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Abstract—Pigmented skin lesions can be benign or malignant,
such as skin cancer. Malignant melanoma is the most dangerous
kind of skin cancer, and it causes 75% of related deaths. Early
diagnosis can result in preserving the lives of most patients,
but in most countries, the analysis is done based on a manual
inspection by specialists, which can be inaccurate. Digital
dermatoscopy is a non-invasive methodology that allows in-
vivo evaluation of different skin conditions at the macroscopic
level using histological features, and it can be automatised by
means of computational tools. In this paper, we propose a U-
Net-based architecture including morphological layers, called
Morpho-U-Net, for the automatic segmentation of skin lesions.
The output of this architecture consists of binary masks that can
be used to separate the lesions from the rest of the dermoscopy
image and can serve as input for either human-based analysis
or other algorithms for skin lesion classification. Our strategy
was tested on the ISIC 2017, ISIC 2018, and NH2 data-sets.
Our experiments showed that our work is above several state-
of-the-art proposals, with an average thresholded Jaccard score
of 0.93. Furthermore, we believe our architecture could be used
as the basis for addressing other image segmentation problems.

Index Terms—Melanoma, visual computing, machine learn-
ing, auto-encoders, deep learning.

I. INTRODUCTION

Melanoma is a type of skin cancer which constitutes one
of the main causes of skin cancer mortality. Every year,
melanoma causes up to 66.000 deaths worldwide [1], [2],
[3], including around 75% of skin cancer-related deaths in
Colombia [4]. Autier and Doré [5] categorize melanoma as
a highly dangerous disease. Furthermore, it is one of the
illnesses to which humans are the most exposed, since it
is often caused by exposure to solar radiation [6]. This is
the case for regions where sunlight incidence is high, such
as the Caribbean coast of Colombia. Most manifestations
of melanomas are pigmented skin lesions, as observed in
Figure 1, so they are often detected and diagnosed by experts
through the visual analysis of dermoscopy images [7].

Albeit common, melanoma is not the only type of skin
cancer. Basal cell carcinomas also exist, which appear as
sores and other skin lesions. Health researchers have studied
basal cell carcinomas and determined that they are the type
of cancer that is both the most prevalent and the easiest
to treat [8]. Other relevant skin lesions include squamous
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Fig. 1: Pigmented skin lesions indicating the presence of
melanomas [1].

(a) (b)

Fig. 2: (a) A basal cell carcinoma case, (b) A melanoma case
[1].

cell carcinomas (Bowen’s disease), benign keratosis, benign
fibrous histiocytoma, melanocytic nevus, and benign vascular
lesions in general [3].

Mortality rates for melanoma are much higher than those
related to other skin lesions. However, they often manifest
themselves similarly on the skin (see Figure 2). This makes
it harder for medical specialists to detect skin cancer, forcing
them to resort to slower, costlier procedures (e.g., molecular
analysis of the affected tissue) in order to classify skin lesions
[9]. In turn, an incorrectly classified skin lesion results
in incorrect treatment and, sometimes, in patient death. In
contrast, the benefits of early detection allow most patients
to outlive melanoma if it is detected in time [10].

The importance of correctly detecting skin lesions is such
that many competitions have been organized in order to
motivate the development of algorithms capable of auto-
matically discriminating melanomas from other lesions. One
such example is the ISIC 2018 competition [1]. The goal
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of this challenge was to correctly segment and classify the
HAM10000 data-set, which comprises 10.015 labeled and
anonymized dermoscopy images of skin lesions. Of these,
1.099 correspond to melanoma lesions, while the rest belong
to the categories described in Figure 3 [11]. Furthermore,
2.600 of the images in the HAM10000 dataset have ground-
truth segmentation masks, where pixels belonging to the
lesion (foreground) are labeled as 1, and healthy skin pixels
(background) are labeled as 0.

Another dataset which has been widely employed in the
literature is the PH2 dataset [12], which comprises 200 im-
ages divided into three categories: common lesions, atypical
nevi, and melanoma. Thanks to these datasets, it is con-
siderably easier to develop algorithms for segmenting skin
lesions, as there are no ethical considerations with respect to
confidential patient information. Although no datasets like
HAM10000 and PH2 have been released in Colombia, the
amount of data in publicly available datasets is enough for
both developing and testing new algorithms.

Equally relevant for the analysis of pigmented skin lesions
is the description of the image acquisition method. Both data-
sets we employ in this work consist of images acquired by
means of dermoscopy imaging. There exist two main types of
dermoscopy devices used in practice [13]: immersion fluid
dermoscopes and cross-polarized light dermoscopes. Most
dermoscopes can be easily attached to digital cameras, and
although the physical principles are outside the scope of this
work, both categories capture images unaffected by most
bodily fluids and allow the user to zoom-in and visualize
many structures in skin lesions, such as globules, streaks,
or pigment networks. Furthermore, the acquisition system
greatly enhances contrast between the lesion and healthy
skin, as well as between the lesion and itself and healthy skin.
A prevalent issue, however, is that hairs, air bubbles, or ruler
markings can make it harder for computer vision algorithms
to correctly segment the images if no preprocessing is carried
out [13].

One of the most employed criterions today for early
melanoma detection is the ABCDE rule, which was designed
for humans to analyze skin lesions based on several visual
cues: (A) Asymmetry, (B) irregularity of borders, (C) pres-
ence of specific colors, (D) lesion shape and size, and (E)
evaluation of the lesion evolution over time [14]. In Colombia
and most of Latin America, many skin cancer studies still
rely on similar criterions [15][16][17]. Since automatization
is not yet widespread in the Colombian health sector, it is of
great interest to develop tools for automatizing this task in
the local context.

Many systems for computer-aided skin lesion diagnosis
exist in the literature [18][19][20], and some have greatly
facilitated detection of skin cancer by dermatologists. Some
challenges remain, however, in that dermoscopy images often
have issues that make it difficult for computers to discrim-
inate lesions from healthy skin. These include presence of
hair, variations in skin tonality among patients, reflections,
and oil bubbles, among other noise sources [1][18].

There exist multiple image segmentation approaches in the
literature [18][21][22][23]. Traditional segmentation methods
are based on typical digital image processing techniques and
have proven useful for problems with partly controlled con-
ditions such as melanoma segmentation. More modern deep

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3: Disease classification of pigmented skin lesions within
dermoscopic images, (a) Nervus, (b) Dermatofibroma, (c)
Melanoma, (d) Pigmented Bowen’s, (e) Pigmented benign
keratoses, (f) Basal cell carcinoma, and (g) Vascular lesion
[1].

learning approaches, however, have been proven to be more
efficient in recent melanoma segmentation challenges, as they
can fit extremely complex functions [24]. Even among deep
learning techniques, there exist several approaches for image
segmentation, of which autoencoders are the most efficient.
The reason is they require relatively small training sets and
can be trained (and deployed) faster than other architectures
such as the FCN [25].

In this paper, we propose a U-Net-based, morphological
autoencoder deep learning architecture for segmenting skin
lesions from healthy skin. The output from this architecture
consists of binary masks that can be used to separate the
lesions from the rest of the dermoscopy images. Such masks
can serve as input for either human-based analysis or other
algorithms for skin lesion classification.

The paper is organized as follows: in Section 2, we ex-
plore previous work on pigmented skin lesion segmentation.
Section 3 centers around the proposed methodology. Sections
4 comprises our results and discussion, while in Section 5
we provide some conclusions and insight for future work.

II. PREVIOUS WORK

Based on our review of previous work, methods for cuta-
neous skin lesion segmentation can be categorized into one
of two categories: traditional segmentation methods and deep
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learning-based segmentation methods. While the latter have
become more popular recently, the traditional approaches are
still employed with good results by many researchers.

A. Traditional segmentation methods

This category comprises all methods based on digital
image processing techniques such as thresholding, mathemat-
ical morphology, graph-cuts, and super-pixel merging, among
others. Despite varying considerably in the way segmentation
is carried out, they do not require using any training data and
have reduced execution times, making them stand out when
performance is critical [18].

Traditional segmentation methods achieve high segmenta-
tion accuracy when the conditions are appropriate. However,
dermatologists currently do not have a standardized acqui-
sition protocol, meaning they take pictures with different
resolutions, zoom-levels, and illumination conditions [26].
Thus, in most cases, there is not enough contrast between
the lesions and healthy skin in the input image. In addition,
body hair might occlude some details. Such conditions make
it harder to correctly segment image regions, causing many
of the traditional methods to fail unless the image is properly
preprocessed [27]. For instance, Bi et al. [27] used hair
templates at 12 orientations in order to detect hair and then
replaced the associated pixels with non-hair pixels derived
from neighboring pixels.

Patiño et al. [18] developed a segmentation method which
does not require preprocessing steps such as hair removal
or lighting correction. The method is based on super pixel
segmentation, which means they first over-segment the image
into super pixels (sets of pixels grouped into units with
similar features) prior to merging them based on some
criteria. They employed the SLIC (Simple Linear Itera-
tive Clustering) super pixel segmentation algorithm. SLIC
clusters pixels based on the k-means algorithm, where the
considered features are color intensities weighted by an alpha
factor. The authors segmented RGB dermoscopic images
with parameter k set as 400 empirically. The SLIC output is a
label image, where each label corresponds to one super pixel
and for each label there is a list of properties derived from the
RGB intensity values, such as mean color, total color, and the
pixel count. Such properties are then employed to merge the
super pixels into two regions: background and foreground.
The method was evaluated on the ISIC 2017 [24] and PH2
[12] datasets with results comparable to several state-of-the-
art proposals, albeit the algorithm failed to correctly segment
lesions comprised by two or more unconnected regions.

Lezoray et al. [28] developed a multispectral graph-based
skin lesion segmentation method. For preprocessing, the
method can detect hair on infrared images (hair is darker
than the surrounding zones on IR images) and remove it
by inpainting on the visible spectrum images. Additionally,
light reflection areas are detected with a comparison between
the blue intensity level for each pixel and the average blue
intensity in its neighborhood. Then, the pixel is inpainted
with the proposed inpainting method. After preprocessing the
image, the authors over-segment the image into superpixels
using the Eikonal-based Region Growing Clustering algo-
rithm (ERGC). They then use a graph-based regularization
approach for optimizing the boundaries between super-pixels

first, and then between single pixels, making segmentation
more precise. The algorithm was evaluated on a set of
multispectral images acquired from the Grenoble Hospital,
and it achieved a sensitivity of 0.9362, a specificity of
0.9854, and an error probability of 0.0279.

B. Deep learning-based segmentation methods

Although there exist several approaches for deep learning,
the most common of them is to employ Artificial Neural
Networks (ANNs) [29][30]. ANNs are supervised machine
learning algorithms consisting of several layers of nodes
called artificial neurons. Nodes are connected by weights:
signal-transmitting connections which allow the network to
model arbitrary functions. Except for input nodes, ANN
nodes contain activation functions for processing incoming
data. The layers can be classifying into three categories:

• Input layer: consists of input nodes representing input
data and dimensionality.

• Hidden layers: they consist of nodes whose activation
functions receive high-dimensional input and reduce
dimensionality.

• Output layer: consists of one or more nodes represent-
ing the target function.

ANNs can learn patterns by processing labeled data. Each
training iteration adjusts weight values through a process
comprised by two steps: forward-propagation and back-
propagation. In forward propagation, the input is run through
each layer l. Each layer is comprised by a linearity and an
(optional) activation function g through which the data (either
input data X or the output of a previous layer A[l−1]) is
passed prior to being fed to the next layer, thus:

Z [l] = W [l]A[l−1] + b[l] (1)

A[l] = g(Z [l]) (2)

Where W [l] is the weight tensor associated to the connection
between layer l and layer l − 1, b[l] is the bias term, A[l−1]

is the activation tensor output by layer l − 1, and g() is a
non-linear activation function.

The final step of forward-propagation is to calculate pre-
diction loss. This usually done by evaluating a given loss
function on the activations output by the last layer. In bi-
nary segmentation and classification problems, the activation
function for the last layer is usually a logistic function which
outputs values between 0 and 1 for the prediction ŷ (Eq. 3)
and the loss function is the binary cross-entropy function L
(Eq. 4). The total cost J is the average of the loss function
L evaluated on the full dataset (Eq. 5).

ŷ(i) =
1

1 + e−z(i)
(3)

L(i) = −(y(i) log (ŷ(i)) + (1− y(i)) log (1− ŷ(i))) (4)

J =
1

M

M∑
i=1

L(y(i) − ŷ(i)) (5)

For a training set with M training examples, where z(i) is
the output of function (Eq. 1) for the last hidden layer, ŷ(i)
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is the predicted value, and y(i) is the ground truth value, for
training example i. In the case of image segmentation, ŷ(i) is
a segmentation mask for image i and loss L is the average of
function (Eq. 5) for the pixels in the predicted segmentation
mask and the ground truth segmentation mask.

Back-propagation consists in minimizing prediction loss
as a function of the weight and bias values by means of
optimization algorithms. One of the most basic optimization
methods is batch gradient descent, where the weights are
updated once for every training iteration (epoch) based on
the whole dataset, as in (Eq. 6). Once the training process
finishes, the ANNs can predict labels or calculate regressions
for previously unseen data.

In batch gradient descent, the weights and bias terms are
updated as in (Eq. 6) and (Eq. 7).

Wnext = W − δ∆W (6)

bnext = b− δ∆b (7)

Where Wnext is the updated weight tensor, W is the current
tensor value, bnext is the updated bias term, b is the current
bias term, δ is the learning rate (a hyperparameter of the
network that determines how fast weights should be updated),
and ∆W and ∆b are the gradients for W and b respectively.

Due to the lack of computational resources and sufficiently
solid backpropagation methods, researchers believed there
was no benefit in going beyond a couple hidden layers.
As they overcame these obstacles, they now propose deep
learning (DL) techniques [31]. Deep neural networks consist
of a succession of many hidden layers, allowing us to model
computationally complex problems with relative ease [31].

The deep networks which are employed the most for
image-based deep learning are Convolutional Neural Net-
works (CNNs), whose multi-layered structure stores deep
visual features in the form of convolutional filters. CNNs, as
well as other kinds of deep architectures, can be employed for
different tasks in the pigmented skin lesion characterization
pipeline, including lesion segmentation, dermoscopic feature
detection, and disease classification [20][26][32].

The structure of layers in convolutional neural networks
is different from that of traditional neural networks. Instead
of a having hidden layer nodes, the hidden layers comprise
trainable convolutional filters, which are applied similarly to
traditional edge detection filters, and non-trainable pooling
filters which can be employed for reducing dimensionality in
the height and width dimensions when going deeper into the
network. Such filters are usually not fully connected, mean-
ing that each filter handles localized information, greatly
reducing computational costs and making it easier for the
neural network to learn relevant features. In this way, the
input data X is transformed and stacked into differently
shaped volumes of data when passed through the layers.
One of the earliest implementations of a convolutional neural
network is the Le-Net 5, which was employed for document
recognition and includes convolutional layers, pooling layers,
and standard fully-connected layers [33].

The result of a applying a convolutional layer on the input
data is described thus:

A[l] = g(W [l] ∗X + b[l]) (8)

Where ∗ is the convolution operator, g(.) is a non-linear
activation function, W is the weight tensor, b is the bias,
and A is the output of the layer l. The convolution operation
is also based on the stride s and padding p parameters, as
well as kernel size k, which all determine the shape the data
takes after being passed through a convolutional layer. The
relationship between an input channel of height and width i,
and the height and width o of the output, is defined by:

o =

∣∣∣∣ i+ 2p− k
s

∣∣∣∣+ 1 (9)

The max-pooling operation is also defined based on stride
s and padding p. It consists in passing a sliding window over
each channel of the input volume such that the pixels in each
channel of the output volume are the maximum value in each
neighborhood specified by s, p, and k, thus:

o =

∣∣∣∣ i− ks
∣∣∣∣+ 1 (10)

Another important operation in our architecture is the
transposed convolution operation, which maps lower dimen-
sional into bigger higher dimensional content by reverting
the order of the forward and backward passes in the standard
convolution, thus enabling us to generate segmentation masks
at the resolution of our input images.

When carrying out segmentation, deep CNNs with an
autoencoder architecture are often employed [26][32]. Au-
toencoders learn to compress data and to reconstruct it in
diverse manners depending on the objective function. In the
case of segmentation, they learn to assign a label (e.g., 0:
background, 1: foreground) to every pixel in the image [21].

Zhang et al. [32] employed a deep autoencoder network
for segmenting pigmented skin lesions. The autoencoder
comprises multiple convolutional/pooling layers for the en-
coder part and dropout/up-sampling layers for the decoder
part. The authors employed non-linear ELU activation func-
tions between each hidden layer and a soft-max layer for
the flattened output layer. Furthermore, the authors employed
batch normalization in order to increase training speed.
The network was trained with the dataset provided in the
2017 ISBI Challenge on Skin Lesion Analysis Towards
Melanoma Detection [24] and achieved 0.95 sensitivity and
0.94 specificity, making it more accurate than architectures
such as SegNet [21] and FCN [25].

Attia et al. [26] proposed a hybrid autoencoder method
where convolutional and recurrent hidden layers are em-
ployed and no pre/post processing is necessary. The architec-
ture encodes input images using seven convolutional layers
and two max-pooling layers. The encoded feature maps from
the convolutional layers are fed into two LSTM layers, which
model backward and forward spatial relationships between
pixels along the x and y-axes. This is done by processing the
input data as flattened non-overlapping patches. The network
then extracts the information on deep encoded featured maps
to reconstruct the segmentation mask at the same resolution
of the input images. A segmentation accuracy of 0.98 and an
associated raw Jaccard index of 0.93 were achieved on the
dataset provided for the first task of the ISBI 2016 challenge
[34].
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III. MATERIALS AND METHODS

The methodology followed in this paper is comprised of
several steps. First, preprocessing (resizing and normaliza-
tion) is carried out on a dataset comprised of the images in
the ISIC 2018 and PH2 datasets. Then, a modified version of
the U-Net architecture with morphological layers is trained
on the dataset and used to segment the images. Finally, post-
processing in the form of thresholding is carried out to get
binary segmentation masks. This process is summarized in
Figure 4, while the detailed network architecture is depicted
in Figure 6.

A. Preprocessing

Our main preprocessing step consisted of normalizing the
dataset by subtracting the mean of the dataset and dividing it
by the standard deviation of the dataset for every image, as
shown in Eq. (11). This is done as per the literature in order
to improve performance by sending only centered, whitened
data to the network [29], thus:

Xnormed =
X − X̄
σ2
x

(11)

The other preprocessing steps were to resize every image
in the dataset to a resolution of 256x256x3 pixels and to
split the dataset as shown in Table I.

In the literature, there exist several proposals in which
the authors carry out significant preprocessing prior to seg-
menting images with deep learning architectures [35][36],
whereas others apply some degree of postprocessing on the
resulting binary masks. Although preprocessing does result
in improved results for images with defects such as hair
occlusion, it must be adequately tuned and might result in
reduced accuracy for images with little or no noise. For this
reason, we include both preprocessing and postprocessing
in the form of morphological layers at both ends of the
network. Other than resizing and normalization, the only step
of the pipeline outside of the deep learning framework is
thresholding, which is further described at the end of this
section.

B. Autoencoder architecture

An autoencoder is a type of neural network model com-
prised of a codifier and a decodifier (see Figure 5). The main
task of such networks is to learn a compressed representation
of a given input that can be later used to decodify it in a
specific way. Just as other neural network architectures have
been employed to map non-linear relationships between data
and response variables, autoencoders have been employed in
the literature as a non-linear method (as opposed to linear
ones like Principal Component Analysis) for dimensionality
reduction [29].

There exist several kinds of autoencoders, and they can be
employed to solve various problems. For instance, it is possi-
ble to train an autoencoder to return modified versions of the
input data. One such example is the denoising autoencoder,
which codifies data (that is, it reduces it to its basic compo-
nents) and then reconstructs a denoised version of it through
the decodifier half of the architecture [37]. A model more
relevant to our interests is the SegNet architecture, which is

capable of learning to segment images pixel-wise when fed
(x, y) pairs of input images and their corresponding labeled
(sometimes, but not always binary) images [21]. Networks
like SegNet learn to segment images in their compressed
representation and to up-sample (decode) them in order to
map low-dimensional features into input resolution for pixel-
wise segmentation [21]. Our architecture, which we named
Morpho-U-Net (see Figure 6), is based on the U-Net archi-
tecture. Like SegNet, U-Net is an autoencoder architecture
which has been employed for many segmentation problems
in the literature [38].

C. Weight initialization

All weights in our architecture are initialized using
the Glorot uniform initialization [39]. In this initialization
scheme, weight values for a given layer are sampled uni-
formly within [−a, a], with the value of a defined in (Eq. 2),
based on the size of the current and previous layers.

a =

√
6

n
[l−1]
w + n

[l]
w

(12)

where n[l−1]
w is the number of weights for layer l− 1 and

n
[l]
w is the number of weights for layer l.

D. Batch size and epochs

In order to make training feasible on larger datasets, it
is usual for researchers to employ a version of gradient
descent known as mini-batch gradient descent. Unlike stan-
dard gradient descent, mini-batch gradient descent carries
out backpropagation independently on several size m < M
subsets (known as batches) of the training set, where m is
the batch size parameter and M is the size of the training
sets. Weights are thus updated once for each batch for every
training epoch, resulting in lower memory requirements
while retaining much of the computational speed associated
with running the full training set through the network for
every epoch. Furthermore, since weights are updated on
each mini-batch instead of on the whole training set, the
backpropagation algorithm is less likely to get stuck in local
minima [40]. The odds of getting stuck in local minima can
be further reduced by shuffling the dataset at the start of every
epoch [41]. We set the batch-size hyperparameter m = 16
after testing several values, while the number of epochs was
set to 100.

E. ADAM optimizer

ADAM stands for Adaptive Moment Estimation. Unlike
the basic gradient descent algorithm, computes adaptive
learning rates, meaning it is less likely to get stuck on local
minima for many epochs. The authors of this method [42]
achieved so by storing an exponentially decaying running
average of the past gradients V∆W (an estimate of the
first momentum) and the square of past gradients S∆W (an
estimate of the second momentum), as per Eqs. 13 and 14.

V∆W = β1V∆W + (1− β1)∆W (13)

S∆W = β2S∆W + (1− β2)∆W 2 (14)
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Fig. 4: Proposed methodology for segmentation map generation.

Fig. 5: A typical autoencoder architecture showing the input, hidden, and output layers.

Where β1 and β2 are hyperparameters defining the decay
of the running averages. We set them as 0.9 and 0.999
respectively as per the literature. Since both running averages
are biased toward 0, a bias-corrected version of both is
computed in Eqs. 15 and 16.

V corrected
∆W =

V∆W

(1− βt
1)

(15)

Scorrected
∆W =

S∆W

(1− βt
2)

(16)

With t being defined as equal to the current epoch. Finally,
the weight tensor W is updated as per Eq. 17.

Wnext = W − δ V corrected
∆W√

Scorrected
∆W + ε

(17)

Where ε is a constant term we set to 10(−8) to avoid
division by zero and δ is the learning rate, which we set to
0.0001.

F. Trainable parameters
The full network consists of 21.238.261 parameters (of

which 21.228.783 are trainable) divided into two morpho-
logical layers prior to the encoder, nine convolutional blocks
for the encoder, five transposed convolution blocks for the
decoder, one convolutional block at the end of the decoder,
and two morphological layers at the end of the network. The
detailed neural network architecture is described in Figure 6.

G. Morphological layers 1

The first morphological segment takes in the preprocessed
image and processes it with trainable morphological filters
as in [43]. First, the image goes through a dilation layer
with 3 filters (one for each channel), kernel size 15, stride 1,
and same padding. Then, the output goes through an erosion
layer with the same parameters resulting in a version of the
original image filtered with the learned morphological filters.
The dilation and erosion operations are defined in Eqs. 18
and 19, respectively.

(I ⊕ Sd)(x, y) = max
1≤i≤a,1≤i≤b

(I(x− i, y − i) + Sd(i, j))

(18)

(I 	 Se)(x, y) = min
1≤i≤a,1≤i≤b

(I(x+ i, y + i)− Se(i, j))

(19)
where Sd and Se are the dilation and erosion structuring
elements, I is the input image or channel, and a and b are
the height and width of the structuring elements.

H. Batch Normalization

Usually, data is normalized as a preprocessing step in order
to ensure zero-mean and unit variance. However, as the data
is processed in the network, these properties change and
negatively impact network performance as well as training
times. Thus, in [44] proposed batch normalization (BN). In
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Fig. 6: Morpho-U-Net, the proposed segmentation autoencoder architecture with morphological layers at both ends.

BN, instances are normalized based on the mean and variance
of the batch (be it a mini-batch or the whole dataset) they
belong to prior to being fed to the activation function, as in
Eq. 20.

Z [l]
norm =

Z [l] − µ√
σ2 + ε

(20)

where µ is the mean of the current batch, σ2 is the vari-
ance, and ε is a constant term for avoiding zeroes in the
denominator.

The value of Z which is fed to the activation of a given
layer is calculated according to Eq. 21.

Z̃ [l] = γ[l]Z [l]
norm + β[l] (21)

where γ[l] and β[l] are trainable parameters for layer l and
updated by means of gradient descent in the same fashion as
the weights and the bias terms.

Some of the positive effects of BN include the reduction
of the dependence of gradient descent on the scale of values
taken by the data, which facilitates the calculation of gradi-
ents. Furthermore, BN has a regularizing effect and reduces
the need for employing other regularization techniques.

I. Encoder

After the first set of morphological layers, data goes
through the encoder part of the network. The purpose of
the encoder is to reduce dimensionality in order to carry
out further tasks on the compressed representation. For the
encoder, we employ the convolutional layers of the VGG11
architecture, based on the results described in [22]. The
input from the previous set of layers is 256x256x3 and
gets compressed by successive convolutional blocks, starting
with a convolutional layer with 64 filters, same padding,
and a 3x3 kernel. Batch normalization is applied for every

convolutional layer, whose output is received by a RELU
activation function and then passed through a 2x2 max
pooling layer with same padding in the convolutional block 1.
The number of filters for the convolutional layer increases to
128 in convolutional block 2 while the rest of the parameters
are kept the same. Convolutional blocks 3 and 4 both have
256 filters, while convolutional blocks 5 to 9 all have 512
filters, with the rest of the parameters being identical to the
first two blocks.

J. Decoder

The decoder is comprised of 5 transposed convolution
blocks which take in the compressed output of the encoder.
Although the decoder is not symmetrical with the encoder
regarding the number of blocks, it retains the characteristic
U-shape of the U-net architecture in terms of the shape
of the data. Transposed convolution block 1 consists of a
transposed convolution layer with 256 filters, kernel size 2x2,
and stride 2. The output of this layer is concatenated with the
convolutional layer output of convolutional block 8. It is then
fed through a convolutional layer with 512 filters, 3x3 kernel
size, and same padding. Batch normalization is then applied
prior a RELU activation function. Transposed convolution
block 2 is identical to the first one and is concatenated with
convolutional block 6. Transposed convolution blocks 3, 4,
and 5 are concatenated with convolutional blocks 4, 2, and 1,
respectively. For these blocks, filter size decreases in powers
of 2 up 32 in the last transposed convolution layer and 64
in the last convolutional layer. The output of the decoder
is then fed to the one last convolutional layer with sigmoid
activation which results in a grayscale segmentation mask of
size 256x256.
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K. Morphological layer 2

The second morphological layer takes in the grayscale
segmentation mask output by the decoder and passes it
through a dilation layer with a single filter, kernel size 15x15,
and same padding. Finally, the data goes through a last
erosion layer with the same parameters as the dilation layer
resulting in an improved grayscale segmentation mask of size
256x256.

L. Postprocessing

The output of the proposed autoencoder architecture is
a segmentation mask. However, the masks are not binary
and instead include values in the continuous [0, 1] range,
sometimes in the form of undesired holes in the segmentation
mask. For this reason, we carry out postprocessing, we apply
binarization with threshold t = 0.49 set empirically in order
to obtain the final binary mask.

M. Evaluation

We evaluate our algorithm based on a thresholded (eq.
22) version of the Jaccard index, or Intersection Over Union,
criterion (eq. 23), which was proposed in the first task (lesion
segmentation) of the ISIC 2018 challenge [1], defined as
follows:

TJAC =

{
0, if JAC < 0.65.

JAC, otherwise.
(22)

JAC =
|A ∩B|
|A ∪B|

(23)

Where A is the ground truth segmentation mask, B is the
segmentation mask output from a given algorithm, JAC is
the raw Jaccard index, and TJAC is the thresholded Jaccard
index. The motivation for employing a thresholded variant
lies in the fact that segmentations with JAC values lower than
0.65 were deemed as failed segmentation cases by experts,
and the value corresponding to correctly segmented sections
in these cases should be ignored when computing average
efficiency [24].

For the purposes of better comparing our algorithm with
other methods in the literature, we also consider several other
metrics, which are based on the number of True Negatives
(TN), False Negatives (FN), True Positives (TN), and False
Positives (FP), resulting from applying the algorithm on an
image:

• Accuracy (ACC): Measures the proportion of pixels in
the image which the algorithm segments correctly.

ACC =
TP + TN

TP + FP + TN + FN
(24)

• Sensitivity (SE): Measures the proportion of pixels be-
longing to the foreground which the algorithm segments
correctly.

SE =
TP

TP + FN
(25)

• Specificity (SP): Measures the proportion of pixels be-
longing to the background which the algorithm seg-
ments correctly.

SP =
TN

TN + FP
(26)

• Dice coefficient (DSC): Measures similarity between a
ground truth mask and a mask generated by a given
algorithm.

DSC =
2TP

2TP + FP + FN
(27)

IV. RESULTS AND DISCUSSION

The proposed autoencoder architecture was trained and
validated using 2236/278 images with their respective
ground truth segmentation masks which were provided in the
HAM10000 (ISIC 2018 segmentation challenge) and PH2
datasets. We compare the performance of our algorithm with
that of several classic architectures in the literature with a
test set comprised of 280 images belonging to these datasets.
In order to test whether our architecture generalized well to
other datasets, we also tested it on the test set provided for
the ISIC 2017 segmentation challenge. This also allowed us
to compare our architecture with the reported performance
of several proposals in the literature that were evaluated on
said test set. Performance was measured pixelwise based on
the five metrics described before.

A. Experimental setup

We designed the Morpho-U-Net architecture in the Python
programming language (3.7 version) using the Keras frame-
work. For the morphological layers, we used the implemen-
tation provided in [41]. The network was trained on an i7
workstation with 64 GB RAM and a NVIDIA GTX 1080ti
GPU.

B. Results

In the preprocessing steps we split the dataset as shown
in Table I. As seen in Tables II and III, Morpho-U-Net
outperforms both general-purpose deep learning architectures
for image segmentation as well as several of the proposals
designed specifically for melanoma segmentation in the
literature. While the network has relatively lower accuracy
and specificity, it attained the best thresholded Jaccard, Dice
and sensitivity scores by a fair margin. Several success cases
as well as a failure case can be seen in Figure 7, showing
that the network sometimes generates more than one lesion
label for a given image. As for the encoder architecture itself,
attempting to employ deeper networks such as VGG16 and
VGG19 for the encoder did not lead to improved results
when compared to the VGG11 encoder. Likewise, as seen
in Figure 8, dropout (except when set to 0.1) and traditional
regularization techniques were not as effective as employing
batch normalization in every layer.

TABLE I: Training, development, and test dataset splits.

Set Percentage (%) Images
Training (ISIC2018+NH2) 80% 2236
Development (ISIC2018+NH2) 10% 278
Test 1 (ISIC2018+NH2) 10% 280
Test 2 (ISIC2017) – 600
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(a) (b)

(c) (d)

(e) (f)

Fig. 7: The result of using the Morpho-U-Net network to segment several skin lesion images. For each case: to the left, the
original image; in the center, the segmented portion of the image; to the right, a comparison of the output mask and the
ground-truth mask, where white pixels are correctly segmented lesion areas, black pixels are correctly segmented healthy
skin areas, red pixels are over-segmented areas, and yellow pixels are under-segmented areas.

TABLE II: Results on test set Training (ISIC2018+NH2),
comparing our results with segmentation architectures in the
literature.

Method TJAC SE SP ACC DSC
Morpho-U-Net (ours) 0.9153 0.9613 0.8365 0.9306 0.8557
FCN[25] 0.8056 0.8240 0.9130 0.8459 0.7444
SegNet[21] 0.5525 0.6386 0.8886 0.7001 0.5929
U-Net[38] 0.8605 0.8632 0.9536 0.8855 0.8097
TernausNet (VGG11)[22] 0.8931 0.9217 0.9064 0.9180 0.8446
TernausNet (VGG16) 0.7742 0.8063 0.9224 0.8348 0.7330
TernausNet (VGG19) 0.7384 0.7750 0.9329 0.8138 0.7113

TABLE III: Results on test set 2, comparing our proposal
with state-of-the-art methods in the literature which were
evaluated on the ISIC 2017 set.

Method TJAC SE SP ACC DSC
Morpho-U-Net (ours) 0.9388 0.9708 0.8749 0.9482 0.8886
TernausNet (VGG11) [22] 0.9181 0.9252 0.9230 0.9248 0.8528
Encoder-Decoder CNN [32] - 0.9500 0.9400 0.9100 -
Ensemble of 10 U-Nets [45] 0.8410 - - 0.9510 -
SLIC segmentation [18] 0.6060 - - 0.8690 -
Rotation equiv. network [46] 0.7723 0.8540 0.9715 0.9355 0.8560
LIN [20] 0.7530 0.8550 0.9740 0.9500 0.8390
Ensemble-A [47] 0.7930 0.8990 0.9500 0.9410 0.8710
Semi-superv. method [48] 0.7980 0.8790 0.9530 0.9430 0.8740

Figure 9 shows the training and validation performance
across epochs for several versions of the final architecture,
testing different weight initialization schemes. As seen in
the figures, Glorot uniform initialization provides the best

validation performance when compared to other configura-
tions, albeit by a slight margin. On the other hand, Figure
10 depicts all weight initialization schemes as being similar
in terms of the ROC curve. As for the size of the network,
Morpho-U-Net is comprised of around 2 million parameters,
whereas deep neural network ensembles such as the ones in
[49] and [47] amount to more than 20 million parameters. On
the other hand, networks such as [46], have a similar number
of parameters, but do not achieve similar TJAC scores,
whereas more traditional image segmentation methods are of
much less computational complexity but fall behind neural
networks when taking into account the results in Table 3.

V. CONCLUSIONS

We achieved state-of-the-art performance on the melanoma
segmentation problem with our relatively small Morpho-U-
Net architecture. This was done by combining the ideas
behind segmentation architectures such as U-Net and Ter-
nausNet with trainable morphological operators. Further
improvements were done by adequate selection of weight
initializers and by employing batch normalization. We trained
our network on the ISIC 2018 and NH2 datasets and reported
a 0.9153 TJAC score on the combined ISIC 2018/NH2 test
set as well as a 0.9388 TJAC score on the ISIC 2017 test set,
outperforming other proposals which were tested on the same
dataset. In contrast with work by other researchers, our archi-
tecture achieves higher specificity (i.e., there is little under-
segmentation) while having somewhat lower specificity (i.e.,
there is some degree of over-segmentation).

Our main goal for future work is to determine ways
to reduce over-segmentation. Also, since our proposal was
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(a)

(b)

Fig. 8: a) Training accuracy, and b) Validation accuracy for
several configurations of the proposed architecture (dropout,
regularization, and batch normalization).

not centered in achieving fast computational speeds, we
did not test significantly smaller versions of the network,
but attempting to use deeper networks such as VGG16 and
VGG19 for the autoencoder component lead to worse results,
so future work could also focus on testing whether the use
of a smaller encoder-decoder architecture would allow for
increased segmentation accuracy, and whether the removal
of connected components other than the biggest one would
lead to improved results in cases where the network generates
more than one label. Furthermore, we are interested in testing
whether the proposed architecture generalizes well into other
segmentation problems. It must be noted, however, that while
the employed morphological kernel sizes were very effective
for melanoma segmentation, they should be modified in order
to employ Morpho-U-Net for the segmentation of differently
sized and shaped objects.
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