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The Generalized Riemann Problem for a
Simplified Model in Magnetogasdynamics

Yujin Liu and Wenhua Sun

Abstract—We consider the generalized Riemann problem [9], [10], [11], etc.) and investigated the interactions of the
for one dimensional ideal gas in Magnetogasdynamics in a elementary waves.
neighborhood of the origin ( > 0) in the (z, ¢) plane. According  ghen [12] studied the Riemann solutions of (2) further and
to the different cases of the corresponding Riemann solutions, . .
we construct uniquely the perturbed solutions. We observe observed that th? Riemann SQIUUO”S of (2) converge to_the
that the contact discontinuity appears for some cases after corresponding Riemann solutions of the transport equations
perturbation while there is no contact discontinuity of the when both the pressugeand the magnetic field vanish.

corresponding Riemann solution. For most cases, the Riemann  Hy and Sheng [2] studied
solutions are stable under such local small perturbations on the

Riemann initial data. While for some few cases, the forward T — Uy = 0,

(backward) rarefaction wave can be transformed into the B2

forward (backward) shock wave which reveal the instability ug + (p+ ﬁ)& =0, 3)

of the Riemann solutions. B2, B2u
(E"i'j)t'i_(pu"’_ 20 )wZO,

Index Terms—Generalized Riemann problem, Magnetogas-

dynamics, Rarefaction wave, Shock wave. and obtained constructively the unique solution of the Rie-

mann problem with the characteristic method.
|. INTRODUCTION In [13], we removed the above assumptih= kp and

HE inviscid and perfectly conducting compressible quiQTainly considered the Riemann problem for isentropic, in-
isCi fectl i ible flui
(1], [2]. 31, [4], [5] and the references cited therein),bISCId and perfectly conducting compressible fluid expressed

subject to a transverse magnetic field, is given as follows

pe + (pu)z =0,
pt + div(pu) = 0, (pu)t + (pu? +p+ %2)95 =0, (4)
(pu) + div(pu @ u + pI) — protH x H = 0, (B): 4 (Bu), = 0,

(pE + 2pH?)y + div(puE +up — p(u x H) x H) =0,
H; —rot(u x H) =0,
divH =0,
p=f(p,5)
1)

h S0 S B>0andE — ett? tvely th adiabatic constant.
\év erep =2 0,p, 0, 5 = _?n ti e+t7 are respective yt' i_ IdNotice that the contact discontinuity is a plane curve in
ﬁgsny, pirﬁess,‘[u;el' s;;e(rn Ic (iantrr?py, rari]ﬁsvei;?errr:w?gn: Irc ! p,u, B) and the projection ofp, u) is a straight line parallel
a (spec ¢ ??s teheevge)focsity oef tshpeei‘:lui((:j in ?headifeciigz.to the p-axis which cause that the Riemann solutions for
u = (U1, U2,Us3 . .
T ) - .. Magnetogasdynamics are much more complicated than that
of (z1,x2,23), H = (Hy, Ho, H3) is the magnetic field in 9 gasdy P

e . of the conventional gas dynamics.
the direction of(xy, 23, z3) and H = pB, wherep is the o present paper, we discuss the generalized Riemann
magnetic permeability.

T. Raja Sekhar and V.D. Sharma [6] investigated problem of (4) with the initial data
ot (p)e = 0 (p.u, B)(@,0) = (py . ug, By)(«), £x>0, (6)

(pu): + (pu® +p+ B2), =0,

with the initial data
(p)u7B)(m)O):(pi7ui)Bi)) :l:‘r>07 (5)

where p*, u®, B* are arbitrary constantg = Ap” holds
for the polytropic gas, A is a positive constant ands the

(2) wherepZ(z), uf (), BE(x) are arbitrary smooth functions
satisfying

under the assumptioB = kp, wherek is positive constant; lim (p(ﬂ)t, u(ﬁ)t, B(ﬂ)t)(x) = (p*,ut, BY).

denotes the specific volume. They constructed the Riemann o—0%

solutions (the other related problems in partial differentidlhe initial value problem (4) and (6) can be regarded as

equations were investigated by many researchers ([7], [8],perturbation of the corresponding Riemann problem (4)
and (5). Naturally, we wonder if the solutions of (4) and

This vv_ork i_s supported by the Foundation for Young Scholars of Sha(ua) are similar to the Corresponding Riemann solutions of
dong University of Technology (No. 115024).

Yujin Liu is with School of Mathematics and Statistics, Shandoné4) and (5) in the neigh_borhOOd of t.he Ol’ig(ln > O) in
University of Technology, Zibo, Shandong, 255000, P. R. China. the (x,t) plane. According to the different cases of the

Wenhua Sun is with School of Mathematics and Statistics, Sha”doﬂ@rresponding Riemann solutions of (4) and (5) we construct
University of Technology, Zibo, Shandong, 255000, P R. China. Y-ujiﬂqe erturbed solutions with the characteristic method. We
Liu is the corresponding author. (e-mail: yjliu98@126.com (Y.J. Liu), p :

sunwenhua@sdut.edu.cn(W.H. Sun)) find that for some cases, the contact discontinuity appears

Volume 28, Issue 3: September 2020



Engineering Letters, 28:3, EL._28 3 31

after perturbation while the corresponding Riemann soluti@are five caseszB(NlB) N I?/,,AB(N,.B) = (<}_2“3( Nip) N

has no contact discontinuity. For most cases, the Riema%,.B(N,B)) or (S(N;g)N R,5(N,p)) 0 (<E (Ni)N
solutions are stable and the perturbation can not affect te. ; (N, 3)) or (IS;5(N;3) N S, 5(N,.5)) or @.
corresponding Riemann solutions. For some few cases, thgor the last case, we easily know there is a vacuum

forward (backward) rarefaction wave can be transformed inég|ution. In what follows, we just need to consider the first

the forward (backward) shock wave which reveals that these since the other cases can be studied similarly.

Riemann solutions are unstable under such small perturbagyppose W, (Ny5) N W,5(N,5) = Rip(Nig) N

tions on the Riemann initial data. . _ 5(N,5) = {N.5}, we know there existép,, u,) sat-
The paper is organized as follows. Section Il gives ﬂ]@fymg

elementary waves and the Riemann solutions of (4) and

(5) for our later investigations. According to different cases P \/pp + kip

o _ l
of the corresponding Riemann solutions of (4) and (5), in e =1 ” p dp, (10)
Section 1ll we construct the perturbed Riemann solutions of
(4) and (6). A final conclusion is given in Section IV. . [
we—uy+ [ NP EP p” i (12)
Il. PRELIMINARIES pr

. . . ) B B,
First, we give briefly the elementary waves and the Rigtherek; = 2t and k. = —=.
mann solutions for the system (4) and list some notationsDenote

which are used in subsequent sections. We refer readers to o1 ,,p+klp
- w— [, —o——=dp, p<
[9], [13] for details. Fi(py) = L= Uy ’ ’

There are three eigenvalues of (4) which are= v = w — \/p1pr (pr + lpl o kf/ﬂ) 0>
Aoy A = u % /p, + %2 = As. They are real and distinct Lot (12)
which shows that (4) is a strictly hyperbolic system. It is easy
to see that the characteristic fields are genuinely nonlinear _
and the characteristic field, is linearly degenerate. o 7\W)dp, 0 < pr,

The forward or backward rarefaction Wav§ in the 72(72)= =)

u+\/—Lp2+ ’pzfp Y p>p
(p,u, B) space consisting of all the states which can be " p2p; " 2P "
connected to the stat®,(po, uo, Bo) on the right is given (13)
by
B =k 122
= i g1(p) =p1 + -1, (14)
R(Np) : R (7)
u =1yt fpo p—2pdp> k22
92(p2) = p2 + == (15)
whereky =
The contact dlscontlnwty can be expressed as Let
- fi(p1) = fa(p2),
7 o u, (8) { (16)
[u] = [p+ B;] _ g1(p1) = ga(p2)-

The forward or backward shock wave in tkig, u, B) u
space consisting of all the states which can be connected
to the statelo(po, uo, Bo) on the right is given by

;)(Q ) B = kop, 73)3

0): 3 3 "
U — Uy = :IZ\/ pppZo) erBT*p()*%).
9)

Based on the above results, we are ready to construct the P p
Riemann solution for (4) and (5). From the progertles of the Sis
elementary waves, there is no asymptote for b6ttand

Elementary waves

while both R and ﬁ intersect with theu-axis. Since the Fig. 2.1. The elementary waves in thg, «) plane.

image of J in the space(p, u, B) is a plane curve and its

projection on the planép,u) is a straight line parallel to ~We will prove that the problem (16) has a unique solution,
the p-axis, we construct the solution of Riemann problem aghich implies that there exists a unique contact d'SCOQEnU'tY
follows. J joining the two states which are located db and S

_ Denote Wis(Nis) = Rip(Nip) U Sip(Nip) and respectively (Fig. 2.1).

Wop(Nrg) = Erp(Nrp)U Srp(Nep). Draw Wis(Nig) Since f1(p1) and f»(ps) are both smooth functions, and
from N;p in the plane(p,u) and W,g(N,g) from N,g. the curveps = p2(p1) defined by fi(p1) = fa(p2) is
According to the properties oV ;5 (N;5) andWTB( N,g), monotonically decreasing, while the curyg = p2(p1)
they intersect with each other at most once. Therefore, thelefined by gi(p1) = g2(p2) is monotonically increasing.
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Thus, we obtain the uniqueness of the solution of (16). Nextlt is obvious that there exist, such thatfi(ps4) = f2(0),
we discuss the existence of the solution of (16). wherep, < p4 < p;. Similar discussions as above, we obtain
Form (10) we havefi(p.) = f2(p«), we proceed as (p1,p2) : p« < p1 < pa,0 < po < ps. It follows that the

follows. . . ~ Riemann solution ik + 3 + R

Case 1.k = k.. Itis equivalent togi (p.) = g2(p+)- ItiS  gypcase 3.2u; > f.(0). (see Fig. 2.5.) There exigis
obvious thap, = p2 = p._is the solution of (16). Thus, the gch thatf, (j5) = w;, where0 < j5 < p., andjs such that
Riemann solution isk + ﬁ here the symbol +” means f1(ps) = f2(0), wherepg > p.
“followed by”. We notice that for this case there is no contact g ;pcase 3.é-lg1(pz) > g2(ps). Similarly, we know that
discontinuity. there exists(p1,p2) : px < p1 < p1,p5 < p2 < ps SUCh

Ca;:e |2d]|ﬂ >kf, It Iis _equ_ivalent t0g1(p+) > g2(p«)- SO that f1(p1) = f2(p2) and g1(p1) = go(p2). The Riemann
we should look for solution itip1, p2) : < P, > . . >
1 p2) i p1<pe p2>p solution |S<E +J+ ﬁ

u “ Subcase 3.2.2j1(p1) < g2(p5). Similarly, we know that
, T FZ1C) PR there exists(p1,p2) : o1 < p1 < p6,0 < p2 < ps such
u77) that fl(ﬁl) = f2(ﬁ2) and g1(ﬁ1) = 92([;2)_ The Riemann
2N (0)) S———— ) L >
o solution is S + J + ﬁ
' Based on the above results, we have the following result.
( ; Theorem 2.1There exists uniquely solution for the Riemann
G § problem (4) with the initial values (5).
/;1 IB - 5
Subcase 2.1 Subcase 2.2 I1l. THE GENERALIZED RIEMANN PROBLEM

Fig. 2.2. The description for Subcase 2.Fig. 2.3. The description for Subcase 2.2 . . . .
Now we investigate the construction of the solutions for

the discontinuous initial value problem (4) with (6) in a
neighborhood of the origift > 0) on the (z,¢) plane.
From the results in [14] and [15], the classical solution
(p1,ur, B)(x,t) ((pr,ur, By)(x,t)) can be defined in a strip
domain D, (D,) for a local time. The right boundary ad,
has characteristi©A : x = \_t, and the left boundary of
D, has characteristi©OB : x = \;t (see Fig. 3.1).

Subcase 2.1u, > f1(0). (see Fig. 2.2.)

There existsp; such thatf1(0) = f2(p1), wherep, <
p1 < pr.

Since g1(0) < g2(p1) and the curvesi(p1), f2(p2) are
smooth, from the method of continuity, there exi§is, p2)
satisfying0 < p1 < p«, psx < p2 < p1 such thatf;(p1)
f2(p2) and g1(p1) = g2(p2). Thus, (p1, p2) is the solution

. A <
of (16). It follows that the Riemann solution B +J+ R. t

Subcase 2.2:, < f1(0). (see Fig. 2.3.) A B

There exist$; andps satisfyingfi(p2) = u, andf1(0) =
f2(p3), respectively, wher@ < po < p, andps > p;. D, D,

Subcase 2.2.1g2(pr) < g1(p2). Since gi(ps) > ¢1(0)
and the curvedi(p1), f2(p2) are smooth, from the method (py > ug, By ) (@) O (pf,uf, B )(x) r
of continuity, there existgp1,72) : 0 < p1 < pa,pr < local region

p2 < p3 such thatfi(p1) = f2(p2) and gi(p1) = ga2(p2).

Thus, (p1, p2) is the solution of (16). The Riemann solution
<

is <§ +J+ ?

Subcase 2.2.2%2(p,) > g1(p2). Similarly, we know that
there exists(p1, p2) : p2 < p1 < pu,px < p2 < pr SUCh
that f1(p1) = f2<(/52) and g1(p1) = g2(p2). The Riemann
solution is<E +

Fig. 3.1. The region of perturbed solution (&, ¢) plane.

According to the different cases of the corresponding
Riemann solutions of (4) and (5), we construct the solutions
case by case for (4) with (6). For simplicity, we only
consider some interesting phenomena. For the other cases,
similar discussions can be carried out and omitted here. For
simplicity, we use the same symbols after perturbation since
there is no any confusion.

Ca&e 1.Whenk; = k., the corresponding Riemann solution

is R+ R.

After perturbation, we obtain two subcases which/are-

J+R.
Case 3.k, < k,.. It is equivalent tog; (p.) < g2(p«). SO
we should look for solution ifp1, p2) : p1 > ps, p2 < Ps.

f2(0

L7 P

pa

Fig. 2.4. The description for Subcase 3.Eig. 2.5. The description for Subcase 3.2 . <

Subcase 3.1

ps

Subcase 3.2

Subcase 3.4y < f5(0). (see Fig. 2.4.)

k. or k; < k.. In what follows, we discuss our problem in
two subcases.

Subcase 1.1k; > k,.

Subcase 1.1.1f u, > f1(0) or u, < f1(0) and g2(p,) >
g1(p=2) after perturbation, and it follows that the perturbed

Riemann solution i§+(<]+ﬁ. For this case, the correspond-
ing Riemann solution is stable under such small perturbation.
Subcase 1.1.2If u, < fi(0)and g2(p.) < g1(p2) after
perturbation, we obtain the perturbed Riemann solution is

R+ J+ ? For this case, the corresponding Riemann
solution is unstable under such small perturbation.
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Subcase 1.2k; < k,.. and it follows that the perturbed Riemann solution is still
Sul?case 1.2.11f < fg((_)) or u; > f2(0) and g1 (p;) > _ §+j+§>_
g2(ps) after perturbation, it follows that the perturbed Rie- ' -
> J
mann solution isR + J + K. I 3 :
Subcase 1.2.2If u; > f2(0) and g1(p;) < g2(ps) after B

perturbation, we obtain that the perturbed Riemann solution

L =2
is'S + 7+ R. _
o
t perturbed solution
[ i ﬁ Fig. 3.4. The perturbed solutions in Case 2.
t <
- J
[ i s

.
Riemann solution
Fig. 3.2. The Riemann solution in Case 1.
t - xT
J perturbed solution
[ <§ or <§ : ? ﬁ Fig. 3.5. The perturbed solutions in Case 2.
: or

Theorem 3.2The corresponding Riemann solution remain
unchanged for most cases after perturbation, which shows
; * that the corresponding Riemann solution is stable and the
perturbed solution X . X
Fig. 3.3. The perturbed solution in Case 1. perturbation can not affect the corresponding Riemann solu-
Theorem 3.1 For Case 1. although there is no contadton- While for few cases such as Subcase 2.1.2 and Subcase

discontinuity of the corresponding Riemann solution, th&2-2, the forward rarefaction wave of the corresponding
contact discontinuity appears after perturbation. Furthermof€mann solution can be transformed into the forward shock
we find that the corresponding Riemann solution is st¥/ave after perturbation which shows that the corresponding
ble for for Subcase 1.1.1. and Subcase 1.2.1., while fgiemann solution is unstable under such small perturbation.
Subcase 1.1.2. and Subcase 1.2.2., the backward (forwdg@g Fig. 3.4. and Fig. 3.5.)

rarefaction wave of the corresponding Riemann solution ckifse 3.k < k. o

be transformed into the backward (forward) shock wave After perturbation, it still holds thak, < k..

after perturbation which reveals that the Riemann solutiopHPcase 3.11f u < f2(0), the corresponding Riemann
is unstable under such small perturbation. (see Fig. 3.2. aswution is% +J + ﬁ After perturbation, we obtain that

Fig. 3.3.). u; < f2(0) or u; > f2(0), and construct the perturbed
Case 2.k; > k.. Riemann solutionis as follows.
After perturbation, we still havé; > k,.. We construct the Subcase 3.1.1When u; < f2(0) or u; > fo(0) and
perturbed Riemann problem as follows. g1(p1) > g2(ps) after perturbation, we get the perturbed
>

Subcase 2.1If w, > f1(0), the corresponding R'emannRiemann solution is§+J+ﬁ.

«— <

solution is R + J + ﬁ After perturbation, we obtain that Subcase 3.1.2Vhenu_ > f»(0) andgi(p;) < g2(p5) after

ur > f1(0) or u, < f1(0). perturbation, we obtain that the perturbed Riemann solution
Subcase 2.1.Whenuw,. > f1(0) oru, < f1(0) andgz(p;) > is 5 +3+ B

91(p2) after perturbation, we obtain the perturbed Riemang ..o 3.2”' w > f2(0)

) alter perturba andgi(p1) > ga(ps), the corre-
solution is still R 4 J + ﬁ

sponding Riemann solution <iE+(>]+ﬁ After perturbation

Subcase 2.1.2Vhenw, and - he) after . Ay
pcase 2. Loy < 1110) andgaton) = 91(6) ST we haveu, > £2(0), g1(p1) > 9a(p3) O g1(p) < g2(5s),

perturbation, we have the perturbed Riemann solutia 4s - \ye construct the perturbed Riemann solutionis as follows.

<

J+ 5. Subcase 3.2.Whenu; > f2(0) and g1 (p;) > g2(ps) after

Subcase 2.2If u, < f1(0) and g2(p.) > ¢1(p2), the perturbation, we get that the perturbed Riemann solution is
<

>
corresponding Riemann solution i<§ + J + ﬁ After  still §+ J+ﬁ.
perturbation, we have,. < f1(0) and g2(p.) > g1(p2) Subcase 3.2.2Vhenwu; > f2(0) and g1 (p1) < g2(ps) after
or g2(pr) < g1(p=2), we construct the perturbed Riemanmerturbation, we obtain that the perturbed Riemann solution
AT N
solutionis as follows. A is 5 Ty B
Subcase 2.2.1Nhenu,, < fl(O) andgg(p,,) > gl(pg) after _Subcase 3.3.f w > f2(0) and 91(/)1) >< 92(/35), the

perturbation, we obtain the perturbed Riemann solution is ) ] ) —
] < corresponding Riemann solution i§$ + J + ﬁ After
still % +J+ ﬁ

perturbation, we find that it still holds thay > f»(0) and

Subcase 2.2.2Vhenu, < f1(0) and g2(p;) < g1(p2) after g1(p) < g2(ps) and it follows that the perturbed Riemann
>

— <
i i i S
perturbation, the perturbed Riemann solutlorHerJJr?. solution is'S + J + ﬁ

Subcase 2.3If u, < fi(0) and gip” = 91(p2), e Theorem 3.3For Subcase 3.1.1, Subcase 3.2.1 and Sub-
corresponding Riemann solution i® + J + ? After case 3.3., the corresponding Riemann solution are stable.
perturbation, we still have, < f1(0) andg2(p-) < g1(p2) While for Subcase 3.1.2 and Subcase 3.2.2, the backward
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rarefaction wave of the corresponding Riemann solutigel T. Chang, L. Hsiao, “The Riemann Problem and Interaction of Waves
can be transformed into the backward shock wave after in Gas Dynamics, Pitman Monographs,” No. 4longman Scientific

and technical Essex, 1989.

pertu_rba?lon which shows that the correspond_lng R'emaﬂ.@] Y.J. Liu, W.H. Sun, “The Riemann Problem for the Simplified Com-
solution is unstable under such small perturbation. (see Fig. bustion Model in Magnetogasdynamic$XENG International Journal
3.6. and Fig. 3.7.)

t

perturbed solution

Fig. 3.6. The perturbed solutions in Case 3.

of Applied Mathematigsvol. 49, No. 4, pp. 513-520, 2019.

[11] J.Q. Xie, D.W. Deng and H.S. Zheng, A Compact Difference Scheme
for One-dimensional Nonlinear Delay Reaction-diffusion Equations
with Variable Coefficient, IAENG International Journal of Applied
Mathematics, vol. 47, No. 1, pp. 14-19, 2017.

[12] C. Shen, “The limits of Riemann solutions to the isentropic magneto-
gasdynamics,Applied Mathematics Letter4(2011) 1124-1129.

[13] Y.J. Liu, W.H. Sun, “Riemann problem and wave interactions in Mag-
netogasdynamicsJournal of Mathematical Analysis and Applications,
vol. 397, No. 2, pp. 454-466, 2013.

[14] T.T. Li, “Global classical solutions for quasilinear hyperbolic system,”
John Wiley and Sond\ew York, 1994.

[15] T.T. Li and W.C. Yu, “Boundary value problems for quasilinear
hyperbolic systems,Duke University Mathematics, 1985.

>
J

perturbed solution
Fig. 3.7. The perturbed solutions in Case 3.

IV. CONCLUSION

In this work, we find that there exists a unique piecewise
smooth solution of the generalized Riemann problem (4) with
the initial data (6). The contact discontinuity may appear
after perturbation while there is no contact discontinuity of
the corresponding Riemann solution.

For most cases the perturbed Riemann solutions of (4)
and (6) are stable under such a perturbation on the initial
data. For some few cases, we observe the instability of the
perturbed Riemann solutions of (4) and (6) under such local
small perturbations on the Riemann initial values.

Since the reaction rate in our model is infinite which is an
idealized hypothesis, while our model is still very important
in application, we will investigate the initial value problem
for the self-similar Zeldovich-von Neumann-Doring (ZND)
model in magnetogasdynamic combustion with finite reaction
rate in our coming works.
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