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Abstract—In this paper, based on certain Riccati transforma-
tion, inequality and integration average technique, oscillation
for a class of fractional differential equations with damping
term is investigated. The fractional derivative is defined in
the sense of the conformable fractional derivative. Some new
oscillatory criteria for this equation are established. For illus-
trating the oscillatory criteria established, some examples are
also presented.
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I. Introduction

In the research of the theory of differential equations,
difference equations, dynamic equations on time scales and
so on, if their solutions are unknown, then it is necessary
and important to research the qualitative properties and
quantitative properties of the solutions such as the existence
and uniqueness of solutions [1-3], seeking for exact solu-
tions [4-6], numerical methods [7-10]. Oscillation belongs
to the range of qualitative properties analysis. In the last
few decades, research for oscillation of various equations
including differential equations, difference equations and
dynamic equations on time scales etc. has been a hot topic in
the literature, and much effort has been done to establish new
oscillatory criteria for these equations so far (for example, see
[11-25], and the references therein). In these investigations,
we notice that relatively less attention has been paid to the
research of oscillation of fractional differential equations.

In [26], Grace et al. researched oscillation of the following
fractional differential equation:

Dq
ax+ f1(t, x) = v(t) + f2(t, x), lim

t→a+
J1−q
a x(t) = b1,

under the conditions

xfi(t, x) > 0, i = 1, 2, x ̸= 0, t ≥ a,

and

|f1(t, x)| ≥ p1(t)|x|β , |f2(t, x)| ≥ p2(t)|x|γ , x ̸= 0, t ≥ a,

where Dq
a and Jp

a denote the Riemann-Liouville derivative
of order q and the Riemann-Liouville fractional integral
operator respectively. By reducing the fractional differential
equation to the equivalent Volterra fractional integral
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equation and by use of certain inequality techniques, some
new oscillation criteria were established.

In [27,28], the authors investigated oscillation of the
following two fractional differential equations:
Dα

ax(t) + q(t)f(x(t)) = 0,

and

(D1+α
0+ y)t+ p(t)(Dα

0+y)t+ q(t)f(y(t)) = 0,

where the fractional derivative is defined by the Riemann-
Liouville derivative.

In [29], Chen researched oscillation of the following
fractional differential equation:

[r(t)(Dαy(t))η]′−q(t)f(
∫∞
t

(v−t)−αy(v)dv) = 0, t > 0,

where r, q are positive-valued functions, η is the quotient
of two odd positive numbers, α ∈ (0, 1), Dαy(t) denotes
the Liouville right-sided fractional derivative of order α

of y, and Dαy(t) = − 1
Γ(1− α)

d
dt

∫∞
t

(ξ − t)−αy(ξ)dξ.
Then in [30], under similar conditions to [29], some
new oscillatory criteria are established for the following
fractional differential equation with damping term:

D1+αy(t)− p(t)Dαy(t) + q(t)f(
∫∞
t

(v− t)−αy(v)dv) =
0, t > 0,

In [31], Han et al. investigated oscillation of a class
of fractional differential equations as follows

[r(t)g((Dαy)(t))]′−p(t)f(
∫∞
t

(s−t)−αy(s)ds) = 0, t >
0, α ∈ (0, 1).

Recently, Khalil et al. proposed a new definition
for fractional derivative named conformable fractional
derivative [32]. The fractional derivative is defined as
follows

Dαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)
ε ,

and satisfies the following properties:

(i). Dα[af(t) + bg(t)] = aDαf(t) + bDαg(t).

(ii). Dα(tγ) = γtγ−α.

(iii). Dα[f(t)g(t)] = f(t)Dαg(t) + g(t)Dαf(t).

(iv). DαC = 0, where C is a constant.
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(v). Dα
t f [g(t)] = f ′

g[g(t)]D
α
t g(t).

(vi). Dα
t (

f
g )(t) =

g(t)Dαf(t)− f(t)Dαg(t)
g2(t)

.

(vii). Dα
t f(t) = t1−αf ′(t).

Note that the properties above can be easily proved due
to the definition of the conformable fractional derivative.
Afterwards, many authors investigated various applications
of the conformable fractional derivative [33-38].

Motivated by the analysis above, in this paper, we are
concerned with oscillation of a class of fractional differential
equations with damping term as follows:

Dα
t (r(t)D

α
t x(t)) + p(t)Dα

t x(t) + q(t)f(x(t)) = 0, t ≥
t0 > 0, 0 < α < 1, (1)

where Dα
t (.) denotes the conformable fractional

derivative with respect to the variable t, the function
r ∈ Cα([t0,∞), R+), p, q ∈ C([t0,∞), R+), and Cα

denotes continuous derivative of order α, the function f
is continuous satisfying f(x)/x ≥ K for some positive
constant K and ∀x ̸= 0.

As usual, a solution x(t) of Eq. (1) is called oscillatory
if it has arbitrarily large zeros, otherwise it is called non-
oscillatory. Eq. (1) is called oscillatory if all its solutions are
oscillatory.

We organize the next of this paper as follows. In Section
2, using Riccati transformation, inequality and integration
average technique, we establish some new oscillatory criteria
for Eq. (1), while we present some applications for them in
Section 3.

For the sake of convenience, in the next of this paper, we
denote ξ = tα

α , ξi =
tαi
α , i = 0, 1, 2, 3, R+ = (0,∞),

r(t) = r̃(ξ), p(t) = p̃(ξ), q(t) = q̃(ξ), and A(ξ) =

exp(
∫ ξ

ξ0

p̃(τ)
r̃(τ)

dτ).

II. OSCILLATORY CRITERIA FOR EQ. (1)

Lemma 1. Assume x(t) is a eventually positive solution of
Eq. (1), and∫∞

ξ0
1

A(s)r̃(s)
ds = ∞. (2)

Then there exists a sufficiently large T such that Dα
t x(t) > 0

for t ∈ [T,∞).

Proof . Let x(t) = x̃(ξ), where ξ = tα
α . Then by

use of the property (ii) we obtain Dα
t ξ(t) = 1, and

furthermore by use of the property (v), we have

Dα
t r(t) = Dα

t r̃(ξ) = r̃′(ξ)Dα
t ξ(t) = r̃′(ξ).

Similarly we have Dα
t x(t) = x̃′(ξ). So Eq. (1) can

be transformed into the following form:
(r̃(ξ)x̃′(ξ))′ + p̃(ξ)x̃′(ξ) + q̃(ξ)f(x̃(ξ)) = 0, ξ ≥ ξ0 >
0, (3)

Since x(t) is a eventually positive solution of (1), then x̃(ξ)
is a eventually positive solution of Eq. (3), and there exists

ξ1 > ξ0 such that x̃(ξ) > 0 on [ξ1,∞). Furthermore, we have

(A(ξ)r̃(ξ)x̃′(ξ))′ = A(ξ)(r̃(ξ)x̃′(ξ))′ +A(ξ)p̃(ξ)x̃′(ξ)

= −q̃(ξ)A(ξ)f(x̃(ξ))

≤ −KA(ξ)q̃(ξ)x̃(ξ) < 0, ξ ≥ ξ1. (4)

Then A(ξ)r̃(ξ)x̃′(ξ) is strictly decreasing on [ξ1,∞),
and thus x̃′(ξ) is eventually of one sign. We claim x̃′(ξ) > 0
on [ξ2,∞), where ξ2 > ξ1 is sufficiently large. Otherwise,
assume there exists a sufficiently large ξ3 > ξ2 such that
x̃′(ξ) < 0 on [ξ3,∞). Then for ξ ∈ [ξ3,∞) we have

x̃(ξ) − x̃(ξ3) =
∫ ξ

ξ3
x̃′(s)ds =

∫ ξ

ξ3

A(s)r̃(s)x̃′(s)
A(s)r̃(s)

ds ≤

A(ξ3)r̃(ξ3)x̃
′(ξ3)

∫ ξ

ξ3
1

A(s)r̃(s)
ds.

By (2) we deduce that lim
ξ→∞

x̃(ξ) = −∞, which contradicts

to the fact that x̃(ξ) is a eventually positive solution of Eq.
(3). So x̃′(ξ) > 0 on [ξ2,∞), and furthermore Dα

t x(t) > 0
on [t2,∞). The proof is complete by setting T = t2.

Theorem 2. Assume (2) holds, and there exist two
functions ϕ ∈ C1([t0,∞), R+) and φ ∈ C1([t0,∞), [0,∞))
such that

∫∞
ξ0

{KA(s)ϕ̃(s)q̃(s) − ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

−

[2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
}ds = ∞, (5)

where ϕ̃(ξ) = ϕ(t), φ̃(ξ) = φ(t). Then every solution of
Eq. (1) is oscillatory.

Proof . Assume (1) has a non-oscillatory solution x
on [t0,∞). Without loss of generality, we may assume
x(t) > 0 on [t1,∞), where t1 is sufficiently large. By
Lemma 1 we have Dαx(t) > 0 on [t2,∞) for some
sufficiently large t2 > t1. Define the generalized Riccati
transformation function:

ω(t) = ϕ(t){A(ξ)r(t)Dα
t x(t)

x(t)
+ φ(t)}.

Then for t ∈ [t2,∞), we have

Dα
t ω(t) = Dα

t ϕ(t)
A(ξ)r(t)Dα

t x(t)
x(t)

−ϕ(t)
A(ξ)r(t)(Dα

t x(t))
2

x2(t)
+ ϕ(t)

Dα
t (A(ξ)r(t)Dα

t x(t))
x(t)

+Dα
t ϕ(t)φ(t) + ϕ(t)Dα

t φ(t)

=
Dα

t ϕ(t)
ϕ(t)

ω(t)− (ω(t)− ϕ(t)φ(t))2

A(ξ)ϕ(t)r(t)

+ϕ(t)
[A(ξ)Dα

t (r(t)D
α
t x(t)) + r(t)Dα

t x(t)D
α
t (A(ξ))]

x(t)
+ϕ(t)Dα

t φ(t)

=
Dα

t ϕ(t)
ϕ(t)

ω(t)− (ω(t)− ϕ(t)φ(t))2

A(ξ)ϕ(t)r(t)

+ϕ(t)
[A(ξ)Dα

t (r(t)D
α
t x(t)) + r(t)Dα

t x(t)A
′(ξ)Dα

t ξ]
x(t)
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+ϕ(t)Dα
t φ(t)

=
Dα

t ϕ(t)
ϕ(t)

ω(t)− (ω(t)− ϕ(t)φ(t))2

A(ξ)ϕ(t)r(t)

+ϕ(t)
[A(ξ)Dα

t (r(t)D
α
t x(t)) + r(t)Dα

t x(t)A(ξ)
p̃(ξ)

r̃(ξ)
]

x(t)
+ϕ(t)Dα

t φ(t)

=
Dα

t ϕ(t)
ϕ(t)

ω(t)− (ω(t)− ϕ(t)φ(t))2

A(ξ)ϕ(t)r(t)

+ϕ(t)
[A(ξ)Dα

t (r(t)D
α
t x(t)) + p(t)Dα

t x(t)A(ξ)]
x(t)

+ϕ(t)Dα
t φ(t)

=
Dα

t ϕ(t)
ϕ(t)

ω(t)− (ω(t)− ϕ(t)φ(t))2

A(ξ)ϕ(t)r(t)

c− ϕ(t)
A(ξ)q(t)f(x(t))

x(t)
+ ϕ(t)Dα

t φ(t)

= −ϕ(t)
A(ξ)q(t)f(x(t))

x(t)
+ ϕ(t)Dα

t φ(t)

−ϕ(t)φ2(t)
A(ξ)r(t)

+
2ϕ(t)φ(t) +A(ξ)Dα

t ϕ(t)r(t)
A(ξ)ϕ(t)r(t)

ω(t)

− 1
A(ξ)ϕ(t)r(t)

ω2(t)

≤ −KA(ξ)ϕ(t)q(t) + ϕ(t)Dα
t φ(t)−

ϕ(t)φ2(t)
A(ξ)r(t)

+
[2ϕ(t)φ(t) +A(ξ)Dα

t ϕ(t)r(t)]
2

4A(ξ)ϕ(t)r(t)
. (6)

Let ω(t) = ω̃(ξ). Then Dα
t w(t) = w̃′(ξ), Dα

t ϕ(t) =
ϕ̃′(ξ), Dα

t φ(t) = φ̃′(ξ), and (6) is transformed into the
following form

ω̃′(ξ) ≤ −KA(ξ)ϕ̃(ξ)q̃(ξ) + ϕ̃(ξ)φ̃′(ξ) − ϕ̃(ξ)φ̃2(ξ)
A(ξ)r̃(ξ)

+

[2ϕ̃(ξ)φ̃(ξ) +A(ξ)ϕ̃′(ξ)r̃(ξ)]2

4A(ξ)ϕ̃(ξ)r̃(ξ)
, ξ ≥ ξ2. (7)

Substituting ξ with s in (7), an integration for (7)
with respect to s from ξ2 to ξ yields

∫ ξ

ξ2
{KA(s)ϕ̃(s)q̃(s) − ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
A(s)r̃(s)

−

[2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
}ds

≤ ω̃(ξ2)− ω(ξ) ≤ ω(ξ2) < ∞,

which contradicts to (5). So the proof is complete.

Theorem 3. Assume (2) holds, and there
exists a function H ∈ C([ξ0,∞),R) such that
H(ξ, ξ) = 0, for ξ ≥ ξ0, H(ξ, s) > 0, for ξ > s ≥ ξ0,
and H has a nonpositive continuous partial derivative
H ′

s(ξ, s). If

lim
ξ→∞

sup
1

H(ξ, ξ0)
{
∫ ξ

ξ0

H(ξ, s){KA(s)ϕ̃(s)q̃(s)−ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)

A(s)r̃(s)
− [2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
}ds} = ∞, (8)

where ϕ̃, φ̃ are defined as in Theorem 2, then every
solution of Eq. (1) is oscillatory.

Proof . Assume (1) has a non-oscillatory solution x
on [t0,∞). Without loss of generality, we may assume
x(t) > 0 on [t1,∞), where t1 is sufficiently large. By
Lemma 1 we have Dα

t x(t) > 0 on [t2,∞) for some
sufficiently large t2 > t1. Let ω(t) and ω̃(ξ) be defined as
in Theorem 2. By (7) we have

KA(ξ)ϕ̃(ξ)q̃(ξ)− ϕ̃(ξ)φ̃′(ξ) +
ϕ̃(ξ)φ̃2(ξ)
A(ξ)r̃(ξ)

− [2ϕ̃(ξ)φ̃(ξ) +A(ξ)ϕ̃′(ξ)r̃(ξ)]2

4A(ξ)ϕ̃(ξ)r̃(ξ)
≤ −ω̃(ξ), ξ ≥ ξ2. (9)

Substituting ξ with s in (9), multiplying both sides by
H(ξ, s) and then integrating with respect to s from ξ2 to ξ
yields

∫ ξ

ξ2
H(ξ, s){KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
A(s)r̃(s)

− [2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
}ds

≤ −
∫ ξ

ξ2
H(ξ, s)ω̃′(s)ds

= H(ξ, ξ2)ω(ξ2) +
∫ ξ

ξ2
H ′

s(ξ, s)ω(s)∆s
≤ H(ξ, ξ2)ω(ξ2) ≤ H(ξ, ξ0)ω(ξ2).

Then

∫ ξ

ξ0
H(ξ, s){KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
A(s)r̃(s)

− [2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
}ds

=
∫ ξ2
ξ0

H(ξ, s){KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

− [2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
}ds

+
∫ ξ

ξ2
H(ξ, s){KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)+

ϕ̃(s)φ̃2(s)
A(s)r̃(s)

− [2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
}ds

≤ H(ξ, ξ0)ω̃(ξ2) +H(ξ, ξ0)
∫ ξ2
ξ0

|KA(s)ϕ̃(s)q̃(s)

−ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

− [2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
|ds.

So

lim
ξ→∞

sup 1
H(ξ, ξ0)

{
∫ ξ

ξ0
H(ξ, s){KA(s)ϕ̃(s)q̃(s)

−ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)

A(s)r̃(s)
− [2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
}ds}

≤ ω̃(ξ2)+
∫ ξ2
ξ0

|KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

− [2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
|ds < ∞,

which contradicts to (8). So the proof is complete.

Corollary 4. Under the conditions of Theorem 3, if
lim
ξ→∞

sup 1
(ξ − ξ0)

λ {
∫ ξ

ξ0
(ξ−s)λ{KA(s)ϕ̃(s)q̃(s)−ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)

A(s)r̃(s)
− [2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
}ds} = ∞,

Engineering Letters, 28:3, EL_28_3_40

Volume 28, Issue 3: September 2020

 
______________________________________________________________________________________ 



then every solution of Eq. (1) is oscillatory.

Corollary 5. Under the conditions of Theorem 3, if
lim
ξ→∞

sup 1
(ln ξ − ln ξ0)

{
∫ ξ

ξ0
(ln ξ − ln s){KA(s)ϕ̃(s)q̃(s)

−ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

− [2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
}ds} = ∞,

then every solution of Eq. (1) is oscillatory.
The proof of Corollaries 4-5 can be completed by

choosing H(ξ, s) = (ξ − s)λ, λ > 1 or H(ξ, s) = ln
ξ
s in

Theorem 3.

Theorem 6. Let h1, h2, Ĥ ∈ C([ξ0,∞), R) satisfying
Ĥ(ξ, ξ) = 0, Ĥ(ξ, s) > 0, ξ > s ≥ ξ0, and H has
continuous partial derivatives Ĥ ′

ξ(ξ, s) and Ĥ ′
s(ξ, s) on

[ξ0,∞) such that

Ĥ ′
ξ(ξ, s) = −h1(ξ, s)

√
Ĥ(ξ, s),

Ĥ ′
s(ξ, s) = −h2(ξ, s)

√
Ĥ(ξ, s).

If for any sufficiently large T ≥ ξ0, there exist a, b, c with
T ≤ a < c < b satisfying

1
Ĥ(c, a)

∫ c

a
Ĥ(s, a)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]ds

+ 1
Ĥ(b, c)

∫ b

c
Ĥ(b, s)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]ds

> 1
4Ĥ(c, a)

∫ c

a
A(s)ϕ̃(s)r̃(s)Q2

1(s, a)ds

+ 1
4Ĥ(b, c)

∫ b

c
A(s)ϕ̃(s)r̃(s)Q2

2(b, s)ds, (10)

where ϕ̃, φ̃ are defined as in Theorem 2,

Q1(s, ξ) = h1(s, ξ)− (
2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)

√
Ĥ(s, ξ),

Q2(ξ, s) = h2(ξ, s)− (
2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)

√
Ĥ(ξ, s),

then Eq. (1) is oscillatory.

Proof. Assume (1) has a non-oscillatory solution x on
[t0,∞). Without loss of generality, we may assume x(t) > 0
on [t2,∞), where t2 is sufficiently large. Let ω(t) and
ω̃(ξ) be defined as in Theorem 2. So for t ∈ [t2,∞), we have

Dα
t ω(t) = −ϕ(t)

A(ξ)q(t)f(x(t))
x(t)

+ ϕ(t)Dα
t φ(t)

−ϕ(t)φ2(t)
A(ξ)r(t)

+
2ϕ(t)φ(t) +A(ξ)Dα

t ϕ(t)r(t)
A(ξ)ϕ(t)r(t)

ω(t)

− 1
A(ξ)ϕ(t)r(t)

ω2(t)

≤ −KA(ξ)ϕ(t)q(t) + ϕ(t)Dα
t φ(t)

−ϕ(t)φ2(t)
A(ξ)r(t)

+
2ϕ(t)φ(t) +A(ξ)Dα

t ϕ(t)r(t)
A(ξ)ϕ(t)r(t)

ω(t)

− 1
A(ξ)ϕ(t)r(t)

ω2(t). (11)

Furthermore, similar to (6), (11) is transformed into
the following form

ω̃′(ξ) ≤ −KA(ξ)ϕ̃(ξ)q̃(ξ) + ϕ̃(ξ)φ̃′(ξ)− ϕ̃(ξ)φ̃2(ξ)
A(ξ)r̃(ξ)

+
2ϕ̃(ξ)φ̃(ξ) +A(ξ)ϕ̃′(ξ)r̃(ξ)

A(ξ)ϕ̃(ξ)r̃(ξ)
ω̃(ξ)

− 1
A(ξ)ϕ̃(ξ)r̃(ξ)

ω̃2(ξ), ξ ≥ ξ2. (12)

Select a, b, c arbitrarily in [ξ2,∞) with b > c > a.
Substituting ξ with s, multiplying both sides of (12) by
Ĥ(ξ, s) and integrating it with respect to s from c to ξ for
ξ ∈ [c, b), we get that

∫ ξ

c
Ĥ(ξ, s)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]ds

≤ −
∫ ξ

c
Ĥ(ξ, s)w̃′(s)ds

+
∫ ξ

c
Ĥ(ξ, s)(

2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)w̃(s)ds

− Ĥ(ξ, s)

A(s)ϕ̃(s)r̃(s)
ω̃2(s)ds

= Ĥ(ξ, c)w̃(c)−∫ ξ

c

[(
Ĥ(ξ, s)

A(s)ϕ̃(s)r̃(s)

)1/2

w̃(s) +
1

2
(A(s)ϕ̃(s)r̃(s))1/2Q2(ξ, s)

]2

ds

+
∫ ξ

c

A(s)ϕ̃(s)r̃(s)
4 Q2

2(ξ, s)ds

≤ Ĥ(ξ, c)w̃(c)+
∫ ξ

c

A(s)ϕ̃(s)r̃(s)
4 Q2

2(ξ, s)ds. (13)

Dividing both sides of the inequality (13) by Ĥ(ξ, c)
and let ξ → b−, we obtain

1

Ĥ(b, c)

∫ b

c

Ĥ(b, s)[KA(s)ϕ̃(s)q̃(s)−ϕ̃(s)φ̃′(s)+
ϕ̃(s)φ̃2(s)

A(s)r̃(s)
]ds

≤ w̃(c)+ 1
Ĥ(b, c)

∫ b

c

A(s)ϕ̃(s)r̃(s)
4 Q2

2(b, s)ds. (14)

On the other hand, substituting ξ with s, multiplying both
sides of (12) by Ĥ(s, ξ) and integrating it with respect to s
from ξ to c for ξ ∈ (a, c], we get that∫ c

ξ
Ĥ(s, ξ)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]ds

≤ −
∫ c

ξ
Ĥ(s, ξ)w̃′(s)ds

+
∫ c

ξ
Ĥ(s, ξ)(

2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)w̃(s)ds

−
∫ c

ξ
Ĥ(s, ξ)

w̃2(s)

A(s)ϕ̃(s)r̃(s)
ds

= −Ĥ(c, ξ)w̃(c)−

∫ c

ξ

[(
Ĥ(s, ξ)

A(s)ϕ̃(s)r̃(s)

)1/2

w̃(s) +
1

2
(A(s)ϕ̃(s)r̃(s))1/2Q1(s, ξ)

]2

ds

Engineering Letters, 28:3, EL_28_3_40

Volume 28, Issue 3: September 2020

 
______________________________________________________________________________________ 



+
∫ c

ξ

A(s)ϕ̃(s)r̃(s)
4 Q2

1(s, ξ)ds

≤ −Ĥ(c, ξ)w̃(c)+
∫ c

ξ

A(s)ϕ̃(s)r̃(s)
4 Q2

1(s, ξ)ds. (15)

Dividing both sides of the inequality (15) by Ĥ(c, ξ)
and letting ξ → a+, we obtain

1

Ĥ(c, a)

∫ c

a

Ĥ(s, a)[KA(s)ϕ̃(s)q̃(s)−ϕ̃(s)φ̃′(s)+
ϕ̃(s)φ̃2(s)

A(s)r̃(s)
]ds

≤ −w̃(c) +
1

Ĥ(c, a)

∫ c

a

A(s)ϕ̃(s)r̃(s)

4
Q2

1(s, a)ds. (16)

A combination of (14) and (16) yields

1
Ĥ(c, a)

∫ c

a
Ĥ(s, a)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]ds

+ 1
Ĥ(b, c)

∫ b

c
Ĥ(b, s)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]ds

≤ 1
4Ĥ(c, a)

∫ c

a
A(s)ϕ̃(s)r̃(s)Q2

1(s, a)ds

+ 1
4Ĥ(b, c)

∫ b

c
A(s)ϕ̃(s)r̃(s)Q2

2(b, s)ds,

which contradicts to (10). So the proof is complete.

Theorem 7. Under the conditions of Theorem 6, if
for any l ≥ ξ0,

lim
ξ→∞

sup
∫ ξ

l
[Ĥ(s, l)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]−A(s)ϕ̃(s)r̃(s)
4 Q2

1(s, l)]ds > 0 (17)

and

lim
ξ→∞

sup
∫ ξ

l
[Ĥ(ξ, s)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]− A(s)ϕ̃(s)r̃(s)
4 Q2

2(ξ, s)]ds > 0, (18)

then Eq. (1) is oscillatory.

Proof: For any T ≥ ξ0, let a = T . In (17) we choose l = a.
Then there exists c > a such that

∫ c

a
[Ĥ(s, a)[Kϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
r̃(s)

]

−A(s)ϕ̃(s)r̃(s)
4 Q2

1(s, a)]ds > 0. (19)

In (18) we choose l = c > a. Then there exists b > c such
that

∫ b

c
[Ĥ(b, s)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]

−A(s)ϕ̃(s)r̃(s)
4 Q2

2(b, s)]ds > 0. (20)

Combining (19) and (20) we obtain (10). The conclusion
thus comes from Theorem 6, and the proof is complete.

In Theorems 6-7, if we choose Ĥ(ξ, s) = (ξ − s)λ, ξ ≥
s ≥ ξ0, where λ > 1 is a constant, then we obtain the
following two corollaries.

Corollary 8. Under the conditions of Theorem 6, if
for any sufficiently large T ≥ ξ0, there exist a, b, c with
T ≤ a < c < b satisfying

1
(c− a)λ

∫ c

a
(s− a)λ[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]ds

+ 1
(b− c)λ

∫ b

c
(b− s)λ[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]ds

> 1
4(c− a)λ

∫ c

a
A(s)ϕ̃(s)r̃(s)(s− a)λ−2(

λ+ (
2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)(s− a)

)2

ds

+ 1
4(b− c)λ

∫ b

c
A(s)ϕ̃(s)r̃(s)(b− s)λ−2(

λ− (
2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)(b− s)

)2

ds, (21)

then Eq. (1) is oscillatory.

Corollary 9. Under the conditions of Theorem 7, if
for any l ≥ ξ0,

lim
ξ→∞

sup
∫ ξ

l
{(s− l)λ[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]− A(s)ϕ̃(s)r̃(s)
4 (s− l)λ−2[

λ+ (
2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)(s− l)

]2
}ds > 0(22)

and

lim
ξ→∞

sup
∫ ξ

l
{(ξ − s)λ[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]− A(s)ϕ̃(s)r̃(s)
4 (ξ − s)λ−2[

λ− (
2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)(ξ − s)

]2
}ds > 0, (23)

then Eq. (1) is oscillatory.
Based on the theorems established above, we prove more

general oscillation criteria as below.

Theorem 10. Under the conditions of Theorem 6,
furthermore, suppose (10) does not hold. If for any T ≥ ξ0,
there exist a, b with b > a ≥ T such that for any
u ∈ C[a, b], u′(t) ∈ L2[a, b], u(a) = u(b) = 0, the
following inequality holds:

∫ b

a
{u2(s)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]
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−A(s)ϕ̃(s)r̃(s)(
u′(s) +

1

2
u(s)(

2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)

)2

}ds > 0,

(24)

where ϕ̃, φ̃ are defined as in Theorem 2, then Eq. (1) is
oscillatory.

Proof: Assume (1) has a non-oscillatory solution x on
[t0,∞). Without loss of generality, we may assume
x(t) > 0 on [t2,∞), where t2 is sufficiently large. Let
ω(t) and ω̃(ξ) be defined as in Theorem 2. Similar to
the proof of Theorem 6, we obtain (12). Select a, b
arbitrarily in [ξ2,∞) with b > a such that u(a) = u(b) = 0.
Substituting ξ with s, multiplying both sides of (12) by
u2(s), integrating it with respect to s from a to b, we get that

∫ b

a
u2(s)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]ds

≤ −
∫ b

a
u2(s)w̃′(s)ds−

∫ b

a
u2(s)

w̃2(s)

A(s)ϕ̃(s)r̃(s)
ds

+
∫ b

a
u2(s)w̃(s)(

2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)ds

= 2
∫ b

a
u(s)u′(s)w̃(s)ds−

∫ b

a
u2(s)

w̃2(s)

A(s)ϕ̃(s)r̃(s)
ds

+
∫ b

a
u2(s)w̃(s)(

2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)ds

= −
∫ b

a
{[
√

1
A(s)ϕ̃(s)r̃(s)

u(s)w̃(s)−
√
A(s)ϕ̃(s)r̃(s)

(u′(s) + 1
2u(s)(

2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
))]2

+A(s)ϕ̃(s)r̃(s)(
u′(s) + 1

2u(s)(
2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)

)2

}ds.

Moreover,

∫ b

a
{u2(s)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]

−A(s)ϕ̃(s)r̃(s)

(
u′(s) +

1

2
u(s)(

2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)

)2

}ds ≤ 0,

(25)

which contradicts to (24). So every solution of Eq. (1) is
oscillatory, and the proof is complete.

Remark 1. As one can see, the result in Theorem 10
is more general than that in Theorems 6, 7 in that (10) is
not necessarily satisfied.

Remark 2. In Theorems 2, 3, 6, 7, 10, if we
assume f ∈ C1[R,R] satisfying f ′(x) ≥ µ > 0
for x ̸= 0, and modify the definition of ω(t) by

ω(t) = ϕ(t){A(ξ)r(t)Dα
t x(t)

f(x(t))
+ φ(t)}, then following

a similar process, we can obtain more extensive oscillatory
criteria for Eq. (1), which are omitted here.

III. APPLICATIONS

Example 1. Consider the following fractional differential
equation with damping term:

Dα
t (

√
tα
α Dα

t x(t)) +
α
tα

Dα
t x(t)

+( t
α

α )−
3
2
x(t)(2 + x2(t))

1 + x2(t)
= 0, t ≥ 2, 0 < α < 1. (26)

In fact, if we set in Eq. (1) t0 = 2, r(t) =

√
tα
α , p(t) =

α
tα

, q(t) = ( t
α

α )−
3
2 , f(x) =

x(2 + x2)
1 + x2 , then we

obtain (26). So ξ0 = 2α
α , r̃(ξ) = r(t) =

√
tα
α =

√
ξ,

p̃(ξ) = p(t) = α
tα

= ξ−1, q̃(ξ) = q(t) = ( t
α

α )−
3
2 = ξ−

3
2 ,

and f(x)/x ≥ 1, which implies K = 1. Furthermore,
since A(ξ) = exp(

∫ ξ

ξ0
τ−

3
2 dτ) = exp(2ξ

− 1
2

0 − 2ξ−
1
2 ), so

1 ≤ A(ξ) ≤ exp(2ξ
− 1

2
0 ), and in (2),∫∞

ξ0
1

A(s)r̃(s)
dt ≥ 1

exp(2ξ
− 1

2
0 )

∫∞
ξ0

1
r̃(s)

dt

= 1

exp(2ξ
− 1

2
0 )

∫∞
ξ0

1√
ξ
dξ = ∞.

On the other hand, so in (5), letting ϕ̃(ξ) =
√
ξ, φ̃(ξ) = 0,

we obtain

∫∞
ξ0

{KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

− [2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)]2

4A(s)ϕ̃(s)r̃(s)
}ds

=
∫∞
ξ0

15A(s)
16s ds ≥

∫∞
ξ0

15
16sds = ∞.

Therefore, Eq. (26) is oscillatory by Theorem 2.

Example 2. Consider the following fractional differential
equation with damping term:

Dα
t (D

α
t x(t)) +

1
αtαDα

t x(t) +
1
αtαx(t)ex

2(t) = 0,
t ≥ 5, 0 < α < 1. (27)

In fact, if we set in Eq. (1) t0 = 5, r(t) ≡ 1, p(t) =
tα
α , q(t) = tα

α , f(x) = xex
2

, then we obtain (27). So
r̃(ξ) ≡ 1, p̃(ξ) = p(t) = tα

α = ξ, q̃(ξ) = q(t) = tα
α = ξ,

and f(x)/x = ex
2 ≥ 1, which implies K = 1. Furthermore,

since A(ξ) = exp(
∫ ξ

ξ0
τdτ) = exp(

ξ2

2 − ξ20
2 ) ≥ 1, so

in (22)-(23), after letting ϕ̃(ξ) ≡ 1, φ̃(ξ) = 0, λ = 2,
considering q̃(s) ≡ 1, we obtain

lim
ξ→∞

sup
∫ ξ

l
{(s− l)λ[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]− A(s)ϕ̃(s)r̃(s)
4 (s− l)λ−2[

λ+ (
2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)(s− l)

]2
}ds

= lim
ξ→∞

sup
∫ ξ

l
A(s)

[
s(s− l)2 − 1

]
ds

≥ lim
ξ→∞

sup
∫ ξ

l

[
s(s− l)2 − 1

]
ds = ∞

and
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lim
ξ→∞

sup
∫ ξ

l
{(ξ − s)λ[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]− A(s)ϕ̃(s)r̃(s)
4 (ξ − s)λ−2[

λ− (
2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)(ξ − s)

]2
}ds

= lim
ξ→∞

sup
∫ ξ

l
A(s)

[
s(ξ − s)2 − 1

]
ds

≥ lim
ξ→∞

sup
∫ ξ

l

[
s(ξ − s)2 − 1

]
ds = ∞.

So according to Corollary 9 we deduce that Eq. (27)
is oscillatory.

Example 3. Consider the following fractional differential
equation with damping term:

Dα
t

(
sin2( t

α

α )Dα
t x(t)

)
+t2Dα

t x(t)+x(t)(1+x2(t)) = 0,

t ≥ 2, 0 < α < 1. (28)

If we set in Eq. (1) t0 = 2, r(t) = sin2( t
α

α ), p(t) =
t2, q(t) ≡ 1, f(x) = x(1 + x2), then we obtain
(28). So r̃(ξ) = r(t) = sin2( t

α

α ) = sin2 ξ, q̃(ξ) ≡ 1,
and f(x)/x = 1 + x2 ≥ 1, which implies K = 1.
Furthermore we have A(ξ) ≥ 1. So in (24), after letting
ϕ̃(ξ) ≡ 1, φ̃(ξ) = 0, a = 2kπ, b = 2kπ + π, u(s) = sin s,
then u(a) = u(b) = 0, and we obtain

∫ b

a
{u2(s)[KA(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +

ϕ̃(s)φ̃2(s)
A(s)r̃(s)

]

−A(s)ϕ̃(s)r̃(s)(
u′(s) + 1

2u(s)(
2ϕ̃(s)φ̃(s) +A(s)ϕ̃′(s)r̃(s)

A(s)ϕ̃(s)r̃(s)
)

)2

}ds

=
∫ 2kπ+π

2kπ
A(s)

(
sin2 s− sin2 s cos2 s

)
ds

≥
∫ 2kπ+π

2kπ

(
sin2 s− sin2 s cos2 s

)
ds

=
∫ 2kπ+π

2kπ
sin4 sds > 0.

Therefore, Eq. (28) is oscillatory by Theorem 10.

Remark 3. We note that oscillation for the three examples
above can not be obtained by existing results so far in the
literature.

IV. FURTHER APPLICATIONS

As the proof process in Section II is usual in the research
of oscillation criteria, we point out that this method can
be applied to research many other fractional differential
equations such as the follows:
Dα

t (r(t)D
α
t x(t)) + q(t)f(x(t)) = 0,

t ≥ t0 > 0, 0 < α < 1, (29)

Dα
t (r(t)D

α
t x(t)) + q(t)f(x(τ(t))) = 0,

t ≥ t0 > 0, 0 < α < 1, (30)

where (30) is a kind of delay fractional differential
equation, Dα

t (.) denotes the conformable fractional
derivative with respect to the variable t, the function
r ∈ Cα([t0,∞), R+), q ∈ C([t0,∞), R+), and Cα

denotes continuous derivative of order α, the function f
is continuous satisfying f(x)/x ≥ K for some positive
constant K and ∀x ̸= 0, the delay term τ satisfies τ(t) ≤ t.

V. CONCLUSIONS

We have established some new oscillatory criteria for a
class of fractional differential equations with the fractional
derivative defined in the sense of the conformable fractional
derivative. Some applications for these established results are
also presented. We note that the method in this paper can
be applied to research oscillation of fractional differential
equations with more complicated forms such as with damp-
ing term or with delay term, which are expected to further
research.
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