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Abstract—In this work, we analyze dynamics of the general-
ized tumor-virotherapy model. Firstly, we investigate equilibria
of the model and find stability conditions on the model’s param-
eters for each equilibrium. We also determine the conditions for
the existence of a Hopf bifurcation, which shows the oscillatory
of the solutions. The behavior of the model is shown with
well-known biologically admissible growth functions, such as
logistic, Gompertz and von Bertalanffy functions. Finally, we
illustrate various classes of numerical simulations to support
the analytical results.

Index Terms—virotherapy, tumor, growth function, Hopf
bifurcation.

I. INTRODUCTION

CANCER is one of leading causes of death worldwide,
accounting for nearly eight million deaths per year[1].

It is a generic term for a large class of diseases that can
affect any part of human body. An important problem in
medicine is to develop methods for controlling tumor growth.
Comprehensive reviews of cancer biology can be found in
standard textbooks, such as [2] - [3].

An improved understanding of the dynamics of cancerous
tumor growth may help physicians and cancer researchers
to develop better medical prognosis for patients with more
effective treatment plans. Mathematical modeling is one
of the most successful methodologies in theoretical cancer
research. In developing models, experimental data is used
to create mathematical equations that describe the tumor
growth. For the case of cancer, useful models for tumor
growth can be obtained by differential equation models of
population growth, where the populations could be divided
into two groups of populations, i.e. infected and uninfected
cell populations [3] - [4].

There are many different therapeutic methods devel-
oped for cancer treatment such as surgery, radiation and
chemotherapy. Recently, a promising new therapeutic treat-
ment for cancer is virotherapy. This treatment is based on
the use of selected viruses which can replicate in and kill
cancer cells without harming normal cells. One example of
this type of virus is the oncolytic virus [5].

Many researchers (see, e.g., [4], [6]) have used mathe-
matical models to study dynamics and effects of virotherapy
on cancer progression. One of the most popular models is
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introduced by Wodarz [5] as

ẋ = rx

(
1− x+ y

k

)
− δx− βxy,

ẏ = βxy + sy

(
1− x+ y

k

)
− ay. (1)

Here x is the number of uninfected cell populations and y
is the number of infected cell populations at time t. The
definitions of model’s parameters are given in Table I.

TABLE I
DEFINITIONS OF THE MODEL’S PARAMETERS .

Parameters Meaning Unit
t Time day
r The rate of tumor growth day−1

s The growth rate of infected cells day−1

δ The rate at which the immune day−1

system destroys tumor cells
β The transmission rate of viral number.mLday−1

infection which spreads in
tumor cells

a The rate at which the virus destroys day−1

infected tumor cells
k The maximum possible number number.mL−1

of uninfected and infected cells
in a tumor

In addition, many researchers (see, e.g., [7], [8], [9]) have
used mathematical models with time delay to study dynamics
of cancer growth. Oyama [10] has shown that the existence
of a time delay in a virotherapy stage is important, which
affect treament process. More examples of the importance
of the time delay can be found in [11]–[12]. These authors
have shown that the length of the time delay can depend on
types of cancer and oncolytic virus.

For delay differential equations, Ashyani [6] has studied
the dynamics of the modified delay model of Eq. (1) for the
tumor growth including a time delay for the death of infected
cells in virotheraphy. The model is presented by

ẋ = rx

(
1− x+ y

k

)
− δx− βxy,

ẏ = βxy + sy

(
1− x+ y

k

)
− ay(t− τ), (2)

where ay(t−τ) is the rate in which the infected cells die due
to infection with a constant delay τ representing the time of
infection to death.

In (2), it is assumed that the growth of the cell populations
in the tumor can be modeled by the logistic function with a
basic growth rate r. However, there are many other interest-
ing growth rates in biological models. In general, model (2)
can be generalized with a general growth function G as the
following pair of differential equations,

ẋ = rxG (x, y)− δx− βxy,
ẏ = βxy + syG (x, y)− ay(t− τ), (3)
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where τ ≥ 0 and all parameters are non-negative.
The function G in (3) represents a per capita fraction of

a tumor growth depending on the total number of uninfected
and virus-infected tumor cells. In (3), we assume that δ < r.
If δ > r, then a biological meaning is that immune system
can destroy all of tumor cells in the body. Hence, virotherapy
will not be needed. Moreover, we also assume that and the
oncolytic virus can destroy tumor cells faster than immune
cells. Consequently, the immune system cannot interrupt the
virotherapy process. The initial conditions of (3) is given by

x(0) = x0 > 0 and y(0) = y0 > 0.

In general, there are many different growth models ex-
pressed by one-dimensional differential equations published
in previous literature (see, e.g., [3]). One approach is to
consider a tumor as a population of cells and uses ordi-
nary differential equations to model this population (see,
e.g., [13]). Some classical fractions for population growth
laws in biological models are as follows

Logistic law: G(x, y) = 1−
(x+ y

k

)
,

Gompertz law: G(x, y) = 1− ln
(x+ y

k

)
,

von Bertalanffy law: G(x, y) =
k − (x+ y)

1
3

k(x+ y)
1
3

,

where where k > 0 represents maximum carrying capacity.
In this study the assumptions of the growth fraction G in

model (3) are stated as follows:

(A1) G is a continuous and differentiable function,
(A2) G is a positive function,
(A3) Gx and Gy are strictly negative for non-nega-

-tive x and y.

In this paper, we aim to investigate the equilibria and
prove the non-negativity of (3). The linearization method
is used to analyze the local stability. We will study the
behavior of generalized tumor-virotherapy model (3) with
well-known growth fraction, such as logistic, Gompertz and
von Bertalanffy functions. Finally, numerical simulations are
carried out using mathematical software with biologically
reasonable parameter values to illustrate model’s behavior
and support the analytical results.

II. MODEL’S EQUILIBRIA

In this section, we investigate all equilibria (x∗, y∗) of (3)
by setting ẋ = ẏ = 0, x(t) = x∗ and y(t) = y(t− τ) = y∗.
Hence, the equilibria are the roots of the following system:

rx∗G(x∗, y∗)− δx∗ − βx∗y∗ = 0, (4)
βx∗y∗ + sy∗G(x∗, y∗)− ay∗ = 0. (5)

From (4) - (5), It is not difficult to see that x∗ = y∗ = 0 is
a solution, then the trivial equilibrium

E1 = (x∗1, y
∗
1) = (0, 0),

is an equilibrium of (3). Moreover, by setting x∗ = 0, we
obtain the second equilibrium,

E2 = (0, y∗2),

where y∗2 satisfies G(0, y∗2) = a/s. The equilibrium E2 is
called free-uninfected equilibrium.

Next, by setting y∗ = 0, we obtain the free-infected
equilibrium,

E3 = (x∗3, 0),

where x∗3 satisfies G(x∗3, 0) = δ/r.
If x∗ 6= 0 and y∗ 6= 0, then we obtain the interior

equilibrium E4(x
∗
4, y

∗
4), where

x∗4 =
a− sG(x∗4, y∗4)

β
and y∗4 =

rG(x∗4, y
∗
4)− δ

β
. (6)

Note that x∗4 and y∗4 are positive provided that

δ

r
< G(x∗4, y

∗
4) <

a

s
. (7)

After simplifying (6), we then have the relation between x∗4
and y∗4 as

y∗4 =
r(a− βx∗4)− sδ

sβ
.

For biological meaning, the trivial equilibrium E1 means
that the tumor does not exist. Hence, the tumor is eventually
destroyed and the treatment is successful. In addition, the
free-uninfected equilibrium E2 represents that all tumor
cells become infected cells. In this case, the tumor cells
do not respond the virotherapy treatment. Moreover, the
free-infected equilibrium E3 means that all tumor cells are
uninfected after virotherapy. It represents that the treatment
is not successful. Finally, the interior equilibrium E4 means
that both uninfected and infected tumor cells still exist. This
case is the most interesting case for biological sense. The
stability of the equilibrium means that the tumor population
is less than the carrying capacity k.

In the next section, we will analyze and find the conditions
for stability of each equilibrium for the model (3).

III. STABILITY OF THE MODEL’S EQUILIBRIA

To study the local stability for each equilibrium of the
model (3), we used advantages of Lemma 3.1 for the
conditions of all roots of the characteristic equation for a
delay differential equation have negative real part.

Lemma 3.1 [14] Let m,n ∈ R. The conditions for
all roots λi of (8)

λi = m+ ne−λiτ . (8)

is as follows.
1) If n ≥ 0 and m + n < 0, then all roots of (8) have

negative real part for all τ ≥ 0.
2) If n < 0 and m < n, then all eigenvalues have negative

real part for all τ ≥ 0.
3) If n < 0 and −n > |m|, then there exists τ0 > 0,

such that all eigenvalues have negative real part for
all τ ∈ [0, τ0).

Next, the local stability for each equilibrium is analyzed
by the linearization method. The linearized equation of (3)
at the equilibrium (x∗, y∗) is given by

Ẇ (t) =

[
w11 w12

w21 w22

]
W (t) +

[
0 0
0 −a

]
W (t− τ), (9)
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where W (t) =

[
x(t)− x∗
y(t)− y∗

]
and

w11 = rx∗Gx(x
∗, y∗) + rG(x∗, y∗)− δ − βy∗,

w12 = rx∗Gy(x
∗, y∗)− βx∗,

w21 = βy∗ + sy∗Gx(x
∗, y∗),

w22 = βx∗ + sy∗Gy(x
∗, y∗) + sG(x∗, y∗).

Note that (9) is used to examine the characteristic equation of
the model (3), which will be useful for analyze the stability.

A. Stability of E1

From (9), the characteristic equation of the model (3) at
E1 = (0, 0) is∣∣∣∣ rG(0, 0)− δ − λ 0

0 sG(0, 0)− ae−λτ − λ

∣∣∣∣ = 0. (10)

The eigenvalues related to (10) are

λ1 = rG(0, 0)− δ,
λ2 = sG(0, 0)− ae−λ2τ . (11)

The stability property of the model (3) at E1 are stated as
the following theorem.

Theorem 3.1 The conditions for stability properties of
(3) at E1 can be stated as follows.

1) If 0 < G(0, 0) ≤ 1 and G(0, 0) < min{ δr ,
a
s}, then

the equilibrium E1 is locally asymptotically stable for
τ ≥ 0, otherwise it is unstable.

2) If G(0, 0) > 1, then the equilibrium E1 is unstable for
τ ≥ 0.

3) The Hopf bifurcation cannot be occurred at E1.
Proof: From the assumption (A2), we have G(0, 0) > 0 and
δ/r < 1.

In the case that 0 < G(0, 0) ≤ 1, if G(0, 0) < δ/r < 1,
then λ1 in (11) is negative real number. On the contrary, if
G(0, 0) > δ/r > 1, then λ1 is positive real number. From
Lemma 3.1, we compare the eigenvalues in (8) with λ2 in
(11). It can be seen that m = sG(0, 0) and n = −a. By the
second condition of Lemma 3.1, if G(0, 0) < a/s, then λ2 is
negative real number. On the contrary, if G(0, 0) > a/s, then
λ2 is positive real number. As the results, we can conclude
that if G(0, 0) < min{ δr ,

a
s}, then the equilibrium E1 is

locally asymptotically stable.
In case that G(0, 0) > 1, it can be seem that λ1 in (11) is

positive real number. Then the equilibrium E1 is unstable.
Next, we analyze the Hopf bifurcation at E1. Let 0 <

G(0, 0) < δ/r, then λ1 in (11) is negative number. From the
third condition of Lemma 3.1, we have

0 < G(0, 0) <
a

s
. (12)

Suppose that ω ∈ R+ and let λ2 = iω be roots of (11). It
follows that

iω = sG(0, 0)− ae−iωτ ,

= sG(0, 0)− a(cosωτ − i sinωτ). (13)

Comparing real and imaginary parts from both sides of (13),
we have

sG(0, 0) = a cosωτ (14)
ω = a sinωτ. (15)

Hence, (14) and (15) can be simplified as

ω2 = a2 − s2G2(0, 0). (16)

From 0 < G(0, 0) < δ/r, we find that

a2 − s2G2(0, 0) < 0. (17)

Hence, (16) and (17) show that ω /∈ R+. Then the proof is
complete.

Next, we prove global stability of the tumor-free equilib-
rium without time delay by using a Lyapunov function.
Theorem 3.2 The tumor free equilibrium E1 is globally
asymptotically stable for τ = 0, if the condition G(0, 0) <
min{ δr ,

a
s} is fulfilled.

Proof: We introduce a function of the form V (x, y) = x+y,
which is positive-definite and continuously differentiable for
all positive bounded values of x + y, i.e., V (0, 0) = 0 and
V (x, y) > 0,∀x > 0 and ∀y > 0 [15]. Hence, the time
derivative of the Lyapunov function V satisfies

V̇ = ẋ+ ẏ

= rxG(x, y)− δx+ syG(x, y)− ay
= x(rG(x, y)− δ) + y(sG(x, y)− a)
≤ x(rG(0, 0)− δ) + y(sG(0, 0)− a).

If G(0, 0) < δ
r and G(0, 0) < a

s , then V̇ ≤ 0. Therefore,
the equilibrium E1 is globally stable. The condition for E1

is globally asymptotically stable is

G(0, 0) < min

{
δ

r
,
a

s

}
. (18)

We note that condition (18) is only a sufficient condition
for global stability but we have not proved that the conditions
are also necessary conditions for global stability of the tumor
free equilibrium E1.

B. Stability of E2

From (9), the characteristic equation of (3) at E2 = (0, y∗2)
is ∣∣∣∣ a11 − λ 0

a21 a22 − ae−λτ − λ

∣∣∣∣ = 0, (19)

where

a11 = rG(0, y∗2)− δ − βy∗2 ,
a21 = βy∗2 + sy∗2Gx(0, y

∗
2),

a22 = sy∗2Gy(0, y
∗
2) + sG(0, y∗2).

The eigenvalues of (19) with the condition G(0, y∗2) = a/s
are

λ1 =
ra

s
− δ − βy∗2 ,

λ2 = sy∗2Gy(0, y
∗
2) + a− ae−λ2τ . (20)

If y∗2 < (ra − δs)/βs, then the equilibrium E2 is unstable
for τ ≥ 0. On the contrary, if y∗2 > (ra − δs)/βs, then λ1
is negative real number.

Next, consider λ2 = sy∗2Gy(0, y
∗
2) + a − ae−λ2τ .

From Lemma 3.1 and assumption (A3), we compare
the eigenvalue of (8) in Lemma 3.1 with λ2 in (20). It
can see that m = sy∗2Gy(0, y

∗
2) + a and n = −a, then

stability property of the equilibrium E2 are stated as follows.
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Theorem 3.3 If y∗2 > (ra− δs)/βs and Gy(0, y∗2) < 0, then
the equilibrium E2 is asymptotically stable for all τ ≥ 0,
and it does not exhibit a Hopf bifurcation.
Proof: To show that Hopf bifurcation at E2 can not be
occurred, the third condition of Lemma 3.1 shows that

−2a
sy∗2

< Gy(0, y
∗
2) < 0. (21)

Suppose that ω ∈ R+ and let λ2 = iω be a root of (20). It
follows that

iω = sy∗2Gy(0, y
∗
2) + a− ae−iωτ ,

= sy∗2Gy(0, y
∗
2) + a− a(cosωτ − i sinωτ). (22)

Comparing the real and imaginary parts from both sides of
(22), we have

sy∗2Gy(0, y
∗
2) + a = a cosωτ (23)

ω = a sinωτ. (24)

Hence, (22) and (23) can be simplified as

ω2 = sy∗2Gy(0, y
∗
2)(sy

∗
2Gy(0, y

∗
2) + 2a). (25)

From condition (21), it can be seen that

sy∗2Gy(0, y
∗
2)(sy

∗
2Gy(0, y

∗
2) + 2a) < 0. (26)

Hence, (25) and (26) show that ω /∈ R+. As the results, there
is no Hopf bifurcation for E2.

C. Stability of E3

From (9), the characteristic equation of (3) at E3 = (x∗3, 0)
is ∣∣∣∣ b11 − λ b12

b21 b22 − ae−λτ − λ

∣∣∣∣ = 0, (27)

where

b11 = rx∗3Gx(x
∗
3, 0),

b12 = rx∗3Gy(x
∗
3, 0)− βx∗3,

b22 = βx∗3 + sG(x∗3, 0).

The eigenvalues of (27) with the condition G(x∗3, 0) = δ/r
are

λ1 = rx∗3Gx(x
∗
3, 0),

λ2 = βx∗3 +
sδ

r
− ae−λ2τ . (28)

From the assumption (A3), λ1 in (28) is negative real
number. Compare with the eigenvalue in (8) in Lemma 3.1
with λ2 in (28). By the second and third conditions in Lemma
3.1, it can be seen that if m = βx∗3+

sδ
r and n = −a, then the

stability property of E3 are stated as the following theorem.
Theorem 3.4 If 0 < x∗3 <

ar−sδ
βr , then the free-infected equi-

librium E3 is locally asymptotically stable for τ ∈ [0, τ0),
otherwise it is unstable.
Proof: Suppose that ω ∈ R+ and let λ2 = iω be a root of
(28). It follows that

iω = βx∗3 +
sδ

r
− ae−iωτ ,

= βx∗3 +
sδ

r
− a(cosωτ − i sinωτ). (29)

Comparing real and imaginary parts from both sides of (29),
we have

βx∗3 +
sδ

r
= a cosωτ (30)

ω = a sinωτ. (31)

Hence, (30) and (31) can be simplified as

ω2 = a2 − (βx∗3 +
sδ

r
)2.

If 0 < x∗3 <
ar−sδ
βr , then

ω =

√
a2 − (βx∗3 +

sδ

r
)2. (32)

We also find τk, which are roots of (30) as

τk =
1

ω
arccos

(
βx∗3r + sδ

ar
+ 2kπ

)
, (33)

then τ0 = 1
ω arccos

(
βx∗

3r+sδ
ar

)
.

Next, the condition for Hopf bifurcation occurrence of

(3) at E3 is provided that Re
(
dλ

dτ

)
> 0. Consider the

characteristic equation (27):

λ2 − (b11 + b22)λ+ b11b22 + a(λ− b11)e−λτ = 0. (34)

Let λ be a function of τ , i.e. λ = λ(τ). Differentiate both
sides of (34) with respect to τ, it follows that(

dλ

dτ

)−1

=
2λ− (b11 + b22)

−λ3 − (b11 + b22)λ2 − b11b22λ
− τ

λ

+
1

(λ+ b11)λ
(35)

Suppose that

λ(τ0) = α(τ0) + iω(τ0).

Let Re(λ(τ0)) = 0 and Im(λ(τ0)) = ω, then α(τ0) = 0 and
λ(τ0) = iω. From (35), we can show that(

dλ

dτ

)−1

=
i2ω − (b11 + b22)

iω3 − (b11 − b22)ω2 − ib11b22ω
− τ

iω

+
1

−ω2 + ib11ω
(36)

Consider only the real part of (36). It follows that

Re

((
dλ

dτ

)−1∣∣∣∣
τ=τ0

)
=

ω2(ω2 + b211)(
(b11 + b22)2ω4 + (b11b22ω − ω3)2

) .
Hence, Re

(
dλ

dτ

∣∣∣∣
τ=τ0

)
is positive, which is a condition for

τ0 is a Hopf bifurcation point and the bifurcation occurs as
τ = τ0.

D. Stability of E4

From (9), the characteristic equation of (3) at the interior
equilibrium E4 = (x∗4, y

∗
4) is∣∣∣∣ c11 − λ c12

c21 c22 − ae−λτ − λ

∣∣∣∣ = 0, (37)
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where

c11 = rx∗4Gx(x
∗
4, y

∗
4) + rG(x∗4, y

∗
4)− δ − βy∗4 ,

c12 = rx∗4Gy(x
∗
4, y

∗
4)− βx∗4,

c21 = βy∗4 + sy∗4Gx(x
∗
4, y

∗
4),

c22 = βx∗4 + sy∗4Gy(x
∗
4, y

∗
4) + sG(x∗4, y

∗
4).

From (37), characteristic equation with the condition (7) is

λ2 + (β(y∗4 − x∗4)− rX − sY + δ)λ

+
[
rβx∗4X + (rsG(x∗4, y

∗
4)− δs− βsy∗4)Y

−δβx∗4 + rsx∗4Gx(x
∗
4, y

∗
4)G(x

∗
4, y

∗
4)

−βx∗4y∗4(rGy(x∗4, y∗4) + sGx(x
∗
4, y

∗
4))
]

+a(λ− rX + βy∗4 + δ)e−λτ = 0,

where

X = x∗4Gx(x
∗
4, y

∗
4) +G(x∗4, y

∗
4),

Y = y∗4Gy(x
∗
4, y

∗
4) +G(x∗4, y

∗
4).

The characteristic equation of (37) is

λ2 + Cλ+B + a(λ−A)e−λτ = 0, (38)

where

A = βy∗4 − rX + δ,

B = rβx∗4X + (rsG(x∗4, y
∗
4)− δs− βsy∗4)Y

+rsx∗4Gx(x
∗
4, y

∗
4)G(x

∗
4, y

∗
4)− δβx∗4

−βx∗4y∗4(rGy(x∗4, y∗4) + sGx(x
∗
4, y

∗
4)),

C = β(y∗4 − x∗4)− rX − sY + δ. (39)

For the case that τ = 0, then the characteristic equation of
(38) is

λ2 + (C + a)λ+B − aA = 0.

The eigenvalues are

λ1,2 =
−(C + a)±

√
(C + a)2 − 4(B − aA)

2
. (40)

Therefore, the stability condition of non-delay case for E4

are stated by the following theorem.

Theorem 3.5 Let A,B and C are defined in (39).
The stability conditions of model (3) at E4 can be stated as
follows.

1) If B − aA > 0, then the equilibrium E4 is locally
asymptotically stable when C + a > 0 and unstable
when C + a < 0.

2) If B − aA < 0, then the equilibrium E4 is a saddle
point.

Let τ be the bifurcation parameter. In the next section
we will investigate additional conditions and evaluate the
formula in which τ = τ0 becomes the Hopf bifurcation point.

IV. EXISTENCE OF PERIODIC SOLUTION OF E4

In this section, we analyze the bifurcation of E4 of (3)
where τ > 0. From (38), the characteristic equation is

λ2 + Cλ+B + a(λ−A)e−λτ = 0. (41)

Suppose that ω ∈ R+ and let λ = iω be a root of (41). It
follows that

(B − ω2 + aω sinωτ + aA cosωτ)

+(Cω − aA sinωτ + aω cosωτ)i = 0. (42)

Comparing the real and imaginary parts from both sides of
(42), we have

aω sinωτ + aA cosωτ = ω2 −B (43)
aA sinωτ − aω cosωτ = Cω (44)

From (43) and (44) can be simplified as

a2ω2 + a2A2 = (B − ω2)2 + C2ω2. (45)

Then, solving for ω from (45), then

ω2 =
1

2

[
(a2 + 2B − C2)

±
√

(a2 − C2)(a2 + 4B − C2) + 4a2A2

]
.(46)

Hence, the conditions for non-zero value of ω are
C2 < 2B + a2 and |A| < B/a.

The solutions of (43) and (44) are

sinωτ =
ω3 + (AC −B)ω

a(ω2 +A2)
,

cosωτ =
(A− C)ω2 −AB
a(ω2 +A2)

. (47)

Finally, from (47), the value of τ is given by

τk =
1

ω
cos−1

(
(A− C)ω2 −AB
a(ω2 +A2)

+ 2kπ

)
, (48)

where k = 0, 1, 2, .... Condition (48) represents the
bifurcation points of the model (3). We will next investigate
whether the first bifurcation point τ0 is a Hopf bifurcation
point. The necessary conditions are that λ(τ0) is purely

imaginary number and Re
(
dλ

dτ

∣∣∣∣
τ=τ0

)
> 0.

Theorem 4.1 Let A,B and C be defined in (39). If
(C2 − a2 + 2

3B
2)2 > 4

9 (4a
2A2 + B2), then the model (3)

undergoes a Hopf bifurcation at the interior equilibrium
E4, where τ = τ0 is defined in (48).
Proof: Consider the characteristic equation

λ2 + Cλ+B + a(λ−A)e−λτ = 0. (49)

Let λ be a function of τ , i.e. λ = λ(τ). Differentiate both
sides of (49) with respect to τ, it follows that(

dλ

dτ

)−1

=
2λ+ C

−λ3 − Cλ2 −Bλ
− τ

λ
+

1

(λ+A)λ
(50)

Suppose that

λ(τ0) = α(τ0) + iω(τ0).

Let Re(λ(τ0)) = 0 and Im(λ(τ0)) = ω then α(τ0) = 0 and
λ(τ0) = iω. From (50), we can show that(
dλ

dτ

)−1∣∣∣∣
τ=τ0

=
i2ω + C

iω3 + Cω2 − iBω
− τ

iω
+

1

−ω2 + iAω

Engineering Letters, 28:3, EL_28_3_30

Volume 28, Issue 3: September 2020

 
______________________________________________________________________________________ 



Simplifying above equation, the real part is

Re

((
dλ

dτ

)−1∣∣∣∣
τ=τ0

)
=

(C2 + 2B)− (2ω2 + a2)

a2(ω2 +A2)
. (51)

We can see that Re
((

dλ

dτ

)−1∣∣∣∣
τ=τ0

)
> 0 if and only if

C2 + 2B > 2ω2 + a2. (52)

From (46),

ω2 =
(a2 + 2B − C2)

2
±
√
(C2 − 2B − a2)2 − 4(B2 − a2A2)

2
.

Then condition (52) becomes

(C2 − a2 + 2

3
B2)2 >

4

9
(4a2A2 +B2). (53)

Therefore, the value of Re
(
dλ

dτ

∣∣∣∣
τ=τ0

)
is positive under the

condition (53). Thus τ0 is the first Hopf bifurcation point
with bifurcation occurring as τ increases.

Note that the hypotheses for Hopf bifurcation are satisfied
at τ = τ0 with the condition (53). This leads us to state the
following theorem.

Theorem 4.2 The conditions for stability properties of
(3) at E4 are stated as follows.

1) If τ < τ0, then the interior equilibrium E4 is locally
asymptotically stable.

2) If τ > τ0, then the equilibrium E4 is unstable.
3) If τ = τ0 and (C2 − a2 + 2

3B
2)2 > 4

9 (4a
2A2 + B2),

then τ0 is the Hopf bifurcation point.

V. APPLICATIONS AND NUMERICAL EXAMPLES

In this section, we apply the analytical results to investigate
the model (3) with logistic, Gompertz and von Bertalanffy
growth functions. For each of these growth functions, the
numerical simulations are shown with biologically reason-
able values of parameters to explain dynamics of the tumor-
virotherapy model.

A. The logistic growth law

For the special case of (3) with the logistic growth function
G(x, y) = 1− (x+ y)/k. The model (3) becomes

ẋ = rx

(
1− x+ y

k

)
− δx− βxy,

ẏ = βxy + sy

(
1− x+ y

k

)
− ay(t− τ). (54)

For equilibrium E1, we get G(0, 0) = 1. From Theorem
3.1, E1 is unstable for all τ ≥ 0.

For the equilibrium E2, we have G(0, y∗2) = a/s and then
y∗2 = k(s − a)/s. The condition s > a provides positive
equilibrium. We also find that Gy(0, y∗2) = −1/k. From
Theorem 3.2, if k > (ra− δs)/β(s−a) and s > a, then the
equilibrium E2 is locally asymptotically stable for all τ ≥ 0.

For equilibrium E3, we have G(x∗3, 0) = δ/r and therefore
x∗3 = k(r− δ)/r is positive if r > δ. From Theorem 3.3, we
can state the conditions of stability as follows.

1) If 0 < k < ar−sδ
β(r−δ) , then the equilibrium E3 is locally

asymptotically stable for τ ∈ [0, τ0), and it is unstable
for τ > τ0.

2) If k > ar−sδ
β(r−δ) , then the equilibrium E3 is unstable for

all τ ≥ 0.

Finally, to support the results, we present some numerical
simulations generated for the first choice of parameter values
from [6],

r = 0.2, δ = 0.01, β = 0.1, s = 1, a = 2, k = 70, (55)

and we assume that the initial conditions are x(t) = 12 and
y(t) = 2, where t ∈ [−τ, 0].

Using the conditions in Theorems 3.1 - 3.4 and Theorem
4.2, we would expect the followings:

1) The equilibrium E1 is unstable for all τ ≥ 0 when
G(0, 0) = 1,

2) the equilibrium E2 does not exist when s = 1 < a = 2.
3) The equilibrium E3 exists if r = 0.2 > δ = 0.01.
4) If k = 70 > (ar − δs)/β(r − δ) ≈ 20.5263, then the

equilibrium E3 is unstable for all τ ≥ 0.
5) If C + a = 0.5571428594 > 0 and B − aA =

0.1600599079 > 0, then the equilibrium E4 is locally
asymptotically stable for all τ = 0.

6) From (46) and (48), the Hopf bifurcation point τ0 ≈
0.2998.

Numerical solutions of (54) are shown in Figures 1 and 2
with different values of τ to support the theoretical results
in previous sections and the conditions in Theorem 4.2.
Figure 1 illustrates the numerical solutions of (54) near
the bifurcation point τ0 ≈ 0.2998. We can see that the
solutions in Figure 1 converge to the positive equilibrium
E4 = (11.96, 1.53) when τ = 0.25 < τ0. On the other hand,
in Figure 2, the solutions are oscillated about the equilibrium
E4 = (11.96, 1.53) when τ = 0.30 > τ0.

The second set of parameter is obtained from [6],

r = 0.2, δ = 0.1, β = 0.1, s = 1.001, a = 1, k = 29, (56)

and we assume that the initial conditions are x(t) = 3 and
y(t) = 2, where t ∈ [−τ, 0].

Numerical solutions of (54) are shown in Figures 3 and 4
with different values of τ to support the theoretical results
in previous sections. We can see that the solutions in Fig-
ure 3 and Figure 4 converge to the positive equilibrium
E4 = (0.45, 0.89).

The third set of parameter is obtained from [6],

r = 0.1, δ = 1, β = 5, s = 2, a = 3, k = 5, (57)

and we assume that the initial conditions are x(t) = 3 and
y(t) = 2 where t ∈ [−τ, 0].

Numerical solutions of (54) are shown in Figures 5 with
the values of τ = 0 to support the theoretical results in
previous sections. We can see that the solutions in Figure 5
converge to the positive equilibrium E1 = (0, 0).
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Fig. 1. Numerical solutions of (54) converge to E4 where τ = 0.25 < τ0
with parameter values in (55).

Fig. 2. Numerical solutions of (54) oscillate about E4 where τ = 0.30 >
τ0 with parameter values in (55).

Fig. 3. Numerical solutions of (54) converge to E4 where τ = 0 with
parameter values in (56).

Fig. 4. Numerical solutions of (54) converge to E4 where τ = 0.50 with
parameter values in (56).
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Fig. 5. Numerical solutions of (54) converge to E1 where τ = 0 with
parameter values in (57).

B. The Gompertz growth law

For the special choice of the Gompertz growth function
G(x, y) = 1− ln

(
(x+ y)/k

)
, equation (3) becomes

ẋ = rx

(
1− ln

(
x+ y

k

))
− δx− βxy,

ẏ = βxy + sy

(
1− ln

(
x+ y

k

))
− ay(t− τ).(58)

For equilibrium E1, we find that G(0, 0) does not define,
then E1 does not exist.

For the equilibrium E2, we have G(0, y∗2) = a/s and then
y∗2 = ke

s−a
s . From Theorem 3.2, if k > (ar − sδ)/βse s−as

and s/a < 2, then the equilibrium E2 is locally asymptoti-
cally stable for τ ≥ 0.

For equilibrium E3, we have G(x∗3, 0) = δ/r and therefore
x∗3 = ke

r−δ
r . From Theorem 3.3, we can state the conditions

of stability as follows
1) If 0 < k < ar−sδ

βre
r−δ
r

, then the equilibrium E3 is

asymptotically stable for τ ∈ [0, τ0), and it is unstable
for τ > τ0.

2) If k > ar−sδ
βre

r−δ
r

, then the equilibrium E3 is unstable for

all τ ≥ 0.
Finally, to support the results, we present some numerical

results with parameter values in (55).
Using the conditions in Theorems 3.2 - 3.4, we would

expect the followings:
1) we find that k = 70 > (ar − sδ)/βse s−as ≈ 10.6013

and s
a = 1

2 < 2, and therefore the equilibrium E2 is locally

Fig. 6. Numerical solutions of (58) converge to E2 where τ = 0 with
parameter values in (55).

asymptotically stable for all τ ≥ 0.
2) If k = 70 > ar−sδ

βre
r−δ
r

≈ 7.5414, then the equilibrium

E3 is unstable for all τ ≥ 0.
3) If x∗4 and y∗4 are complex number, then the equilibrium

E4 does not exist.
Numerical solutions of (58) are shown in Figures 6 and 7

with different values of τ to support the theoretical results
in previous sections and the conditions in Theorem 3.2. We
can see that the solutions in Figures 6 and 7 converge to the
positive equilibrium E2 = (0, 26.12).

The second set of parameter (56), the numerical solutions
of (58) are shown in Figures 8 and 9 with different values of
τ to support the theoretical results in previous sections and
the conditions in Theorem 3.2. We can see that the solutions
in Figures 8 and 9 converge to the positive equilibrium E2 =
(0, 29.10).

C. The Von Bertalanffy growth law

For the special choice of the von Bertalanffy growth

function G(x, y) = k−(x+y)
1
3

k(x+y)
1
3

, equation (3) becomes

ẋ = rx

(
k − (x+ y)

1
3

k(x+ y)
1
3

)
− δx− βxy,

ẏ = βxy + sy

(
k − (x+ y)

1
3

k(x+ y)
1
3

)
− ay(t− τ). (59)

For equilibrium E1, we find that G(0, 0) does not define,
then E1 does not exist.
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Fig. 7. Numerical solutions of (58) converge to E2 where τ = 0.52 with
parameter values in (55).

Fig. 8. Numerical solutions of (58) converge to E2 where τ = 0 with
parameter values in (56).

Fig. 9. Numerical solutions of (58) converge to E2 where τ = 1.1 with
parameter values in (56).

For equilibrium E2, we have G(0, y∗2) = a/s and then
y∗2 = (sk/(ak+s))3. From Theorem 3.2, if (sk/(ak+s))3 >
(ra−δs)/βs and k > s/a, then the equilibrium E2 is locally
asymptotically stable for all τ ≥ 0.

For equilibrium E3, we have G(x∗3, 0) = δ/r and therefore
x∗3 = (rk/(δk + r))3. From Theorem 3.3, we can state the
conditions of stability as follows

1) If 0 <
(

rk
δk+r

)3
< ar−sδ

βr , then the equilibrium E3 is
asymptotically stable for τ ∈ [0, τ0), and it is unstable
for τ > τ0.

2) If
(

rk
δk+r

)3
> ar−sδ

βr , then the equilibrium E3 is
unstable for all τ ≥ 0.

Finally, to support the results, we present some numerical
results with parameter values in (55).

Using the conditions in Theorems 3.2 - 3.4 and 4.2, we
would expect the followings:

1) If (sk/(ak + s))3 ≈ 0.1224 < (ra − δs)/βs = 3.9,
then the equilibrium E2 is unstable for all τ ≥ 0.

2) If
(

rk
δk+r

)3 ≈ 3, 764.0604 > ar−sδ
βr = 19.5, then the

equilibrium E3 is is unstable for all τ ≥ 0.
3) If C + a = 0.2998301325 > 0 and B − aA =

0.9923030155 > 0, then the equilibrium E4 is locally
asymptotically stable for all τ = 0.

4) The Hopf bifurcation point τ0 is evaluated by (46)
and (48), then we have τ0 ≈ 0.2685.

Numerical solutions of (59) are shown in Figures 10
and 11 with different values of τ to support the theoretical
results in previous sections and the conditions in Theorem
4.2. Figure 10 illustrates the numerical solutions of (59)
near the bifurcation point τ0 ≈ 0.2685. We can see that the
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Fig. 10. Numerical solutions of (59) converge to E4 where τ = 0.22 < τ0
with parameter values in (55).

solutions in Figure 10 converge to the positive equilibrium
E4 = (16.31, 0.68) when τ = 0.22 < τ0. On the other
hand, in Figure 11, the solutions are oscillated about the
equilibrium E4 = (11.96, 1.53) when τ = 0.269 > τ0.

The second set of parameter (56), the numerical solutions
of (59) are shown in Figures 12 and 13 with different values
of τ to support the theoretical results in previous sections.
We can see that the solutions in Figures 12 and 13 converge
to the positive equilibrium E4 = (4.25, 0.15).

VI. CONCLUSION

In this paper, the main aim is to analyze dynamics of gen-
eralized tumor-virotherapy model (3). In the analytical part,
we stated the equilibria of model (3) and the conditions for
biological meaning of each equilibrium. We also determined
the conditions of stability properties of the model (3) about
the equilibria in Theorems 3.1 - 3.5. The theorem for the
existence of the Hopf bifurcation was stated in Theorem 4.1,
and the behaviors of the stability properties about the Hopf
bifurcation points τ0 were provided in Theorem 4.2.

In applications and numerical examples, we applied the
analytical results to the logistic, Gompertz and von Berta-
lanffy growth functions, which are special cases of model
(3). Finally, we presented some numerical simulations with
the first set of parameter values in (55). For the logistic and
von Bertalanffy functions, the results show the behaviors of
the solutions before and after the Hopf bifurcation points τ0
which both uninfected and infected tumor cells were existed
in Figures 1-2 and Figures 10-11. For Gompertz function, the
results show that the solutions converge to the equilibrium
which represent that all of tumor cells are infected cells

Fig. 11. Numerical solutions of (59) oscillate about E4 where τ =
0.269 > τ0 with parameter values in (55).

Fig. 12. Numerical solutions of (59) converge to E4 where τ = 0 with
parameter values in (56).

in Figures 6-7. Moreover, the numerical results with the
second set of parameter values in (56). For all classes of
the growth functions, the results show in Figure 3-4, Figure
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Fig. 13. Numerical solutions of (59) converge to E4 where τ = 0.70 with
parameter values in (56).

8-9 and Figure 12-13 that the solutions always converge to
the equilibrium. In addition, we show the numerical results
with the third set of parameter values in (57). For the logistic
function, the solutions always converge to trivial equilibrium
as shown in Figure 5.
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