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Abstract—Most of the existing computing algorithms are
designed for environment in which all the related data are
stored at a single site, horizontally distributed or particular
case of vertically distributed where different nodes contain
different attributes of a common set of entities. Moreover,
existing algorithms that work for general vertically distributed
databases have exponential messages and elapsed time, resulting
in heavy network traffic. To minimize the network traffic, it is
desirable to maximize the amount of local computations on each
of the participating nodes. In this work, a new perspective on
these two competing demands is presented to achieve a scalable
and secure solution on the most general vertical and horizontal
distribution of databases. The proposed algorithm efficiently
compute inter-tuple distance based clustering for data in the
federated databases. We show this by finding the closest pair.
The computation is executed by reciprocity involving only high
level of summaries, i.e., the actual tuple can never be detected
by the intruder, providing high level of privacy and security
of databases. The simulation results show that the proposed
algorithm efficiently find exact solution with less total message
exchanges and elapsed time than existing algorithm.

Index Terms—Closest Pair; Decomposable Algorithm; Di-
rected Acyclic Graph; Horizontally and Vertically Partitioned;
Privacy preserving.

I. INTRODUCTION AND MOTIVATION

NEw collaborations of geographically distributed data
from different fields are indispensable for many types

of cooperative computations with their local databases. Some
of the data were created as distributed databases where
aggregation was in the interest of cooperation, but most
data were created to work as self-supporting databases. For
some specific computation a number of these self-supporting
databases may have to cooperate, and thus the problem of
designing and maintaining an efficient, secure cooperation
technique among the distributed databases is an essential
task. Also, it is required to maintain the privacy of the
distributed data through the new technique, which returns
the exact result as that of running traditional algorithm by
moving all the local databases to a single site.

In a typical setting a number of databases may decide to
collaborate to collectively perform some global computation.
Each database then contributes its information, in the form of
some partial results derived from its data, while minimizing
the amount of information to be exchanged, maximizing
the privacy protection of its data, and requiring the least
amount of coordination to control the flow of the global
computation. In this work, we propose a new mechanism and
algorithm for closest pair determination with such collabora-
tive communication and computation formulations for global
computations. The primary issues that arise in developing
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such a formulation and have been addressed by us, include
the following points:

1) Any pair of databases may share some arbitrary set
of attributes. A composition function that accounts for
this arbitrary nature of overlap must be defined for the
participating set of databases.

2) A communication pathway connecting all the partici-
pating nodes must be established for local results to
travel, and get aggregated as they travel up to a single
accumulating node.

3) The formulation must minimize the risk, possibly elim-
inating it completely, of a data tuple from one database
being revealed to other databases.

A. Integration of Distributed Data

Types of Data Federated: The participating databases
may form an implicit global database that is horizontally
partitioned or vertically partitioned with arbitrary overlap
among their attribute sets. Some recent research has focused
on horizontally partitioned datasets and on vertical partitions
with very restrictive sharing of attributes among the indi-
vidual databases. Our formulations and algorithm developed
and presented in this paper are designed for arbitrary overlap
among the participating databases.

Communication: In any instance of the global computation
we assume that one of the participating nodes is the one that
needs the result of the global computation, and we mark it as
the Learning node. This is in contrast to the assumption in [1]
where all the collaborating nodes must know the final result
of the global computation. A simple communication model
is one in which the Learning node directly communicates
with each of the other databases [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12]. A more efficient communication
may be a tree-like structure with the Learning node at the
root. Messages flow up and down this tree and information
is synthesized or inherited as it moves up or down the
tree structure. This structure better preserves the locality of
information and hence enhances the data privacy. Also, it
shares the computational load of performing the aggregation
among various nodes. Construction of this communication
tree is driven by the pattern of attribute sharing among the
databases.

Security and Privacy: In terms of a database, security
is relative to the knowledge of complete tuples, sensitive
subset of attributes and their corresponding tuples, corruption
of the data, and capture of the data by malicious agents.
Ignoring the communication aspect and considering just the
computation of the joint function or relation introduces the
privacy issues. In [13] privacy means that the communicating
parties do not disclose their actual data during or after the
communication. Only the final results of computations are
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allowed to be disclosed. Security on the other hand relates
to the interception and disclosure of the communication
messages sent between the parties. Both privacy and security
have associated levels of granularity. At one level, these
deal with the entire database or an entire message that
would be at risk. The protection of these usually involves
encryption, or some form of perturbation of the data. At the
lowest level of the security and privacy are the computations
themselves. Their inputs and outputs are protected by some
use of secure multi-party computation. Both of these leaves
a middle level which is referred to in this research as the
information level, e.g., statistical summary level. This level
addresses the concern of the loss of utility in the information
due to distortion, and the high computation cost of the
secure multi-party computation. This level has to address
the inferencing problem, but it has available to it many
interesting properties that can be exploited to aid scalability,
protecting the computation and the messages exchanged.

Distributed Computation with Privacy and Security: Com-
putation over a secure channel highlights the privacy is-
sues while those over non secure channels are concerned
with both privacy and security. Federated databases al-
low great flexibility in data storage, fault tolerance, and
data availability. This added flexibility introduces significant
challenges when computation needs to aggregate a subset
of the distributed databases to reason on. The health-care
industry collects medical and insurance records of millions
of patients. Naturally, people are wary of their personal
and private information getting in the wrong hands. This,
however, does not call for abolishing the practice of data
collection. While, consumers may indeed be worried about
their private data, they also enjoy the services made available
to them because of this. So, instead, a balance must be
struck between data collection, processing and storage and
security. The exponential blow up in data size associated with
explicit rendering of the aggregated databases renders most
centralized algorithms to be unfeasible. With data privacy in
mind, this paper presents the closest pair problem modified
as a decomposable algorithm for use in distributed datasets.
The goal is to present an algorithm that provides better data
privacy by using the Directed Acyclic Graph (DAG) data
structure. The main is that local computation is done at each
site and so there is no need to send the full tuple to a central
site.

B. Data Structure

In a distributed database scenario, there are n databases
located at n distinct sites of the network and these distributed
databases jointly produce the global implicit D for compu-
tation. Any two arbitrary distributed databases may share
one or more attributes. In the situation modelled here, a
graph G(V,E) is used to represent the pattern of attribute
sharing among the databases, where (|V | = n) represents
the number of participating sites (each site is represented by
a node), and |E| represents the number of edges between
all participating nodes. We add an edge between two nodes
when their databases are sharing at least one attribute. We
assume that, for any two adjacent participating nodes the
shared attribute-names between them are known. This graph
structure was not efficient for the messaging requirements,

and the presence of cycles can falsify calculated results.
Therefore, a DAG has been used to control the movement of
information among participating nodes, and avoiding cycles
can improve the number messages that must be exchanged
between participating nodes, therefore, a DAG has more
desirable properties. Any node can be chosen as a Learner
node, to manage the global computations. DAG provides
parent/child relationships among the nodes. There are two
types of topologies for the constructed DAG. The first
topology is a directed tree rooted at the Learner, in which
all nodes have a single-parent node as shown in Fig. 1. The
second topology is a general DAG (or general digraph) rooted
at the Learner, in which some nodes may have a multi-
parent node as shown in Fig. 2. We assume that there can be
arbitrary overlap in the attribute sets of any pair of databases.

In abstract modeling, every database Di at ith site is
represented by a flat table that consists of a set of tuples
with set of attributes Xi. For any pair of relations Di and
Dj the sets Xi and Xj may share some attributes (set Sij).
The implicit global data D with which the computation is
to be executed is a subset of the set of generated tuples by
a join of the participating D1, D2, . . . Dn and D cannot be
explicitly generated at any site because Di’s cannot be moved
in their entirety to other sites. The tuples of D, therefore,
must stay only implicitly specified to an agent. This disability
of explicitly creating the tuples of D is the major challenge
(generalized decomposition of global algorithms) in handling
many problems which will be discussed in this paper.

For any parent and child nodes (databases Di and Dj ,
i 6= j) they share some attributes, and we define the set of
all those attributes that are shared between the parent and its
children as Sij .

x4 x8

x2 x5 x6

D2 D3

D1

D5D4 D6 D7

x1 x2 xi

x1 x3 x4

x3 x7 x5 x9 x6 x10 

Fig. 1. Single-Parent DAG

C. Cost Models for Algorithmic Complexity

Traditionally, the algorithm complexity is evaluated in
terms of memory and CPU time, however, this cost model
is well-suited for computations on a single computer and the
closely-coupled processors. When a number of loosely net-
worked nodes are involved in a cooperative computation, the
communication cost becomes the overwhelmingly dominant
component of the total cost. According to our experience in
designing and analysis of network decomposable algorithms,
every algorithm step must have a number of exchanged
messages for computing the various quantitative values. In
this work and previous works [3], [4], [5], [6], [8], we use
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Fig. 2. Multi-Parents DAG

complexity models that involves the number of exchanged
messages and reflecting the efficiency of decomposition
carried out by the network algorithm. The following two
Models are used to analyze our algorithms.
• Cost Model 1: Exchanging One Summary Per Mes-

sage (Un-optimized) only one local computation re-
quest is exchanged per message at a time. The messages
are exchanged in Bottom-Up or a Top-Down manner,
that is, the request message is sent from upper level
node(s) to the next down level nodes and the summary
information is sent from down level nodes to upper level
node(s) and so on until reaching the root node.

• Cost Model 2: Exchanging all summaries per
message (optimized) all local requested computations
which correspond to all tuples of shared will be sent to
the children in one exchanged message.

In this work, in the two cost models above, we represent
the complexity of the proposed algorithm as expressions in
terms of number of messages that need to be exchanged.

The remaining of this work is organized as follows: In
section II, we discuss the related work. The description of the
proposed mechanism for handling the proposed problem with
example scenario is given in section III. In section IV, the
complexity analysis and the privacy and security discussions
of the proposed algorithm are presented. In section V, we
study the properties of our algorithm via simulation. We
conclude our paper in section VI.

II. RELATED RESEARCH

The closest-pair problem is a computational geometry
problem. The popularity of this problem becomes apparent
because of its productiveness as a general-purpose means of
comparing data and indexing [14], [15], [16], [17]. Given a
set of m points in Rd (d ≥ 1), and a metric to measure the
distance between points. The problem is to find a pair of
points whose whose distance is minimal. Many sequential,
parallel, distributed, approximate, and random algorithms
were proposed for finding the closest pair such as works in
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], however they assumed that the m points belong to one
site, public data, or special case of distributed data.

In [22], the authors proposed algorithm to find the nearest
neighbor of point q, in a set of n points in Rd, whose
Euclidean distance to q is minimum. They pre-processed
the set s, which helps to efficiently answer the queries. In

[23], the authors proved that a set of n points in Rd can
be preprocessed in O(d*n log (n)) time and O(dn) space. In
[30], given a set S of n points S with metric space X, the
authors proposed a technique to preprocess S which helps
to efficiently find the closest point in S to a query point.
In [31], the authors proposed a new technique to find the
nearest neighbor, where the search returns the correct nearest
neighbor with a given probability assuming that the queries
are drawn from some known distribution using overlapped
split tree, principal component analysis and support vector
machines are used to analyze the structure of the data and
training points in order to better adapt the tree structure to
the data sets. All above proposed algorithms are working
with data at one site. The proposed algorithm is designed
for distributed databases.

A few works had been proposed in the area of distributed
databases over the past few years. Most of works in this area
addresses the horizontally partitioned data or very special
case of vertically partitioned data where they assume that
m tuples are partitioned between two sites such that each
site contains a key to identify some individual, and a set of
attributes that does not overlap with the attribute-set at any
other site.

The task of computing from vertically distributed data
while maintaining data privacy has been looked at from the
view of exchanging high level summaries between the data
sites [2], [3], [4], [5], [6], [8]. This is common on appli-
cation areas with approximation result is not good enough,
where database is vertically distributed, the databases are
extremely large and arbitrary number of attribute overlap
can be occurred. This is the most general view of the need
for an implicit join for vertically distributed data. Also,
the interconnections of the databases can have complex
communication pathways which makes the global function
evaluation an intimidating job. This view is the motivation
for our formulation presented in the next sections. To the best
of our knowledge there is no much work that explores the
situations of unconstrained overlap in the database schema
with the computations being performed in the implicit join
of the databases.

The Algorithms that conduct computation on distributed
databases can be divided into two main groups: firstly those
that operate on a horizontally partitioned database, such
as [32], and secondly those that operate on a vertically
partitioned database such as [2], [3], [4], [5], [6], [8]. Vertical
partitioned databases unlike horizontal partitioned databases
have a range of interpretations, [33] for example assumes the
availability of a global index that relates all the rows from
each of the distributed databases. The join in this case is the
union of all the databases. The effect of the union is that row
i in the global joined database is row i in each of the local
databases. While there are scenarios such as large business
enterprises that vertically partition their large databases in
this manner to increase data availability, this is not the case
in environments such as databases across possibly competing
entities like, universities, or businesses.

In [34] each database site is heterogeneous but locally can
construct reduced dimensional data to be sent to a central
site to formulate a global model of clustering properties
of the data. From this centralized but significantly reduced
data, Principal Components Analysis (PCA) can be done
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with quantifiable bounds in error. The aggregation of the
data at a site is on key attributes sent with the models. This
approach computes an estimate using distorted data. It also
creates a centralized, however smaller the sized data. Our
approach does not make any such explicit rendering on which
computation has to be performd. Furthermore, the amount of
information sent across the network for their method is still
much higher than what is desirable. [13] is a more general
approach and computes decsion trees on exact data with the
restriction of a single shared attribute between the attribute
sets of the databases. [2], [3], [4], [5], [6], [8] removed
the single attribute overlap assumption, i.e., arbitrary overlap
but restricted the communications between the nodes to one
central node communicating directly with all the other nodes.
In this paper, we maintain the arbitrary overlap between
attribute sets and expand the communications between the
nodes. Our research takes a practical and most general
approach. We assume the overlap in attribute sets can be
on one or several attributes and that each of the databases
can evolve independently of each other over time.

The idea is to divide the work by giving more computa-
tions to the local sites and then having them sending back
summarized results rather than transmitting their data to the
coordinator site such as the work in [35], [36], [8]. In [36],
nearest neighbor pair was determined by transmitting more
than 25% of the data sites to the coordinator. Moreover, the
authors used the approximation in joining of the values if
these values are not exactly matching. In [8], the authors
proposed two algorithms to determine the nearest point from
a given one, and the closest pair without any movement of
data sites and without approximation in joining. However,
the time and messages are exponential.

In the proposed work, using Directed Acyclic Graph
(DAG), we propose a new framework that includes a general
model and a decomposable version of closest pair algo-
rithm (EDCP) for input stored in geographically distributed
databases in most general case. The goal of our algorithm is
to minimize the cost of communication among the database
nodes by gathering statistical summaries at each distributed
database and then passing messages describing those sum-
maries between the participating sites which preserves the
privacy of the data. The proposed technique is applicable
for the horizontal and vertical distributed databases need to
cooperate for finding the closest pair of points.

We believe that this is the second work that can determine
the closest pair across vertically distributed data, where in
the first work [8], sites exchange appropriate high level data
summaries. The difference between our proposed work here
and the algorithm in [8] is the communication structure,
where in [8] the Learning node directly communicates with
each of the other databases while in the proposed algorithm,
we use DAG structure which is better to preserve the
locality of information and hence enhances the data privacy,
reduces the communication among the participating nodes,
reduces the number exchanged messages and increases the
security level where the communication will be executed only
between the parent and its children. Our proposed algorithm
only transmits minimal data between the parents and their
children.

III. EFFECTIVE DECOMPOSABLE CLOSEST PAIR
ALGORITHM (EDCP)

We consider a network with n sites and the ith site
contains the local database Di. We assume that there can
be arbitrary overlap in the attribute sets of any pair of
databases. We use a graph G(V,E) to depict the pattern
of attribute sharing among the databases. It has n nodes,
each representing a participating site. Here, we present an
algorithm for finding the closest pair in a set of data points
in d-dimensional space which are stored in geographically
distributed databases D1, D2, . . . , Dn. The minimal suffi-
cient statistics for finding the closest pair of points are the
distances between each pair of points. The algorithm shows
that this can be calculated even when the data is vertically
distributed among set of nodes. First we describe how to
compute the distance between two points in distributed
database (Decomposition of distance procedure) then we
describe the details of EDCP algorithm. The EDCP algorithm
includes four phases: Organization, Creating shared relation,
Local computation and Global computation. In Organization
phase, the DAG will be created from the n participating
nodes and an edge will be added between two participating
sites Di and Dj , if their databases share at least one attribute
as in [4]. It is assumed that the attribute-names present in
all the databases are common knowledge and thus known
to each participating node. We assume that the DAG data
structure will be constructed based on the shared attributes
among data sites. In Creating shared relation phase, every
parent generates the relation shared using shared attributes
with its children. In Local computation phase, at every
parent for every shared tuple in shared relation, compute the
distance between every pair of tuples corresponding to that
shared tuple. In Global computation phase, the results of
local computation are aggregated at the Learner.

A. Decomposition of Distance Procedure

We use Euclidean distance for generating a general form
for computing distance between any pair of tuples p1 and
p2 from implicit global database. The Euclidean distance
between the two tuples p1 and p2 in local database is given
by:

Dist(p1, p2) =

√√√√ d∑
i=1

(xi − yi)2, (1)

where p1 = (x1, x2, . . . , xd), and p2 = (y1, y2, . . . , yd). Eq.
1 can be rewritten as:

Dist(p1, p2) = DistDl
(p1i, p2i) +

∑
Dt,t6=l

Dist(p1j , p2j),

(2)
Here, Dl is the database that resides at Learner node, and
i refers to the shared attributes between the Learner and
its children, while Dt(t = 1, . . . , n) are all participating
databases except Dl, and j refers to the unshared attributes
at each local database in Dt. Finally, we can rewrite Eq. 2
as:

Dist(p1, p2) =

√∑
i

(xi − yi)2 +
∑

Dt,t6=l

∑
unshared

(xj − yj)2

(3)
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In Eq. 3, the first summation represents the computed dis-
tance at the Learner. The second summation represents the
sum of distances between the unshared attributes of local
sites which will be aggregated starting from leaves to level
2.

B. Organization Phase

In this phase, the main steps of DAG construction pro-
cedure to organize the data sources Dis in a DAG struc-
ture is presented. The pattern of overlapping between the
participating nodes is structured by a graph G(V,E). This
general graph structure is not efficient in the messaging
requirements and the presence of cycles can falsify the
calculated results. The DAG has more desirable properties.
The graph G(VG, EG), is passed to the algorithm along
with the Learner node. The output is the DAG G′(VG′ , EG′)
where |VG′ | = |VG| and |EG′ | = |EG|. The participating
nodes Di’s are the nodes VG of the graph G(VG, EG). We
add an edge between two nodes Di and Dj when their
databases share one or more attributes. The main steps for
constructing DAG are as follows:

1) Input: Learner Dl and graph G(VG, EG).
2) Output: G′(VG′ , EG′) DAG rooted at Dl.
3) Initialize VG′ = Dl,
4) Select a node Di ∈ VG such that Di has shared

attribute(s) with Dl.
5) Connect Di to G′ by adding an edge between Dl and

Di.
6) Remove Di from G, and add it to G′

7) While (VG is not empty)

a) Select a Dj ∈ VG such that Dj has shared
attribute(s) with one of the leaves in G′

b) Connect Dj to G′ by adding an edge between Dj

and the node that has shared attribute with it.
c) Remove Dj from G, and add it to G′.

8) End procedure

C. Creating Shared Relation Phase

The following steps are executed at every participating
node to create the shared relation between the parent and its
children:

1) At every participating node Di (from levellog(n) to
level(1))

a) Send all different values of shared attributes to
its parent.

2) At every non-leaf participating node do

a) From local database, select all tuples that meet
the received values from the children.

b) Using the shared attributes and values, the parent
creates the preShared relation as the cross product
of the different values of the shared attributes
between parent and its children.

c) Each parent generates the relation Shared from
preShared by deleting any tuple from preShared
that does not meet at least one tuple at its
localdata or at children data.

D. Local Computations (Bottom-Up strategy) Phase

Every participating node (from levellog(n) to level1 will
execute the following steps:

1) Each parent, send the created shared relation to its
children.

2) Starting from leaves to up, select all tuples that belong
to a shared tuple or any combination of received shared
tuples from parent and for each selected tuple v create
an ordered list that consists of:

a) the shared value of the combination between
current node and its parent,

b) the second shared value of the combination be-
tween current node and its parent,

c) The distance duv=
∑

unshared(x
′
i − y′i)

2, where
x′i is the value of unshared attribute in v, and y′i is
the corresponding value of the unshared attribute
in the second point u.

3) Return to parent only the ordered lists with minimum
distance value.

4) In case of multi-parent, send all selected ordered lists
to one parent and send ordered lists with zero distances
to the other parents.

E. Global Computations Phase

This phase will be executed at Learner to aggregate all
local distances and obtain the global minimum distance.

1) A Distance table stays at the Learner. It has three
attributes:

a) Learner-Distance to store the distance between all
Learner database attributes,

b) Children-Distance to store the distance between
Unshared attributes for all children nodes,

c) Total-Distance to store the sum and square root
of Learner and children nodes distances.

2) From the received ordered lists, select all tuples that
belong to any combination of the shared values.

3) For every combination of selected tuple pairs u and v:
a) Compute the distance duv as in local computa-

tion phase then store it in the Learner-Distance
column.

b) From the received lists, store the corresponding
distance of the shared values in Children-Distance
column.

c) Compute the sum and square root of the two
columns and store the value in the Total-Distance
column.

4) Select the minimum Total Distance from the table. This
represents the distance between the closest tuples. We
can find the two closest points by querying all children
(top-down) for the values in the corresponding tuple
pair and then join them.

5) End Algorithm

F. Example Scenario

In this section, we show a simple execution example of
the proposed technique on vertically distributed data, where
we have three local sites, each one has a simple data, see
Table I. The 4-dimensional space global data D can be
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TABLE I
EXPLICIT COMPONENT DATABASES AT LOCAL SITES

Site1
x1 x2

4 4
5 2
2 3
5 7

Site2
x2 x3

3 7
4 6
2 5
3 1

Site3
x1 x4

4 5
4 3
5 6
2 1

TABLE II
THE SELECTED TUPLES AT D1 ACCORDING TO THE RECEIVED ORDERED

LISTS FROM D2 AND D3

x1 x2

4 4
5 2
2 3
5 7

defined implicitly in these tree data sites. The main goal of
this example is to find the closest pair in D.

1) Organization Phase: According to our organization
phase the corresponding DAG is shown in Fig. 3

Fig. 3. The Generated DAG for the above Databases

2) Creating shared relation phase: Selecting the tuples
of the corresponding shared values: At D1, the values
of shared attribute {x2} with D2 are { 2, 3, 4} which
will be sent to D2. Similarly, D1 and D3 share x1 with
shared values { 2, 4, 5} and will be sent to D3.
Local Computations:
• At D2, the ordered lists that will be sent to D1

will be 〈4, 4, 4〉, 〈4, 5,1〉, 〈4, 2, 16〉, 〈4, 5, 9〉, 〈4,
2, 4〉, 〈5, 2, 25〉

• At D3, the ordered lists that will be sent to D1

will be 〈3, 3, 36〉, 〈3, 4, 1〉, 〈3, 2,4〉, 〈4, 2, 1〉, 〈4,
3, 25〉, 〈2, 3, 16〉.

Global Computations:
• At Learner node D1

1) From the received ordered lists from D2, the
shared values of {x2} are { 2, 4, 5}.

2) From the received ordered lists from D3, the
shared values of {x1} are {2, 3, 4}.

3) From the local database D1, we select all tuples
that belong to any combination of shared values of
{x1, x2}. The selected tuples will be as in Table
III

4) for each selected tuple, we compute the distances
between all combinations as follows: 〈4, 5, 5〉, 〈4,
2, 5〉, 〈4, 5, 10〉, 〈5, 5, 25〉, 〈2, 5, 25〉.

5) From the received ordered lists from D2 and D3

TABLE III
DISTANCE TABLE FOR THE RECEIVED ORDERED LISTS FROM D2 AND

D3 AND THE DISTANCES COMPUTED FROM D1

Dist(D1) Dist(D2) Dist(D3) TDist

0 4 0 2.0
5 1 1 2.65
5 16 25 6.78
5 16 1 4.69
5 4 1 3.16
5 4 25 5.83
10 25 4 6.24
10 25 16 7.14

and the above computed distances, Distance table
will be filled as in Table III.

From the Table, first row has the minimum value and so
by back tracking the corresponding closest pair will be <
4, 4, 6, 5 > and < 4, 4, 6, 3 >.

IV. COMPLEXITY AND PRIVACY PRESERVING ANALYSIS

A. Complexity Analysis

Here, we compute the number of exchanged messages be-
tween the sites to run the proposed Effective Decomposable
Closest Pair algorithm (EDCP) using DAG and stationary
agents with vertically distributed data. Assume n is the
number of nodes in G, and l is the average number of shared
tuples at each node. We have 2 scenarios to analyze the total
complexity as follows:

1) Exchange one summary per message (un-optimized):
Each parent node send one message for each shared
tuple and for each combination to its children to find
the unshared distance, each child node will send shared
tuple values and the corresponding unshared distance
to its parent node, so (l+

(
l
2

)
*log(n)) messages will

be exchanged between the children and parents during
the local computation stage. Also, we need 2 ∗ log(n)
exchanged messages to create the shared at every
parent, therefore, the total of exchanged messages by
the algorithm will be:

Total Exchange Messages = log(n)∗(2+l(l+1)/2)
(4)

2) Exchange all summaries in one message (optimized):
Each parent node will send all values of shared at-
tribute(s) to its children, so log(n) messages will be
exchanged between parents and children for computing
the global unshared distance. Also, we need log(n) to
create the shared at every parent, therefore, the total of
exchanged messages by the algorithm will be:

Total Exchange Messages = 2 ∗ log(n) (5)

B. Privacy Preserving and Security Analysis

In this paper, we have demonstrated that EDCP will output
the same results for distributed databases as the traditional
algorithm without moving and join the databases to a central
node. The proposed algorithm has the following properties:

1) Instead of moving data tuples from nodes to a central
node, local sites perform computation on their own
data. This minimizes security risks, and increases data
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privacy. It further spreads the computation load across
many nodes instead of relying on one central node.

2) Only the minimum unshared distances and the shared
values associated with them are transmitted.

3) The proposed algorithm exchanges only high level of
information summaries between the sites and does not
release any data tuple out of a database for transmission
over the network.

4) The communication between nodes restricted to what
is presented on the parent and the child databases.

5) The shared relation will be generated at every parent,
the parent requests the shared attributes from its chil-
dren, children will send a hash digest for each attribute.
The proposed algorithm utilizes secure hash function
to avoid sending the shared attribute names. Also, the
children transmit the hash of the vector of distinct
values of the shared attributes. Utilizing secret key
in the hash makes it impossible for the anonymous
listener to reveal the actual transmitted values.

6) Participating nodes transmit distances between the tu-
ples that contain the received unshared actual values,
rather they multiply the distance by a secret constant.

Thus in summary, anonymous listener cannot figure out
the name and the values of the attributes, the distinct values
of the unshared attributes or even number of tuples in any
participating node.

V. SIMULATION RESULTS

The algorithm is simulated using Java Aglet. The tests
were performed to find out the effect of various parameters
on the final result. The main parameters are the following:
• the number of tuples per database,
• the number of sites, and
• the average number of shared tuples between the local

databases.
Through the simulation, we prove that the EDCP can be
efficiently executed in distributed databases environment
without moving and joining the databases at central site.
The tests have been executed on a network of workstations
connected by a LAN and tested on the main parameters
mentioned above.

1) Number of Local Sites: The first test was designed to
show the effect of number of local sites on the number
of messages exchanged and the elapsed time. We run
the program by varying the number of local sites to 2,
3, 4, 5, 6, 7, 8, 9, 12, 13, 14. Fig. 4 shows how the
effect of increasing the number of local sites on the
exchanged messages and elapsed time in EDCP in both
un-optimized and optimized scenarios. It is clear from
the figure that the number of exchanged messages and
elapsed time to execute EDCP increases as the number
of local sites increases because as the number of local
sites increases, the exchanged messages to deal with
the databases at these sites increase and so the elapsed
time for these messages increases.

2) Average Number of Shared Tuples: In the second
test, we show the effect of average number of shared
tuples as a main parameter on the exchanged messages
and elapsed time. We vary the average number of
shared tuples between local databases as 5, 10, 20,
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Fig. 4. Exchanged messages and Elapsed time of EDCP on vertically
distributed databases with varying the number of local sites.

and 25. Fig. 5 shows the execution results of EDCP the
exchanged messages and the elapsed time by changing
the average number of shared tuples in case of un-
optimized and optimized. It is clear that the total
messages exchanged and the total elapsed time to
run EDCP increase as the number of shared values
increases.

3) Total Number of Tuples in the Implicit Database:
In the last test, we show the effect of number of tuples
in the global implicit database on the total exchanged
messages and elapsed time and we compare our results
with DCP algorithm [8] where the authors solve the
same problem using different structure. The number of
tuples in the whole database varies between 500 and
6000. Fig. 6 shows the total exchanged messages and
the elapsed time for EDCP and DCP algorithms. It is
clear that the proposed algorithm has less exchanged
messages and elapsed time than DCP algorithm in the
cases un-optimized and optimized. In Fig. 6, we can
note that in case of un-optimized, the elapsed time and
the exchanged messages of DCP are exponentially as
the size of the database increases, and this not the case
of EDCP because in DAG structure the communication
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Fig. 5. Exchanged messages and Elapsed time to run EDCP on vertically
distributed databases with varying the number of shared tuples.

will only be between the parent and its children and
this will reduce the number of messages and so the
elapsed time.

VI. CONCLUSION

In this paper, we have presented a new efficient decom-
posable algorithm to find the closest pair between several
points in a vertically distributed database. The algorithm uses
a DAG structure to deal with data in a decomposable fashion.
The algorithm achieves accurate results to those that would
be obtained by moving and joining all local data to one single
node, and then running the classical closest pair finding
algorithm. Also, this algorithm preserves the privacy and
the security of the local databases by moving high level of
summaries between the parent and its children. The proposed
algorithm efficiently performs global computations across
geographically distributed databases without transferring any
data tuples across the network. The simulation results show
significant reduction in amount of disclosed information,
communications, and computational costs comparing with
existing algorithm.

(a)

(b)

Fig. 6. Exchanged messages and elapsed time of EDCP and DCP on
vertically distributed databases with varying the number of tuples in implicit
databases.
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