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Abstract—We consider the generalized Riemann problem
for one dimensional ideal gas in Magnetogasdynamics in a
neighborhood of the origin (t > 0) in the (x, t) plane. According
to the different cases of the corresponding Riemann solutions,
we construct uniquely the perturbed solutions. We observe
that the contact discontinuity appears for some cases after
perturbation while there is no contact discontinuity of the
corresponding Riemann solution. For most cases, the Riemann
solutions are stable under such local small perturbations on the
Riemann initial data. While for some few cases, the forward
(backward) rarefaction wave can be transformed into the
forward (backward) shock wave which reveal the instability
of the Riemann solutions.

Index Terms—Generalized Riemann problem, Magnetogas-
dynamics, Rarefaction wave, Shock wave.

I. I NTRODUCTION

T HE inviscid and perfectly conducting compressible fluid
([1], [2], [3], [4], [5] and the references cited therein),

subject to a transverse magnetic field, is given as follows


















































ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u+ pI)− µrotH ×H = 0,

(ρE + 1
2µH

2)t + div(ρuE + up− µ(u ×H)×H) = 0,

Ht − rot(u ×H) = 0,

divH = 0,

p = f(ρ, S)
(1)

whereρ ≥ 0, p, S,B ≥ 0 andE = e+u2

2 are respectively the
density, pressure, specific entropy, transverse magnetic field,
and specific total energy,e is the specific internal energy.
u = (u1, u2, u3) is the velocity of the fluid in the direction
of (x1, x2, x3), H = (H1, H2, H3) is the magnetic field in
the direction of(x1, x2, x3) andH = µB, whereµ is the
magnetic permeability.

T. Raja Sekhar and V.D. Sharma [6] investigated






ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p+ B2

2 )x = 0,
(2)

under the assumptionB = kρ, wherek is positive constant,τ
denotes the specific volume. They constructed the Riemann
solutions (the other related problems in partial differential
equations were investigated by many researchers ([7], [8],
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[9], [10], [11], etc.) and investigated the interactions of the
elementary waves.

Shen [12] studied the Riemann solutions of (2) further and
observed that the Riemann solutions of (2) converge to the
corresponding Riemann solutions of the transport equations
when both the pressurep and the magnetic fieldB vanish.

Hu and Sheng [2] studied


















τt − ux = 0,

ut + (p+ B2

2µ )x = 0,

(E + B2τ
2µ )t + (pu+ B2u

2µ )x = 0,

(3)

and obtained constructively the unique solution of the Rie-
mann problem with the characteristic method.

In [13], we removed the above assumptionB = kρ and
mainly considered the Riemann problem for isentropic, in-
viscid and perfectly conducting compressible fluid expressed
by















ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p+ B2

2 )x = 0,

(B)t + (Bu)x = 0,

(4)

with the initial data

(ρ, u,B)(x, 0) = (ρ±, u±, B±), ± x > 0, (5)

whereρ±, u±, B± are arbitrary constants,p = Aργ holds
for the polytropic gas, A is a positive constant andγ is the
adiabatic constant.

Notice that the contact discontinuity is a plane curve in
(ρ, u,B) and the projection on(ρ, u) is a straight line parallel
to the ρ-axis which cause that the Riemann solutions for
Magnetogasdynamics are much more complicated than that
of the conventional gas dynamics.

In the present paper, we discuss the generalized Riemann
problem of (4) with the initial data

(ρ, u,B)(x, 0) = (ρ±0 , u
±

0 , B
±

0 )(x), ± x > 0, (6)

whereρ±0 (x), u
±

0 (x), B
±

0 (x) are arbitrary smooth functions
satisfying

lim
x→0±

(ρ±0 , u
±

0 , B
±

0 )(x) = (ρ±, u±, B±).

The initial value problem (4) and (6) can be regarded as
a perturbation of the corresponding Riemann problem (4)
and (5). Naturally, we wonder if the solutions of (4) and
(6) are similar to the corresponding Riemann solutions of
(4) and (5) in the neighborhood of the origin(t > 0) in
the (x, t) plane. According to the different cases of the
corresponding Riemann solutions of (4) and (5), we construct
the perturbed solutions with the characteristic method. We
find that for some cases, the contact discontinuity appears
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after perturbation while the corresponding Riemann solution
has no contact discontinuity. For most cases, the Riemann
solutions are stable and the perturbation can not affect the
corresponding Riemann solutions. For some few cases, the
forward (backward) rarefaction wave can be transformed into
the forward (backward) shock wave which reveals that the
Riemann solutions are unstable under such small perturba-
tions on the Riemann initial data.

The paper is organized as follows. Section II gives the
elementary waves and the Riemann solutions of (4) and
(5) for our later investigations. According to different cases
of the corresponding Riemann solutions of (4) and (5), in
Section III we construct the perturbed Riemann solutions of
(4) and (6). A final conclusion is given in Section IV.

II. PRELIMINARIES

First, we give briefly the elementary waves and the Rie-
mann solutions for the system (4) and list some notations
which are used in subsequent sections. We refer readers to
[9], [13] for details.

There are three eigenvalues of (4) which areλ = u =

λ0, λ = u ±
√

pρ +
B2

ρ
= λ±. They are real and distinct

which shows that (4) is a strictly hyperbolic system. It is easy
to see that the characteristic fieldsλ± are genuinely nonlinear
and the characteristic fieldλ0 is linearly degenerate.

The forward or backward rarefaction wave
−→←−
R in the

(ρ, u,B) space consisting of all the states which can be
connected to the stateQ0(ρ0, u0, B0) on the right is given
by

−→←−
R (N0) :















B = k0ρ,

u = u0 ±
∫

ρ

ρ0

√

pρ+
B2

ρ

ρ2
dρ,

(7)

wherek0 = B0

ρ0
.

The contact discontinuity can be expressed as

J :

{

σ = u,

[u] = [p+ B2

2 ] = 0.
(8)

The forward or backward shock wave in the(ρ, u,B)
space consisting of all the states which can be connected
to the stateQ0(ρ0, u0, B0) on the right is given by

−→←−
S (Q0) :







B = k0ρ,

u− u0 = ±
√

(ρ−ρ0)
ρρ0

(p+ B2

2 − p0 − B2
0

2 ).

(9)
Based on the above results, we are ready to construct the

Riemann solution for (4) and (5). From the properties of the
elementary waves, there is no asymptote for both

←−
S and

−→
S

while both
←−
R and

−→
R intersect with theu-axis. Since the

image ofJ in the space(ρ, u,B) is a plane curve and its
projection on the plane(ρ, u) is a straight line parallel to
theρ-axis, we construct the solution of Riemann problem as
follows.

Denote
←−
W lB(NlB) =

←−
R lB(NlB) ∪

←−
S lB(NlB) and−→

W rB(NrB) =
−→
R rB(NrB) ∪

−→
S rB(NrB). Draw

←−
W lB(NlB)

from NlB in the plane(ρ, u) and
−→
W rB(NrB) from NrB.

According to the properties of
←−
W lB(NlB) and

−→
W rB(NrB),

they intersect with each other at most once. Therefore, there

are five cases:
←−
W lB(NlB) ∩

−→
W rB(NrB) = (

←−
R lB(NlB) ∩−→

R rB(NrB)) or (
←−
S lB(NlB)∩

−→
R rB(NrB)) or (

←−
R lB(NlB)∩−→

S rB(NrB)) or (
←−
S lB(NlB) ∩

−→
S rB(NrB)) or ∅.

For the last case, we easily know there is a vacuum
solution. In what follows, we just need to consider the first
case since the other cases can be studied similarly.

Suppose
←−
W lB(NlB) ∩

−→
W rB(NrB) =

←−
R lB(NlB) ∩−→

R rB(NrB) = {N∗B}, we know there exists(ρ∗, u∗) sat-
isfying

u∗ = ul −
∫ ρ∗

ρl

√

pρ + k2l ρ

ρ
dρ, (10)

u∗ = ur +

∫ ρ∗

ρr

√

pρ + k2rρ

ρ
dρ, (11)

wherekl =
Bl

ρl
and kr = Br

ρr
.

Denote

f1(ρ1) =











ul −
∫ ρ1

ρl

√
pρ+k2

l
ρ

ρ
dρ, ρ ≤ ρl,

ul −
√

ρ1−ρl

ρ1ρl
(p1 +

k2
l
ρ2
1

2 − pl − k2
l
ρ2
l

2 ), ρ > ρl,

(12)

f2(ρ2) =











ur +
∫ ρ2

ρr

√
pρ+k2

rρ

ρ
dρ, ρ ≤ ρr,

ur +
√

ρ2−ρr

ρ2ρr
(p2 +

k2
rρ

2
2

2 − pr − k2
rρ

2
r

2 ), ρ > ρr,

(13)

g1(ρ1) = p1 +
k2l ρ

2
1

2
, (14)

g2(ρ2) = p2 +
k2rρ

2
2

2
. (15)

Let
{

f1(ρ1) = f2(ρ2),

g1(ρ1) = g2(ρ2).
(16)

-

6

q

q

q

(r)

(l)

ρ

u

(∗)

−→
RrB

←−
R lB

−→
S rB

←−
S lB

Elementary waves
Fig. 2.1. The elementary waves in the(ρ, u) plane.

We will prove that the problem (16) has a unique solution,
which implies that there exists a unique contact discontinuity

J joining the two states which are located on
−→←−
R and

←−−→
S

respectively (Fig. 2.1).
Sincef1(ρ1) and f2(ρ2) are both smooth functions, and

the curveρ2 = ρ2(ρ1) defined by f1(ρ1) = f2(ρ2) is
monotonically decreasing, while the curveρ2 = ρ2(ρ1)
defined byg1(ρ1) = g2(ρ2) is monotonically increasing.
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Thus, we obtain the uniqueness of the solution of (16). Next
we discuss the existence of the solution of (16).

Form (10) we havef1(ρ∗) = f2(ρ∗), we proceed as
follows.

Case 1.kl = kr. It is equivalent tog1(ρ∗) = g2(ρ∗). It is
obvious thatρ1 = ρ2 = ρ∗ is the solution of (16). Thus, the
Riemann solution is

←−
R +

−→
R , here the symbol“ + ” means

“followed by”. We notice that for this case there is no contact
discontinuity.

Case 2.kl > kr. It is equivalent tog1(ρ∗) > g2(ρ∗). So
we should look for solution in(ρ1, ρ2) : ρ1 < ρ∗, ρ2 > ρ∗.

- -

66

(r)

(∗)
−→
RrB (l)

←−
S lB

←−
R lB

−→
S rB

ρ

u

(r)

(l)

ρ̂2ρ̂1 ρ̂3

−→
S rB

←−
S lB

−→
RrB

←−
R lB

(∗)

ρ

u

Subcase 2.1

Fig. 2.2. The description for Subcase 2.1

Subcase 2.2

Fig. 2.3. The description for Subcase 2.2

q

q

q

q

q

q

ur

f1(0)

f1(0)

ur

Subcase 2.1ur ≥ f1(0). (see Fig. 2.2.)
There existsρ̂1 such thatf1(0) = f2(ρ̂1), whereρ∗ <

ρ̂1 < ρr.
Sinceg1(0) < g2(ρ̂1) and the curvesf1(ρ1), f2(ρ2) are

smooth, from the method of continuity, there exists(ρ̄1, ρ̄2)
satisfying0 < ρ̄1 < ρ∗, ρ∗ < ρ̄2 < ρ̂1 such thatf1(ρ̄1) =
f2(ρ̄2) and g1(ρ̄1) = g2(ρ̄2). Thus,(ρ̄1, ρ̄2) is the solution

of (16). It follows that the Riemann solution is
←−
R +

<

J +
−→
R .

Subcase 2.2ur < f1(0). (see Fig. 2.3.)
There existŝρ2 andρ̂3 satisfyingf1(ρ̂2) = ur andf1(0) =

f2(ρ̂3), respectively, where0 < ρ̂2 < ρ∗ and ρ̂3 > ρr.
Subcase 2.2.1g2(ρr) < g1(ρ̂2). Since g1(ρ̂3) > g1(0)

and the curvesf1(ρ1), f2(ρ2) are smooth, from the method
of continuity, there exists(ρ̄1, ρ̄2) : 0 < ρ̄1 < ρ̂2, ρr <

ρ̄2 < ρ̂3 such thatf1(ρ̄1) = f2(ρ̄2) and g1(ρ̄1) = g2(ρ̄2).
Thus,(ρ̄1, ρ̄2) is the solution of (16). The Riemann solution

is
←−
R +

<

J +
−→
S .

Subcase 2.2.2g2(ρr) ≥ g1(ρ̂2). Similarly, we know that
there exists(ρ̄1, ρ̄2) : ρ̂2 < ρ̄1 < ρ∗, ρ∗ < ρ̄2 < ρr such
that f1(ρ̄1) = f2(ρ̄2) and g1(ρ̄1) = g2(ρ̄2). The Riemann

solution is
←−
R +

<

J +
−→
R .

Case 3.kl < kr. It is equivalent tog1(ρ∗) < g2(ρ∗). So
we should look for solution in(ρ1, ρ2) : ρ1 > ρ∗, ρ2 < ρ∗.

6

-

6

-

u

ρ

u

ρ

f2(0)

ul (l)

(r)

ρ̂4

−→
RrB

−→
S rB

←−
R lB

←−
S lB

(∗)

←−
R lB

←−
S lB

−→
RrB

−→
S rB

(∗)

(r)

(l)ul

ρ̂5 ρ̂6

f2(0)

Subcase 3.1
Fig. 2.4. The description for Subcase 3.1

Subcase 3.2
Fig. 2.5. The description for Subcase 3.2

Subcase 3.1ul ≤ f2(0). (see Fig. 2.4.)

It is obvious that there existŝρ4 such thatf1(ρ̂4) = f2(0),
whereρ∗ < ρ̂4 < ρl. Similar discussions as above, we obtain
(ρ̄1, ρ̄2) : ρ∗ < ρ̄1 < ρ̂4, 0 < ρ̄2 < ρ∗. It follows that the

Riemann solution is
←−
R +

>

J +
−→
R .

Subcase 3.2ul > f2(0). (see Fig. 2.5.) There exist̂ρ5
such thatf2(ρ̂5) = ul, where0 < ρ̂5 < ρ∗, andρ̂6 such that
f1(ρ̂6) = f2(0), whereρ̂6 > ρl.

Subcase 3.2.1g1(ρl) ≥ g2(ρ̂5). Similarly, we know that
there exists(ρ̄1, ρ̄2) : ρ∗ < ρ̄1 < ρl, ρ̂5 < ρ̄2 < ρ∗ such
that f1(ρ̄1) = f2(ρ̄2) and g1(ρ̄1) = g2(ρ̄2). The Riemann

solution is
←−
R +

>

J +
−→
R .

Subcase 3.2.2g1(ρl) < g2(ρ̂5). Similarly, we know that
there exists(ρ̄1, ρ̄2) : ρl < ρ̄1 < ρ̂6, 0 < ρ̄2 < ρ̂5 such
that f1(ρ̄1) = f2(ρ̄2) and g1(ρ̄1) = g2(ρ̄2). The Riemann

solution is
←−
S +

>

J +
−→
R .

Based on the above results, we have the following result.
Theorem 2.1There exists uniquely solution for the Riemann
problem (4) with the initial values (5).

III. T HE GENERALIZED RIEMANN PROBLEM

Now we investigate the construction of the solutions for
the discontinuous initial value problem (4) with (6) in a
neighborhood of the origin(t > 0) on the (x, t) plane.
From the results in [14] and [15], the classical solution
(ρl, ul, Bl)(x, t) ((ρr , ur, Br)(x, t)) can be defined in a strip
domainDl(Dr) for a local time. The right boundary ofDl

has characteristicOA : x = λ−t, and the left boundary of
Dr has characteristicOB : x = λ+t (see Fig. 3.1).

6

-
x

t

A B

O(ρ−

0
, u

−

0
, B

−

0
)(x) (ρ+

0
, u

+

0
, B

+

0
)(x)

Dl Dr

local region

Fig. 3.1. The region of perturbed solution in(x, t) plane.

According to the different cases of the corresponding
Riemann solutions of (4) and (5), we construct the solutions
case by case for (4) with (6). For simplicity, we only
consider some interesting phenomena. For the other cases,
similar discussions can be carried out and omitted here. For
simplicity, we use the same symbols after perturbation since
there is no any confusion.
Case 1.Whenkl = kr, the corresponding Riemann solution
is
←−
R +

−→
R .

After perturbation, we obtain two subcases which arekl >

kr or kl < kr. In what follows, we discuss our problem in
two subcases.
Subcase 1.1.kl > kr.
Subcase 1.1.1.If ur ≥ f1(0) or ur < f1(0) and g2(ρr) ≥
g1(ρ̂2) after perturbation, and it follows that the perturbed

Riemann solution is
←−
R+

<

J+
−→
R . For this case, the correspond-

ing Riemann solution is stable under such small perturbation.
Subcase 1.1.2.If ur < f1(0)and g2(ρr) < g1(ρ̂2) after
perturbation, we obtain the perturbed Riemann solution is
←−
R +

<

J +
−→
S . For this case, the corresponding Riemann

solution is unstable under such small perturbation.
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Subcase 1.2.kl < kr.
Subcase 1.2.1.If ul ≤ f2(0) or ul > f2(0) and g1(ρl) ≥
g2(ρ̂5) after perturbation, it follows that the perturbed Rie-

mann solution is
←−
R +

>

J +
−→
R .

Subcase 1.2.2.If ul > f2(0) and g1(ρl) < g2(ρ̂5) after
perturbation, we obtain that the perturbed Riemann solution

is
←−
S +

>

J +
−→
R .

- x

←−
R −→

R

6
t

Riemann solution
Fig. 3.2. The Riemann solution in Case 1.

- x

←−
S or

←−
R −→

S or
−→
R

6
J

t

perturbed solution

Fig. 3.3. The perturbed solution in Case 1.

Theorem 3.1 For Case 1. although there is no contact
discontinuity of the corresponding Riemann solution, the
contact discontinuity appears after perturbation. Furthermore,
we find that the corresponding Riemann solution is sta-
ble for for Subcase 1.1.1. and Subcase 1.2.1., while for
Subcase 1.1.2. and Subcase 1.2.2., the backward (forward)
rarefaction wave of the corresponding Riemann solution can
be transformed into the backward (forward) shock wave
after perturbation which reveals that the Riemann solution
is unstable under such small perturbation. (see Fig. 3.2. and
Fig. 3.3.).
Case 2.kl > kr.

After perturbation, we still havekl > kr. We construct the
perturbed Riemann problem as follows.
Subcase 2.1.If ur ≥ f1(0), the corresponding Riemann

solution is
←−
R +

<

J +
−→
R . After perturbation, we obtain that

ur ≥ f1(0) or ur < f1(0).
Subcase 2.1.1Whenur ≥ f1(0) or ur < f1(0) andg2(ρr) ≥
g1(ρ̂2) after perturbation, we obtain the perturbed Riemann

solution is still
←−
R +

<

J +
−→
R .

Subcase 2.1.2Whenur < f1(0) andg2(ρr) < g1(ρ̂2) after
perturbation, we have the perturbed Riemann solution is

←−
R+

<

J +
−→
S .

Subcase 2.2.If ur < f1(0) and g2(ρr) ≥ g1(ρ̂2), the

corresponding Riemann solution is
←−
R +

<

J +
−→
R . After

perturbation, we haveur < f1(0) and g2(ρr) ≥ g1(ρ̂2)
or g2(ρr) < g1(ρ̂2), we construct the perturbed Riemann
solutionis as follows.
Subcase 2.2.1Whenur < f1(0) andg2(ρr) ≥ g1(ρ̂2) after
perturbation, we obtain the perturbed Riemann solution is

still
←−
R +

<

J +
−→
R .

Subcase 2.2.2Whenur < f1(0) andg2(ρr) < g1(ρ̂2) after

perturbation, the perturbed Riemann solution is
←−
R +

<

J +
−→
S .

Subcase 2.3.If ur < f1(0) and g2(ρr) < g1(ρ̂2), the

corresponding Riemann solution is
←−
R +

<

J +
−→
S . After

perturbation, we still haveur < f1(0) andg2(ρr) < g1(ρ̂2)

and it follows that the perturbed Riemann solution is still
←−
R +

<

J +
−→
S .

- x

←−
R −→

R

perturbed solution

Fig. 3.4. The perturbed solutions in Case 2.

6
t <

J

- x

←−
R −→

S

perturbed solution

Fig. 3.5. The perturbed solutions in Case 2.

6
<

J
t

Theorem 3.2The corresponding Riemann solution remain
unchanged for most cases after perturbation, which shows
that the corresponding Riemann solution is stable and the
perturbation can not affect the corresponding Riemann solu-
tion. While for few cases such as Subcase 2.1.2 and Subcase
2.2.2, the forward rarefaction wave of the corresponding
Riemann solution can be transformed into the forward shock
wave after perturbation which shows that the corresponding
Riemann solution is unstable under such small perturbation.
(see Fig. 3.4. and Fig. 3.5.)
Case 3.kl < kr.

After perturbation, it still holds thatkl < kr.
Subcase 3.1.If ul ≤ f2(0), the corresponding Riemann

solution is
←−
R +

>

J +
−→
R . After perturbation, we obtain that

ul ≤ f2(0) or ul > f2(0), and construct the perturbed
Riemann solutionis as follows.
Subcase 3.1.1When ul ≤ f2(0) or ul > f2(0) and
g1(ρl) ≥ g2(ρ̂5) after perturbation, we get the perturbed

Riemann solution is
←−
R +

>

J +
−→
R .

Subcase 3.1.2Whenu− > f2(0) andg1(ρl) < g2(ρ̂5) after
perturbation, we obtain that the perturbed Riemann solution

is
←−
S +

>

J +
−→
R .

Subcase 3.2.If ul > f2(0) andg1(ρl) ≥ g2(ρ̂5), the corre-

sponding Riemann solution is
←−
R+

>

J+
−→
R . After perturbation,

we haveul > f2(0), g1(ρl) ≥ g2(ρ̂5) or g1(ρl) < g2(ρ̂5),
we construct the perturbed Riemann solutionis as follows.
Subcase 3.2.1Whenul > f2(0) andg1(ρl) ≥ g2(ρ̂5) after
perturbation, we get that the perturbed Riemann solution is

still
←−
R +

>

J +
−→
R .

Subcase 3.2.2Whenul > f2(0) andg1(ρl) < g2(ρ̂5) after
perturbation, we obtain that the perturbed Riemann solution

is
←−
S +

>

J +
−→
R .

Subcase 3.3.If ul > f2(0) and g1(ρl) < g2(ρ̂5), the

corresponding Riemann solution is
←−
S +

>

J +
−→
R . After

perturbation, we find that it still holds thatul > f2(0) and
g1(ρl) < g2(ρ̂5) and it follows that the perturbed Riemann

solution is
←−
S +

>

J +
−→
R .

Theorem 3.3For Subcase 3.1.1, Subcase 3.2.1 and Sub-
case 3.3., the corresponding Riemann solution are stable.
While for Subcase 3.1.2 and Subcase 3.2.2, the backward
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rarefaction wave of the corresponding Riemann solution
can be transformed into the backward shock wave after
perturbation which shows that the corresponding Riemann
solution is unstable under such small perturbation. (see Fig.
3.6. and Fig. 3.7.)

- x

←−
R −→

R

perturbed solution

Fig. 3.6. The perturbed solutions in Case 3.

6
t >

J

- x

←−
S

−→
R

perturbed solution

Fig. 3.7. The perturbed solutions in Case 3.
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IV. CONCLUSION

In this work, we find that there exists a unique piecewise
smooth solution of the generalized Riemann problem (4) with
the initial data (6). The contact discontinuity may appear
after perturbation while there is no contact discontinuity of
the corresponding Riemann solution.

For most cases the perturbed Riemann solutions of (4)
and (6) are stable under such a perturbation on the initial
data. For some few cases, we observe the instability of the
perturbed Riemann solutions of (4) and (6) under such local
small perturbations on the Riemann initial values.

Since the reaction rate in our model is infinite which is an
idealized hypothesis, while our model is still very important
in application, we will investigate the initial value problem
for the self-similar Zeldovich-von Neumann-Döring (ZND)
model in magnetogasdynamic combustion with finite reaction
rate in our coming works.
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