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Abstract—In this paper, an efficient numerical method for
solving a class of fractional variational problems (FVPs) is
discussed. Firstly, an operational matrix of the fractional
derivative in the Caputo sense is derived for the Chebyshev
cardinal functions. The choice of Chebyshev cardinal functions
provides flexibility for the method, and the boundary conditions
can be easily applied. Secondly, a direct method based on
the Chebyshev cardinal functions is proposed to obtain the
approximate solution of the fractional variational problems.
Finally, applicability and simplicity of the proposed method
has been shown with some illustrative examples.

Index Terms—fractional variational problems, Caputo frac-
tional derivative, Chebyshev cardinal functions, numerical
method

I. INTRODUCTION

THE fractional-order variational problem is a special
class of fractional-order optimal control problems. Re-

cently, a large number of papers have published on frac-
tional order variational problems, mainly involving Euler-
Lagrange equations [3-5] and numerical methods [6-11] us-
ing Riemann-Liouville or Caputo derivatives. Under different
boundary conditions, the transversal conditions of Euler-
Lagrange equations and fractional-order variational problems
prevails. Agrawal [1,2] once generalized the Euler-Lagrange
equations and transversal conditions of the functionals with
Riemann-Liouville and Caputo derivatives under different
boundary conditions.

However, how to solve the fractional variational problems
is the most important. There are two major methods, one is
to use the Euler-Lagrange equations, which needs necessary
optimality condition to simplify the variational problem, so
as to further study the differential equation. After that, we
can use analytical or numerical methods to solve differential
equations and obtain the solutions to the original problem.
This method is called the indirect methods. For example,
spectral methods [6-7][12], Ritz’s methods [13], neural net-
works methods [14] and pseudospectral schemes [15].

In spectral methods, we either approximate admissible
functions by all possible linear combinations yN (t) =∑N
i=i aiφi(t), with constant coefficients ai and a set of
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known base functions φi, or we approximate the admis-
sible functions with such combinations. We can use the
appropriate discrete approximation of the Lagrangian, and
replace the integral with a sum to convert the main problem
to the optimization of functions of multiple parameters.
Spectral approximation [7], [12] requires that the solution
of the considered fractional differential equation must be
sufficiently smooth so that the desired accuracy can be
achieved. In particular, most of the works related to spectral
methods are based on polynomials. Since the analytical
solutions of fractional-order differential equations is usually
not smooth even for well-behaved inputs, their regularity
is limited in the usual Sobolev space.When the solution is
smooth enough, the Chebyshev polynomials [16-19] can be
used as an approximate basis for the spectral methods of
fractional differential models.

At present, research on the use of approximation cardinal
functions [16-19] to deal with various problems has attracted
more and more attention. In this paper, we intend to extend
the application of the Chebyshev cardinal functions to solve
fractional variational problems. By using the cardinality
property of these cardinal functions, a new method for cal-
culating the nonlinear equations is proposed, which greatly
simplifies the problem. In addition, a new direct method
based on the Chebyshev cardinal functions is proposed to
obtain the approximate solution of the fractional variational
problems. The proposed method approximates the solution of
the mentioned problem by minimizing the integral over linear
combinations set of certain basis functions. The cardinal
functions are select to make them linearly independent and
satisfy the homogeneous initial or boundary conditions.

The structure of this paper is as follows. In Section II,
we review the basic definitions and properties of the frac-
tional calculus theory. In section III, we briefly review the
operational matrix of fractional derivative of the Chebyshev
cardinal functions. In section IV, a numerical method is
proposed to solve the fractional variational problems. In
Section V, several numerical examples are given and solved
by this proposed method. In the end, Section VI gives the
conclusion.

II. PRELIMINARIES

In this section, we express some basic definitions of
fractional calculus theory. Moreover, we briefly review the
rudiments of the Chebyshev cardinal functions.

A. Preliminaries on fractional calculus theory

Some basic definitions and properties of the fractional
calculus theory are introduced as follows.

Definition 1 [22]. A real function f(t), t > 0, is said
to be in the space Cα, α ∈ R, if there exists a real number
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p > α, such that f(t) = tpf1(t), where f1(t) ∈ C[0,∞),
and it is said to be in the space Cmα , m ∈ N

⋃
{0}, if and

only if f (m)(t) ∈ Cα.
Definition 2 [22]. For an arbitrary function f(t) ∈ Cα,

α ∈ R, the Riemann-Liouville fractional integral operator of
order α > 0 is defined as

Iαf(t) =

{
1

Γ(α)

∫ t
0

f(s)
(t−s)1−α ds, α > 0, t > 0,

f(t), α = 0,
(1)

where Γ(α) is the well-konwn Gamma function.
For the Riemann-Liouville fractional integral we have

1.Iαtβ =
Γ(β + 1)

Γ(β + α+ 1)
tα+β , β > −1,

2.Iα(λf(t) + µg(t)) = λIαf(t) + µIαg(t),

where λ and µ are real constants.
Definition 3 [22]. The Riemann-Liouville fractional

derivative of f(t) ∈ Cα, of order α is defined as

Dαf(t) =
dm

dtm
Im−αf(t), m− 1 < α < m,m ∈ N. (2)

Definition 4 [22]. The Caputo fractional derivative of
f(t) ∈ Cmα , m ∈ N ∪ 0, is defined as

Dα
∗ f(t) =

{
Im−αf (m)(t), m− 1 < α < m,m ∈ N,
dm

dtm f(t), α = m.
(3)

Some properties ([22]) of the operator Dα are as follows,

1.DαIαf(t) = f(t),

2.Dαtβ =


0, α ∈ N0, β < α,

Γ(β + 1)

Γ(β + 1− α)
tβ−α, otherwise,

3.DαC = 0,

4.Dα(λ1f(t) + λ2g(t)) = λ1D
αf(t) + λ2D

αg(t), (4)

where λ1, λ2 and C are real constants. Also, if α ∈ R, n−
1 < α ≤ n, n ∈ N then

Dα(f(t)) = In−αDnf(t). (5)

The Caputo fractional derivative is considered here because
it allows traditional initial and boundary conditions to be
included in the formulation of problem.

B. Chebyshev cardinal functions and their properties

Chebyshev cardinal functions of order N in [-1,1] are
defined as [18], [19]

φj(x) =
TN+1(x)

T
′
N+1(xj)(x− xj)

, j = 1, 2, · · · , N + 1, (6)

where TN+1(x) is the first kind Chebyshev polynomial of
order N + 1 in [-1,1] defined by

TN+1(x) = cos((N + 1) arccos(x)), (7)

and xj , j = 1, 2, · · · , N + 1, are the zeros of TN+1(x)
defined by cos(2j− 1)π/(2N + 2), j = 1, 2, · · · , N + 1. We
change the variable t = (x+ 1)/2 to use these functions on

[0, 1]. Now any function f(t) on [0, 1] can be approximated
as

f(t) ≈
N+1∑
j=1

f(tj)φj(t) = FTΦN (t), (8)

and tj , j = 1, 2, · · · , N + 1, are the shifted points of xj , j =
1, 2, · · · , N + 1 as follows

tj = −b− a
2

cos(
(2j − 1)π

2(N + 1)
)+
b+ a

2
, j = 1, 2, · · · , N+1.

(9)
F = [f(t1), f(t2), · · · , f(tN+1)]T ,

ΦN (t) = [φ1(t), φ2(t), · · · , φN+1(t)]T . (10)

Note that the functions φj(t) satisfy in the relation

φj(ti) = δj,i =

{
1, j = i,

0, j 6= i,
i, j = 1, · · · , N + 1.

So we have

ΦN (tj) = ej , j = 1, · · · , N + 1, (11)

where ei is the ith column of unit matrix of order N + 1.
Also, an arbitrary function g(x, t) on ([0, 1] × [0, 1]) can

be approximated by Chebyshev cardinal functions

g(x, t) ≈ ΦTN (t) ·G · ΦN (x) (12)

where

[G]i,j = g(tj , ti), i, j = 1, 2, · · · , N + 1. (13)

III. ANALYSIS OF THE METHODS

In this section, we briefly review the method of solving
fractional differential equations with the Chebyshev cardinal
functions.

A. The operational matrix of derivative
The differentiation of vector ΦN in Eq.(10) can be ex-

pressed as
Φ
′

N = DΦN , (14)

where D is (N + 1) × (N + 1) operational matrix of
derivative for Chebyshev cardinal functions.

It is shown [18], [19] that the matrix D is the form

Dα =

 φ
′

1(t1) · · · φ
′

1(tN+1)
...

. . .
...

φ
′

N+1(t1) · · · φ
′

N+1(tN+1)

 , (15)

where

φ
′

j(tj) =
N+1∑
i=1
i6=j

1

tj − ti
, j = 1, · · · , N + 1.

and if j 6= k, then

φ
′

j(tk) =
β

T
′
N+1(tj)

N+1∑
l=1
l 6=k,j

(tk − tl),

j, k = 1, · · · , N + 1.

(16)

and
β = 22N+1/LN+1. (17)

Note that
TN+1(t)

t− tj
= β

N+1∑
k=1
k 6=j

(t− tk). (18)
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B. The operational matrix of fractional derivative

The fractional differentiation of vector ΦN (t) in Eq.(9)
can be expressed as [17], [19]

D(α)ΦN = DαΦN , (19)

where Dα is (N + 1) × (N + 1) operational matrix of
fractional derivative for Chebyshev cardinal functions.The
matrix Dα can be obtained by the following process. Let

D(α)ΦN (t) = [φα1 (t), φα2 (t), · · · , φαN+1(t)]T . (20)

Note that
TN+1(t)

t− tj
= β ×

N+1∏
k=1
k 6=j

(t− tk). (21)

Using Eqs.(2), (10) and (21) the function φαj (t) can be
approximated as

φαj (t) = β × 1

T
′
N+1(tj)

(
N+1∏
k=1
k 6=j

(t− tk))(α) (22)

Let
T = [1, t, t2, · · · , tN ]T (23)

then Eq.(9) results in

ΦN (t) = [φ1(t), φ2(t), · · · , φN+1(t)]T = AT, (24)

where A is (N+1)×(N+1) operational matrix of coefficient
for Chebyshev cardinal functions.

Because of orthogonality of φj(t), j = 1, · · · , N + 1, this
matrix is invertible. From Eq.(4) and for 0 ≤ α < 1, we get

D
(α)
t T = [0,

Γ(2)

Γ(2− α)
t1−α,

Γ(3)

Γ(3− α)
t2−α,

· · · , Γ(N + 1)

Γ(N + 1− α)
tN−α]T

= t−αD1T,

(25)

where D1 is (N + 1)× (N + 1) matrix of the following
form

D1 =


0 0 · · · 0

0 Γ(2)
Γ(2−α) · · · 0

0 0 · · · 0
...

...
. . . 0

0 0 · · · Γ(N+1)
Γ(N+1−α)

 . (26)

If 1 ≤ α < 2 then the second rows of D1 is zero and etc.
Using Eq.(23) we have

Dα
t ΦN (t) = ADα

t T = t−αAD1T. (27)

A is invertible, so

Dα
t ΦN (t) = t−αAD1A

−1AT = t−αAD1A
−1ΦN (t).

(28)
Hence

Dα
t ΦN (t) = DαΦN (t), (29)

where
Dα = t−αAD1A

−1.

IV. THE FRACTIONAL VARIATIONAL PROBLEM

In this section, we give a numerical technique for obtain
the extremal values of functionals of the general form

J [y] =

∫ 1

0

F (t, y(t), Dβy(t), Dαy(t))dt,

n− 1 < α ≤ n, 0 ≤ β ≤ α,
(30)

with the boundary conditions

y(j)(0) = κj , y(j)(1) = ηj , j = 0, 1, · · · , n− 1.
(31)

Here F is a linear or nonlinear function. To develop the
formulation for the general form(30), we follow the following
steps:

1) We use Eqs.(8), (23), (24) and (25) to approximate the
function ym(t) as

ym(t) = CTΦN (x), (32)

where C is (N + 1) unknown vector as C =
[C1, C2, · · · , CN+1]T and should be found.

2) Now, using Eqs.(9) and (10) we can obtain C and ΦN .
3) Substitute Eq.(32) in Eq.(30), then the general form of

Eq.(30) is transformed to the following approximated form

J [ym] =

∫ 1

0

F (t, ym(t), Dβym(t), Dαym(t))dt. (33)

4) Approximate the boundary conditions, as

y(j)(0)− κj ∼= y(j)
m (0)− κj = 0,

y(j)(1)− ηj ∼= y(j)
m (1)− ηj = 0,

j = 0, 1, · · · , n− 1. (34)

where

y(j)(t) ∼= ym(t) = CTΦN (x), j = 0, 1, · · · , n− 1. (35)

Then, let

GT =[ym(0)− κ0, y
(1)
m (0)− κ1,

· · · , y(n−1)
m − κn−1, ym(1)− η0,

· · · , y(n−1)
m (1)− ηn−1],

(36)

where G is a 2n× 1 vector. Consider
J∗[a0, a1, · · · , am, µ1, µ2, · · · , µ2n]

= J [a0, a1, · · · , am] +GTµ,
(37)

where
µ = [µ1, µ2, · · · , µ2n]T , (38)

is the unknown Lagrange multiplier vector.
5) The necessary conditions for the extremum of functions

of the general form Eq.(30) are
∂J∗

∂ai
= 0, i = 0, 1, · · · ,m,

∂J∗

∂µi
= 0, i = 1, 2, · · · , 2n,

(39)

which give a system of m+ 2n+ 1 algebraic equations with
m+ 2n+ 1 unknowns.

6) Solve the resulting algebraic system by New-
ton’s iterative method, to obtain the unknown coefficient
a0, a1, · · · , am, then the approximation of the function y
which gives the extremes of Eq.(30) is

ym(t) = CT .ΦN (x) (40)
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V. NUMERICAL EXAMPLES

In this section, we provide some numerical results to
test the new method. The computations were performed in
Maple18 on a personal computer.
Example 1. Consider the following FVP: find the extremum
of the fractional [20]

J [y] =

∫ 1

0

(
D0.5y(t)− 2

Γ(2.5)
t1.5
)2

dt, (41)

under the following boundary conditions

y(0) = 0, y(1) = 1. (42)

The exact solution of this problem is y(t) = t2.
Here, we solved this problem using the method proposed

in Sec.IV. When solving this problem, we achieve the
approximate solution of y(t) at N = 4. In [20], the authors
introduced a direct numerical solution of this problem by
using the finite difference method together with the Euler-
like direct method (E-LDM) and did not achieve any accurate
approximations of the function y(t) unless a large number of
N (N is increased up to 30) is used. In Table I, we present a
comparison between the maximum absolute errors (MAEs)
of the function y(t) achieved here with those achieved in
[20]. Finally, Fig.1 plots the absolute error function (AEF)
of the function y(t) at N = 4 for obtaining the level of
accuracy of the new technique.

TABLE I
COMPARISON BETWEEN OUR METHOD WITH THE E-LDM IN [20] FOR

EXAMPLE 1

E-LDM in [20] Our method

N MAEs N MAEs

5 0.0264 4 2.816× 10−4

10 0.0158 - -
30 0.0065 - -

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Fig. 1. AEF of y(t) with N = 4 for Example 1

Example 2. Consider the following FVP: find the extremum
of the functional [21]

J [y] =
1

2

∫ 1

0

(
Dαy(t)− Γ(1 + β)

Γ(1 + β − α)
tβ−α

)2

dt, (43)

under the following boundary conditions

y(0) = 0, y(1) = 1. (44)

In this case the exact solution is y(t) = tβ .
In [21], the authors consider this problem and applied the

Jacobi polynomials for getting its optimal solution. In Table
II, we compare the MAEs achieved using our numerical
approach with other method in [21] for α = 0.39, 0.59, 0.79
and β = 3 at N = 4. In addition, Fig.2 plots the AEF of
the function y(t) for α = 0.59 and β = 3 at N = 4. At
the end, in Table III, we introduce the absolute errors (AEs)
achieved using our numerical approach with N = 4 and
different choices of α and β = 0.8.

TABLE II
COMPARISON BETWEEN OUR METHOD WITH THE OTHER METHOD IN

[21] FOR EXAMPLE 2

α MAES[21] MAEsour method

0.39 1.31× 10−4 7.64× 10−5

0.59 8.82× 10−5 8.84× 10−5

0.79 4.34× 10−5 5.86× 10−5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Fig. 2. AEF of y(t) for α = 0.59 and β = 3 at N = 4 for Example 2

TABLE III
AES OF y(t) WITH N = 4 AND DIFFERENT CHOICES OF α AND β = 0.8

FOR EXAMPLE 2

t α = 0.25 α = 0.50 α = 0.75

0.0 5.00× 10−11 2.00× 10−11 1.00× 10−11

0.1 4.78× 10−3 1.95× 10−3 1.25× 10−3

0.2 2.92× 10−3 5.91× 10−3 6.98× 10−3

0.3 3.77× 10−3 5.68× 10−3 6.78× 10−3

0.4 8.11× 10−4 1.51× 10−3 2.33× 10−3

0.5 2.34× 10−3 2.35× 10−3 2.02× 10−3

0.6 3.28× 10−3 3.19× 10−3 3.48× 10−3

0.7 1.31× 10−3 4.63× 10−4 1.31× 10−3

0.8 2.36× 10−3 4.13× 10−3 2.97× 10−3

0.9 4.54× 10−3 6.46× 10−3 5.49× 10−3

1.0 6.00× 10−9 1.40× 10−8 1.00× 10−9

Example 3. Consider the following FVP: find the extremum
of the functional [12]

J [y] =

∫ 1

0

(
Dαy(t)− Γ(2α+ 3)

α+ 3
tα+2 − Γ(α+ 2)t

)2

dt,

(45)
subjected to

y(0) = 1, y(1) = 3. (46)

with exact solution y(t) = t2α+2 + tα+1 + 1.
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In [12], the authors using shifted Legendre orthonormal
polynomials to getting its optimal solution. In Table IV, we
compare the MAEs achieved using our approach at different
values of α with other method in [12]. Obviously, from Fig 3,
we can deduce that a good approximation of the function y(t)
may be achieved by using the Chebyshev cardinal functions.

TABLE IV
COMPARISON BETWEEN OUR METHOD WITH THE OTHER METHOD IN

[12] FOR EXAMPLE 3

α MAEs[12] MAEsour method

0.30 3.998× 10−3 2.983× 10−3

0.60 2.874× 10−3 1.830× 10−3

0.90 7.767× 10−4 4.864× 10−4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

1.0

1.5

2.0

2.5

3.0

3.5

y(
t)

α=0.3
α=0.6
α=0.9
exact

Fig. 3. Comparison of y(t) for α = 0.30, 0.60, 0.90 with exact solution
at N = 4 for Example 3

VI. CONCLUSION

In this paper, we studied an efficient and simple method to
solve a class of fractional variational problems. Utilizing the
method based on Chebyshev cardinal functions, we derived
operational matrix of the fractional integration. We approxi-
mately solved the above-mentioned problems by minimizing
the integral on the linear combination set of some basis
functions. The Chebyshev cardinal functions were selected to
make them linearly independent and satisfy the homogeneous
initial or boundary conditions. The results show that this new
method can solve this kind of problems effectively.
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