for evaluation. Before training,
these images need to be preprocessed and labelled. We
chose the standardized annotation rules of PASCAL VOC
to ensure consistency of reuse rules. The object detection
and annotation tool, Visual Object Tagging Tool (VoTT),
released by Microsoft is adopted to label the dataset. Due to
the high similarity of adjacent video frames and the heavy
workload of frame-by-frame labelling, our solution is to
select keyframes for labelling. In this way, it can reduce
the number of markers and grab more effective ranges.
All images are manually labelled, which make it a good
benchmark for evaluating object algorithms.

Unstructured raw data are difficult to train in experiments.
It is a huge challenge in this paper. Fortunately, we find
that there are always some basic actions in every action
flow, while the order of basic action combination is different.
Besides, the action in industrial scenarios has repeatability,
continuity and spatio-temporal features. Thus, these raw data
are transformed into structured recognizable sequences that
can be combined and analyzed over time by action decom-
position. Fig. 1 shows the action decomposition strategy. It
refers to an action dataset D consisting of many basic units.
Let C = {C1, C2, · · · · · ·Cn} be basic unit with n instances.
Csub = {Csub1, Csub2, · · · · · · , Csubj , · · · · · ·Csubk} (0 <
j ≤ k, j ∈ N∗, k ∈ N∗) is the j-th subunit of i-th basic unit.
More specifically, it can be abstractly described as a tree-like
structure Tree =< V,E >, which is composed of n-order τ
edges. The V is a set of action vectors consisting of D. When
n > 1, the remaining nodes can be divided into m disjoint
finite action sets Tree1, T ree2, T ree3, · · · · · · , T reem. By
the strategy, we can get the representative subset Csub, which
is the smallest recognition unit in the action recognition
task. In our dataset, the total number of labelled Csub is
50. The total number of pictures is 27,328, 80% of which
are training samples and 20% of which are testing samples.
Fig. 2 visualizes the scatter of the dataset.

B. Baselines Based on Object Detection

There are many convolutional neural networks as image
classifier backbones for object detection task. The Inception-
v2 network proposed by C. Szegedy et al. had joined the
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Fig. 2. The Scatter of action dataset D. The D includes a total of 50 action
categories, and only partial action category information is shown here.

batch normalization layer and replaced one 5×5 convolution
layer with two 3×3 convolution layers [30]. The improve-
ment reduced the internal covariate shift and increased the ro-
bustness of the model. But it also brought about an increase,
25% of the weights and 30% of the computational cost. In
2017, MobileNet used the Depthwise Separable Convolutions
to compress the model [31]. In this method, its speed has
been improved a lot. However, the decrease of accuracy may
be a problem. Additionally, the Deep Residual Networks
(ResNet), proposed by Kaiming He’s research team in 2015,
is the champion of the ImageNet challenge [32]. ResNet
with the design of ”bottleneck” block can have up to 1000
or more network layer. The deeper the residual network is
and the more complex the computation, the degradation of
network performance will be. Thus, here only consider the
50-player and 100-player ResNet. Compared with the former
two, ResNet has state of the art performance, not only feature
extraction.

Detector algorithms have evolved for nearly 20 years,
except for feature extraction networks. In 2014, G. Gkioxari,
R. Girshick and J. Malik took the lead to break the deadlocks
and proposed the Regions with CNN features (R-CNN) for
object detection [22]. In 2015, R. Girshick proposed Fast R-
CNN detector, which simultaneously trained a detector and a
bounding box regressor under the same network congurations
[33]. Then Kaiming He’s research team presented Faster
R-CNN detector shortly after the Fast R-CNN [24]. Their
speed was the one-stage detecor inferior to themselves. SSD
with high detection speed and simplicity, the second one-
stage detector, was proposed by W. Liu et al. in 2015 [15].
Meanwhile, there were still some achievements in some
respects. For example, T. Y. Linetal et al. proposed RetinaNet
in 2017 to solve class imbalance problem [19], while Z. C.
Cai and N. Vasconcelos designed Cascade R-CNN in 2019 to
resolve IOU thresholds selection which is difficult to match
in train and inference stage [29].

C. Whole Scheme for Action Recognition

Besides datasets and training models, we need to design
a scheme to complete the entire detection and recognition
task for this scenario. Fig. 3 is the whole scheme for action
detection and recognition algorithm in a video frame. In this
way, the algorithm can be run on the input video frame to
detect all actions in the image.

Real-Time Videos

Video Frames

Detection Object

Video Capture

Feature Engineering

Action Detection and 

Recognition

Structured Data Sequences with Spatio-Temporal Feature

Deep Learning

Object Detection

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 ⋯⋯

Detection 

and 

Recognition 

Model

Output of Result

Fig. 3. Whole Scheme for Action Detection and Recognition.

Firstly, video datasets are collected and processed after
capturing real-time video. Then we convert video data into
frame-by-frame image data, which are required to run the
detection model after being discretized into sequences with
spatio-temporal features. Based on the action association
model of standard specifications in industrial scenario, we
make relevant detection and recognition decision-making
schemes relying on the features of time series. Eventually,
we form a model with spatio-temporal feature for action
semantic recognition by integrating big data technology and
deep learning methods in the whole scheme for detection and
recognition. In the way, we can achieve analysis of action
specification, i.e., the normalized semantics of the action.

IV. TRAINING REFINEMENTS

In this section, we mainly provide various ablation ex-
periments to improve the impact of models. As empirically
investigated in this work, we can note some strategies for
model. Unless explicitly mentioned otherwise, mAP@.5IOU
and AR(average recall) are used as evaluation metrics.

A. Basic Parameters Refinements

Anchors play a prominent role in the extraction of action
semantics. A reasonable value enables the model to help
learn more detailed features. Here the value is usually set to
9, 12, 15. The relatively subtle action translation of the actors
and the strong correlation between frames in this scenario,
thus the regression of the detection frame is easy to learn.
The threshold of NMS also has a non-trivial impact to
the accuracy. Generally, the threshold of positive samples
fluctuates between 0.6 and 1.0. We take 0.6, 0.7 and 0.8 to
observe the change of accuracy.

Ablation experiments are conducted on nine benchmark
architecture, namely M1-M9 in Table. I. The total number
of iterations is 100,000. Setting ThNMS too low will give
rise to noisy detections, while letting ThNMS be too high
will produce too few positive samples and over-fitting easily.
Increasing the value of anchors with too small or too large
size also leads to a descendent accuracy. As empirically
investigated in this work, the M5(Nan = 12, ThNMS = 0.7)
achieves better or comparable performance under evaluation
metrics.

B. Learning Rate Refinements

Learning rate adjustment is crucial to training. Considering
the complexity of the model and the training cost, we mainly
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TABLE I
THE PERFORMANCE OF MODEL ARCHITECTURES M1-M9 ON THE

DATASET

Models Basic Parameters mAP@.5IOU AR

M1 Nan = 9, ThNMS = 0.6 96.13% 87.65%
M2 Nan = 9, ThNMS = 0.7 96.35% 87.43%
M3 Nan = 9, ThNMS = 0.8 94.27% 86.19%
M4 Nan = 12, ThNMS = 0.6 96.48% 86.55%
M5 Nan = 12, ThNMS = 0.7 96.63% 86.67%
M6 Nan = 12, ThNMS = 0.8 93.08% 87.79%
M7 Nan = 15, ThNMS = 0.6 95.88% 87.51%
M8 Nan = 15, ThNMS = 0.7 95.84% 87.95%
M9 Nan = 15, ThNMS = 0.8 94.31% 87.81%
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optimize the learning rates of piecewise constant decay and
cosine learning rate decay.

The first type of learning rate, piecewise constant decay
learning rate, is to set different learning constants in a pre-
defined training interval. The interval setting needs to be
adjusted according to the sample size. The larger the sample
size, the smaller the interval. We mainly use Faster R-
CNN+ResNet-50, and Faster R-CNN+ResNet-101 for tun-
ing experiments. The best value is usually 0.0003. Fig. 4
shows the validation accuracy curve with regard to the four
schedules of Faster R-CNN+ResNet-50 and huge advantage
in terms of average accuracy and average recognition time. In
most cases, the performance of the two model algorithms is
better in the way of step decay. The comparison of learning
rate between the way of step decay and without step decay
are illustrated in Fig. 5. At the beginning, them adopt a
larger learning rate and keep a constant value. But then the
former starts to decay the learning rate as the epoch in the
process of approaching the optimal solution. In this case, the
former can continue to reduce the loss with finer iterations
and potentially improve the training convergence.

Then cosine learning rate is the second object we optimize.
To improve the convergence speed of gradient schemes and
deal with gradient-free optimization of multimodal functions,
I. Loshchilov and F. Hutter proposed a cosine annealing
strategy in 2016 [34]. As mentioned in [35], within the i-
th run at batch m(1 ≤ i ≤ m), the learning rate ηim of each
batch is decayed by cosine annealing, as shown in Eq. 1.
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Fig. 5. Learning Rate Schedule.

ηim = ηimin + 1
2 (ηimax − ηimin)

(
1 + cos

(
T0

Ti
π
))

, (1)

where ηimin and ηimax are the maximum and minimum
learning rates, and T0 indicates the number of epochs that has
been executed since the last restart. We take some random
values to T0 in each batch of iteration updates. The [36]
proposed to a simplified expression in the case of ignoring
the preheating stage, as the following:

ηm =
1

2

(
1 + cos

(m
T
π
))

η. (2)

Cosine decay slowly reduces the learning rate at the
beginning, then almost linearly decreases in the middle, and
again slows down at the end. The stage simulates the process
of rapid convergence of potential learning rate, and the cycle
effect brought by restart may lead to the improvement of
accuracy.

In this way, the basic learning rate is recorded as baselr,
the warmup learning rate is recorded as warmuplr. The total
epoch is fixed to 100000, and the warm up steps is 2000.
Generally, we set baselr to 0.04, 0.004, 0.0004, warmuplr
to 0.013333, 0.0013333 and 0.00013333 respectively. It is
worth noting that the actual training requires that baselr be
greater than or equal to warmuplr. In other words, the value
of warmuplr is only set to 0.0001333 when baselr = 0.004.
Different basic learning rates correspond to the same warm
up learning rate. Finally, we get three different SSD+ResNet-
50 model architectures with different learning rates. Fig. 6
and Fig. 7 show the trend of performance and learning rate
in three methods, LR1-LR3: baselr = 0.04, warmuplr =
0.00013333; baselr = 0.004, warmuplr = 0.00013333
and baselr = 0.0004, warmuplr = 0.00013333. From
these graphs above, we can conclude that the model with
warmuplr = 0.004 converges faster and performs better in
this scene.

The impact of warmuplr is non-trivial. Then we need to
obtain a suitable value of warmuplr. We fixed baselr =
0.004, warmuplr=0.0013333 or 0.00013333 respectively to
further the experiment. In Fig. 8 and Fig. 9, it is seen intu-
itively the performance of model and the learning rate with
two case: warmuplr = 0.004 and warmuplr = 0.0004.
In the same epoch, the learning speed decreases faster in
warmuplr = 0.004, the convergence speed of the model is
larger, and the precision is higher.
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V. EXPERIMENTS AND RESULTS

In this section, it mainly involves the relevant empirical
process and results. Tensorflow is a deep learning framework

TABLE II
DETAILS OF DATA SAMPLE DISTRIBUTION

Data Total pictures Total categories Number of training sets

A 3611 12 2889
B 6369 22 5040

C 9050 30 7229

D 11770 40 9407

E 27328 50 21785

to help us complete experiments. The physical environment
is three Alienware servers with 32G memory, Winow10
operating system and GTX 1070i dual-core GPU.

A. Training and Test Results

There are 21785 pictures in the training samples and 5543
pictures in the test samples in our data. Fig. 2 shows us
the imbalance of datasets. Therefore, the simple random
sampling might not be representative. This paper divides
all into four subsamples by stratified sampling according to
the category of actions, which can ensure that each class is
represented with approximately equal proportions in both the
training set and test set.

To verify and enhance the generalization ability of the
model, we divide the dataset into 50 subsets in the context.
The first subset is then selected based on the video of
different lengths until there are a total of 10 subsets. Finally,
we merge the 10 subsets and get the first novel subsample,
which is cast to A. The rest is step-wise done in the
same manner so that we can get the second subsample. We
record the subsample merged by the second subsample and
the first subsample as data B, which exist overlap. Each
subsample obtained in each round needs to be merged with
the previous subsample. In this manner, we can get data C
and D separately. The whole dataset is recorded as E in
Table. II. In addition, we also made some minor adjustments
existed overlaps to the dataset to ensure the purity of each
basic action type. The training strategy can also improve the
accuracy of our model and reduce the training time.

In Table. III, SSD+MobileNet-v1, SSD+Inception-v2,
SSD+ResNet-50, Faster R-CNN+Inception, Faster R-
CNN+ResNet-50, Faster R-CNN+ResNet-101 and Faster
R-CNN+ResNet-101 are abbreviated respectively: A1, A2,
A3, A4, A5, A6 and A7. From A to E, the inadaptability of
SSD+Inception-v2 model is particularly prominent with the
increase of action categories, while Faster R-CNN+ResNet-
50, Faster R-CNN+ResNet-101 and R-FCN+ResNet-101
have high accuracy comparing to others.

B. Verification Results and Result Analysis

Furthermore, verifying these models in real job scenario
is essential for selecting the best model. Here we preform
the verification experiment based on the whole scheme for
detection and recognition described in Sec. III-C. Table. IV
shows that R-FCN+ResNet-101 is the state-of-the-art model
under the trade-off between recognition time and accuracy.
Compared with Faster R-CNN+ResNet-50 and Faster R-
CNN+ResNet-101, R-FCN+ResNet-101 model’ accuracy is
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TABLE III
THE PERFORMANCE OF EACH MODEL ON DATA A TO E

Model
Data

A B C D E

A1
mAP 0.9770 0.9611 0.8981 0.8911 0.8793

AR 0.8687 0.8595 0.8248 0.8245 0.8149

A2
mAP 0.9348 0.8888 0.8851 0.8387 0.7261

AR 0.7236 0.6767 0.6808 0.6691 0.5711

A3
mAP 0.9806 0.9712 0.9246 0.9143 0.9110

AR 0.7236 0.8429 0.8252 0.8168 0.8038

A4
mAP 0.9995 0.9958 0.9829 0.9626 0.9454

AR 0.9073 0.9002 0.8760 0.8608 0.8410

A5
mAP 0.9988 0.9978 0.9824 0.9792 0.9648

AR 0.9256 0.9049 0.8861 0.8759 0.8670

A6
mAP 0.9992 0.9977 0.9925 0.9823 0.9769

AR 0.9381 0.9297 0.9276 0.9158 0.9099

A7
mAP 0.9883 0.9945 0.9857 0.9709 0.9645

AR 0.9285 0.9254 0.9088 0.8943 0.8860

TABLE IV
THE AVERAGE RECOGNITION ACCURACY AND TIME OF EACH MODEL

Model Average accuracy Average time(s)

SSD+MobileNet-v1 52.30% 0.11

SSD+Inception-v2 72.00% 0.01

SSD+ResNet-50 83.30% 0.19

Faster RCNN+Incption-v2 89.90% 0.18

Faster RCNN+ResNet-50 96.48% 0.24

Faster RCNN+ResNet-101 96.67% 0.40

R-FCN+ResNet-101 96.45% 0.23

almost at the same level as they are. But its detection speed
is superior to the formers, which is thanks to the design
of position-sensitive network. Thus R-FCN+ResNet-101 is
preferable for industrial pipeline operation scenario.

As empirically investigated results above, a holistic anal-
ysis can be done. The research methods in this paper can be
applied to other analogous scenarios that require semantic
recognition of the action in a short time, e.g. sign language
recognition scenario. In addition, the front-end video capture
device is easy to deploy, eliminating these dedicated action
capture devices, which provides the possibility to deploy
standard action work at large scale and low cost. The scene
has a single background and continuous, repetitive, decom-
posable action flow. The actor’s single semantic action time
is extremely short (less than 2s), requiring fast positioning
and extraction of action semantics. The main contribution is
getting a domain model with continuous and spatio-temporal
features based on object detection algorithms. Then, here
we extract the two-dimensional features of the video stream
and obtain continuous action information to be recognized
through it. Finally, these recognition actions are stitched back

to semantic information. The solution can also be migrated
to analogous industrial scenarios with these features.

For these similar scenarios, given a video sequence V ∈
Snx×ny , we confirm that these postures at the video level
with these features firstly. Then, according to the calculation
of Eq. 3, the V is cut into several clips Vclip ∈ Skx×ky (0 <
kx < nx, 0 < ky < ny). Such a sampled Vclip approx-
imates actions contained in a 2D cube of size kx × ky . For
each frame V (:, :, Ti) of V with T = (T1, T2, T3, ......Tt),
the way we compute it is like this:

Vresult(:, :, Ti) = |V (:, :, Ti)− V (:, :, Ti + ∆t)|, (3)

where Vresult(:, :, Ti) denotes the resulting sequence and
∆t is the distance of the two-time frame to compute the
difference.

Based on these features, the idea of divide and conquer can
simplify and decompose complex action objects into a tree-
like structure as in Sec. III-A mentioned, rather than directly
detecting all at one run. Then extracting the two-dimensional
information from Vresult can obtain the input Input =
(data, label),where data = {D1, D2, D3 . . . . . . , Dn} with
n instances and label = {L1, L2, L3 · · · · · · , Ln} with n
labels. In this case, we can get discretized and recognizable
action sequences C. The sequence C exhibits a certain con-
tinuity in space while having a certain degree of dispersion
in time. In the learning and inference stage, feeding the
input set Input into our model, we get the spatial action
information AS = {AS

1 , A
S
2 , A

S
3 ......A

S
n} with n instances.

Then AS×T = {AS×T
1 , AS×T

2 , AS×T
3 ......AS×T

n } is obtained
on the time stream T from AS . In this way, we can further
understand the semantic action and complete the analysis of
action specification through inference.

In Fig. 11, it is not surprising to expect that exploiting the
domain model as well could further advance the state of the
art. Here we use two sets to calculate the union operation to
visualize the model:

STM = FEfeature ∪ Ddetector. (4)

STM is the union result of feature extraction networks
FEfeature and detectors Ddetector, i.e., a domain model
with continuous and spatio-temporal features for these appli-
cation scenarios. FEfeature represents convolutional neural
networks with deep mining feature information capabilities,
such as ResNet. Ddetector involves detectors that satisfy the
following core features:

1) It has a fully convolutional image classifier backbone
that can extract end-to-end training and can extract
object semantic information, which is mainly used to
extract candidate regions in this paper. It can ensure
translation-invariance in image classification. Image
classification requires the network to have translation-
invariance. Most of the current convolutional neural
networks can do very well in classification. e.g., Faster
R-CNN and F-RCN. Faster R-CNN used RPN network
to select the proposal region, and then used Fast R-
CNN to classify. To ensure translation-variance in
object detection, Kaiming He’s research team extracted
about 2000 candidate regions according to RPN and
calculated the loss function using the full connection
layer [24]. There are some convolutions in front of
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(a) sai

(b) anya-hinge

(c) suo-song

(d) bai-zuo

(e) qu-shang(L)

Fig. 10. Detection and Recognition Results. (a)-(e) are the detection effects
of sai, anya hinge, suo-song, bai-zuo and qu-shang(L) respectively.

the RoI pooling layer for Faster R-CNN, which are
translationally invariant. Faster R-CNN and F-RCN
behave in this aspect are outstanding.

2) For translation-variance in object detection, it is nec-
essary to have a structure with a strong position-
sensitive feature that is fast in calculation. e.g., R-
FCN. In such a scenario, the similarity between ad-
jacent frames and each class is extremely high, the
degree of translation between frames is also extremely
small. Thus, the detector requires an accurate response
to the target’s translation, i.e., a structure position-
sensitive feature, and it does not incur additional
computational overhead. Although Faster R-CNN also
maintains stability as much as possible in translation-
invariance. But once the RoI pooling in Faster R-
CNN is inserted, the latter network structure loses
the feature. Then these candidate regions have a lot
of feature redundancy, resulting a costly per-region
subnetwork.In this regard, J. F. Dai, Y. Li, K. M. He
and J. Sun proposed a position-sensitive network to
generate detection boxes [25]. It can address a dilemma
between translation-invariance in image classification
and translation-variance in object detection. There are
no parameters to learn after the RoI layer, thereby
increasing the speed of the model by 2.5 to 20 times.

In R-FCN, a RoI region is divided into a K × K
(K = 3 in Fig.11) grid in equal proportion, as in [25]. Each
position(x, y, W , H) is recorded as a bin, which notes the
coding of the position-sensitive object corresponding to the
grid. For a RoI region with a size of W×H , the size of each
bin is about W

K × H
K . In the (i, j)-th bin(i ≥ 0, j < K),

a position-sensitivity RoI pooling is defined, which is to
compute the mean value of each bin in the position-sensitive
score map:

rc (i, j|θ) = 1
n

∑
Zi,j,c(x + x0, y + y0 | θ). (5)

where θ is all the parameters to be learned for the whole
network. rc (i, j|θ) represents the response value of the
object of the label at (i, j)-th bin. Zi,j,c(x + x0, y + y0 | θ),
in position-sensitivity, refers the partial features of

⌊
iWK
⌋
≤

x <
⌈
(i+ 1) W

K

⌉
and

⌊
iHK
⌋
≤ y <

⌈
(i+ 1) H

K

⌉
for each

bin. The network fuses the position information of the object
to the RoI Pooling layer, reducing the additional learning
parameters and thus improving the detection speed extremely.

RoIs
Region Proposal Network

𝑇1

𝑇2

𝑇3

Input(continuous single 

frame images over 𝑇1、
𝑇2、𝑇3 …… )

Feature Extraction

Networks(e.g. ResNet)

feature maps

Conv
Conv

Conv

S𝑜𝑓𝑡𝑚𝑎𝑥

Output 

Position-Sensitive Network

position-sensitive score maps

(𝑘 = 3)

Fig. 11. Overall architecture of the STM Model.

VI. CONCLUSION

We present a domain model with continuous and spatio-
temporal features based on object detection algorithm for this
scene, which is helpful in worker assembly line operation
scene detection, recognition and analyzing. Through it, we
get the spatial action information through video streams with
only two-dimensional information, and then complete the
action semantic recognition based on these temporal action
streams. The method is applicable to scenarios that require
semantic recognition of the action in a short time, without
any dedicated action capture devices. In the future, we will
explore more valuable information in the analysis of action
standardization, such as the recognition of workers’ equip-
ment and type classification. Besides, the lack of abundant
action types in our dataset leads to the poor generalization
ability of our recognition algorithm model. Thus, we will
extend our work to other industrial fields, which will make
it more generalized.
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