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Elementary Wave Interactions for a Simplified
Model in Magnetogasdynamics

Yujin Liu and Wenhua Sun

Abstract—We are mainly concerned with the elementary etc.) for
wave interactions for Magnetogasdynamics system and con-

struct uniquely the solution of the initial value problem when Tt — Uy =0,
the initial data are three piecewise constant states. We find that B2
the results are very different from that of the corresponding case ur + (p+ Z)w =0, 2

of the conventional gas dynamics which shows the complexity
of the solutions for Magnetogasdynamics system. Our results
can be used to construct the approximate solution by Glimm’s ) ) .
scheme and to describe the asymptotic behavior of the solution. Under the assumptiolRl = kp, wherek is positive constant;
denotes the specific volume. They constructed uniquely the

Index Terms—Riemann problem, Wave interaction, Magne- Riemgnn soIL_Jtion. In [14], we investigated the elementary
togasdynamics, Shock wave, Rarefaction wave, Magnetogasdy-Wave interactions for the system (2).

2 2

namics. T. Raja Sekhar and V.D. Sharma [15] studied
pt + (pu)E - 0;
2 B%\ _ Q)
I. INTRODUCTION (pu)t + (pu? +p+ 5 )z =0,

M AGNETOGASDYNAMICS system is important in and they constructed the Riemann solutions and investigated

. . . e wave interactions of the elementary waves.
engineering physics and many other aspects [1], [ﬂ] . ) .
(31, [4], [5], [6], [7] and useful for studying the hyperbolic Shen [16] mvestlgated the Rle_mann problem for (3) and
system's theory. obtained that the Riemann solution converges to the corre-

sponding Riemann solution of the transport equations when

One-dimensional inviscid and perfectly conducting COMYoth the pressurg and the magnetic field vanish
pressible fluid, subject to a transverse magnetic field, S| [17], we removed the assumptidi = kp and .studied

expressed by the Riemann problem for the following Magnetogasdynamic
system
pt + div(pu) =0, pt + (pu)z =0,
2 B2y
(pu)¢ +div(pu @ u + pI) — protH x H =0, (pu)s + (pu® +p+ 5-) =0, 4)

B): + (Bu), = 0,
(PE—i-%MHQ)t—l—div(puE—i—up—u(u><H)xH):(), (B)¢ + (Bu) 0

H; —rot(ux H) =0, with the following initial values
divH =0, (p,u, B)(z,0) = (p=,u*, BY), +z>0, (5)
p=f(p,S) wherep®, u*, B+ are arbitrary constants, apdis given by

, - (1) p= Ap for polytropic gas, A is positive constant andis
wherep > 0,p, S, B > 0 andE = e+ are respectively the the adiabatic constant.
density, pressure, specific entropy, transverse magnetic fieldyy this paper we investigate the wave interactions of the

and specific total energy, is the specific internal energy.glementary waves for (4) with the following initial data
u = (u1,usz,us) is the velocity of the fluid in the direction

of (z1,x2,23), H = (Hy, Ho, H3) is the magnetic field in (p1, ur, B), —00 <1 < —¢,

the direction of(z1,z2,z3) and H = pB, wherepu is the (p,u, B)(x,0) = (Pms> Um, Bm), —e<x<e¢,

magnetic permeability. (pryur, Br), &<z <oo, ©
Hu and Sheng [8] studied the Riemann problem (tq%r arbitrarye € R.

other related problems in partial differential equations were

investigated by many researchers ([9], [10], [11], [12], [13]él By virtue of analyzing the concrete properties of the

ementary waves in the phase plafgu), we construct
uniquely of the solution of the initial value problem (4) and
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interactions containing rarefaction wave for which we obtaintersect with each other at most once. It fgllows that there
uniquely the local solution for (4) and (6) which plays arare five casesW;z(N;5) " W,5(N,5) = (Rip(Nip) N
important role in constructing the approximate solution byy,. 5 (N,.)) or (SlB(NlB)mﬁ,,AB(N,.B)) or (Rip(Nig)N
means of Glimm’s scheme and giving a description of th +B(NyB)) or (S;5(N;g)N S,.5(N.g)) or @.

asymptotic behavior of the solution when- cc. For the last case, it is obvious that there is a vacuum

This paper is organized as folk_)ws. In Secti(_)n Il, we givgo|ution. Thus, we just need to consider the first case because
the elementary waves and the Riemann solutions of (4) ajig other cases can be discussed similarly.

: : : . . IS¢
(5) for our later (_j|scu53|ons. In Section IlI, we mvestlgaFe Suppose WIB(NIB) N W,s(Neg) = §lB(NlB) n
the wave interactions of the elementary waves by analyzi
the properties of the elementary wave curvegnu) and

IG@,.B(J\f,,g) = {N.p}, it follows that there exist$p.., u.)

obtain the unique solution for the initial value problem (4');at|sfy|ng
and (6). A final conclusion is given in Section IV. L e
U = Uy f/ Mdp, (10)
[I. PRELIMINARIES AND ELEMENTARY COMBUSTION .
WAVE
First, we give briefly the results of the Riemann problem Pe/pp+ k2p
for (4) with the initial data (5), and we refer the readers to U = Ur + / P dp, (11)
[11], [17] for more details. '
There are three eigenvalues of (4) which are= v = wherek; = &t and k, = Z=.
2 .. P =
Aos A = ux/p,+ BT = Ax. They are real and distinct Denote l !
which shows that (4) is a strictly hyperbolic system. It is easy _
to see that the characteristic fieldls are genuinely nonlinear w — [P Md@
and the characteristic field, is linearly degenerate. "
. = . (P < pl)a
The forward or backward rarefaction wavg in the fi(p1) =
(p,u, B) space passing throug¥(po, uo, By) is expressed uy — \/’ﬁ(m + $k2p — i — SkEp?),
by (
P> pu)
_ B = k’op, (12)
%
R(N()) : 0 pp+B_2 (7)
U= ug=* —dp,
po P p2 \/Pothkip
Uy + fﬂr fdpa
wherek, = %. (< pr)
The contact discontinuity is given as follows fa(pa) = i
{ o —u, w2+ 5 R203 — e — 5REp2).
J: > (8) > 0.
)=+ 5] =0 =) 12
It follows that J is a plane curve with, = Const. in the
(p,u, B) space and the projection on tlig,u) plane is a
straight line parallel to thep—axis which shows that it is 1k2 2
; . = - 14
much more complicated than that of the conventional gas gilpr) =p1 + 9 LPL (14)
dynamics.
The forward or backward shock wave in tlig, u, B) 1
space passing through (po, uo, Bo) is expressed by g2(p2) = p2 + §k§p§. (15)
B=k . .
?(N . 0P, We consider the following problem
0 e — e (B2 BZ
U—uy = - (p+F —po—3)-
(9) filp1) = fa(p2), (16)
Based on the above analysis, we construct the Riemann g1(p1) = g2(p2),

solution for (4) and (5). From the properties of the elemen-

tary v<\@ves, there is no asymptote for bashand S while and proye that i'F has a uniqut_a solu_tion,_vx_/h_ich shows that
both R and R intersect with theu-axis. Particularly, we there exists a unique contact discontinuityoining the two
deal with the contact discontinuity carefully since it is mUCgtateS which are respective|y located E]andg (F|g 1)
more complex than that of our conventional gas dynamics.grom [17], it follows that f1(p1) and fa(ps) are both
We construct the solution of Riemann problem (4) and (R)00th functions, and the curye = po(p1) defined by

as follows. o . : g )
. — fi(p1) = fa(p2) is monotonically decreasing, while the
Denote Wip(Nip) = Rip(Nip) U Sis(Nip) and  curvep, = po(p1) defined byg; (p1) = g2(p2) is monotoni-
W,p(Nyg) = Rrp(Nep)U S p(Nyp). Draw Wig(Nig)  cally increasing. Thus, the uniqueness of the solution of (16)

from N;p in the plane('%u) and W, g(N,g) from N,g. is obtained. Now we consider the existence of the solution
From the properties oV ;3(N;z) and W,g(N,p), they of (16).

Volume 28, Issue 4: December 2020



Engineering Letters, 28:4, EL._28 4 13

u
U u
B 3
OB o
R () G :
S )
) — *
fa(C Ris ﬁ7 (%)
u X0 -
e p 771 I S (l) Sip f2(0 SlB _____
S5 o e
pa P D5 D6 14
Elementary wavi Subcase 3.1 Subcase 3.2
ementary waves Fig 4 u; < f2(0) Fig 5u; > f2(0)

Fig 1 The Elementary waves in thg, u) plane.

Form (10) and (11) we gef;(p.) = f2(p.), we discuss ~ Subcase 3.1u; < f»(0). (Fig 4)
as follows. It is obvious that there exisi&, such thatf,(p4) = f2(0),
Case 1.k; = k.. It is equivalent tog; (p.) = ga(ps). It wherep,. < ps < p;. Similar discussions as above, we obtain

is obvious thatp; = p» = p. is the solution of (16). Thus, (P1,02) © p« < p1 < ps,0 < pa < p,. It follows that the

the Riemann solution |§ + ﬁ here the symbol +”  Riemann solution isﬁ + 3 + ﬁ
means “followed by”. We observe that for this case there is Subcase 3.2u; > f2(0). (Fig 5) There exist respectively
no contact discontinuity. ps such thatfs(ps) = u;, where0 < ps < p., and g such
. that f1(ps) = f2(0), whereps > p;.
- 0 Subcase 3.2.31(p;) > g2(ps). Similarly, we know that
g

there exists(p1, p2) : px < p1 < p1,P5 < p2 < ps« Such
that fl(ﬁl) = f2(/72) and g1(p1) = g2(p2). The Riemann
solution |3R + J +

Subcase 3.2.2]1(pl) < g2(ps). Similarly, we know that

B o there exists(p1,p2) : p1 < p1 < ps,0 < p2 < ps such
P 12 that f1(ﬁl) = f2(/72) and g1(p1) = g2(p2). The Riemann
Subcase 2.1 Subcase 2.2

Fig 2w > £,(0) Fig 3w, < £,(0) solution is S + J + ﬁ

Based on the above results, we have the following result.
Case 2.k; > k. It is equivalent tog; (p.) > g2(p.). So Theorem 2.1There exists uniquely solution for the Riemann
we should look for solution i{(p1,p2) : p1 < p«, p2 > Problem (4) with the initial values (5).
P}
Subcase 2.1u, > f1(0). (Fig 2) I1l. WAVE INTERACTIONS OF THE ELEMENTARY WAVES
There existsp; such thatfi(0) = f2(p1), wherep, <
p1 < pr.
Sinceg1(0) < g2(p1) and the curvedi(p1), f2(p2) are
smooth, from the method of continuity, there exi§is, p2)

Now we consider the wave interactions of the elementary
waves obtained from the Riemann problem (4) and (5). In
order to solve the initial value problem (4) and (6), we divide
Satisfying0 < p1 < pu, pa < po < pr SUch thatfy(5) = our discussions into the following five cases: the collision

_ i _ _ . f the t hock , d th int ti
F2(p2) and gi(p1) = g2(p2). Thus, (51, 2) is the solution ©' ™€ WO SHOCK Wave §> af”g ﬁ‘iwave gﬁm lons
of (16). It follows that the Riemann solution is given bycontaining rarefaction wavéi ./, E.J, KRR and K S.

S0S B In [17], we studied the wave interaction between the shock
R+ J+ R. . L )
) wave and the contact discontinuity, in this paper for the
Subcase 2.2u, < f1(0). (Fig 3) case which containing the shock wave, we just consider the
There exist, andp; satisfyingfi(p2) = u, andf1(0) = collision of the two shock waves. "
f2(ps), respectively, wher@ < p; < ps aNdp3 > pr. Case (i) The collision of the two shock wavesS S .
Subcase 2.2.1g2(pr) < g1(p2). Since gi(ps) > g1(0)  Similar discussions with Lemma 3.3.7. in [11], we have

and the curvegi(p1), f2(p2) are smooth, from the methodthe following result and the proof is omitted for S|mpI|C|ty
of continuity, there existgpi,p2) : 0 < p1 < po,pr <

p2 < p3 such thatfi(p1) = f2(p2) and gi(p1) = g2(p2)-
Thus (pl, p2) is the solution of (16). The Riemann solutiorthen the curves B(N1) does notintersects WItF (N2) on
is R + J + ? the sge where increases wh|I§ (N7) does not intersects

Subcase 2.2.22(pr) > g1(p2). Similarly, we know that with R ;(N») on the side wherg decreases.
there exists(py, p2) : p2 < p1 < pu,ps < p2 < pr SUCh |yt is easy to see thab will intersect with S in a finite
that fl(ﬁl) = fQ(PQ) and g1(p1) = g2(p2). The Riemann ime and a new Riemann problem is formed. From Lemma
solution is R + J+ R. 3.1, we havegB(Nl) does not intersect withs B(Nm)
Case 3.k; < k. It is equivalent tog; (p.) < g2(p«). SO and?B(Nr) does not intersect witty' 5 (N, ), respectively.
we should look for solution i{ (p1,p2) : p1 > ps, p2 < Thus we haveN, € S 5(N;)U S g(N,) (Fig 6 and Fig 7)
Ds}- and discuss as follows.

Lemma 3. 1S_§Jpose the poinlv,y € § (V1) U SB(Nl)

Volume 28, Issue 4: December 2020



Engineering Letters, 28:4, EL._28 4 13

? and<§
Fig 6 Collision ofg> and <§

Wave interaction
Fig 7 Wave interaction ir{p, u).

Case 1.k < k.. It is equivalent tog;(p.) < g2(p«)
and we should seek a solution {f{p1, p2)|p1 > p«, 0 <
p2 < p«}. It is obvious that there exist respectivgly and
p2 which satisfy thatu, = “33(/31)’ px < p1 < po and
ug (0) =ug (p2), p« < p1 < pa.

Subcase 1.1¢1(p1) > g2(p,-). From the continuity of the
wave curves, it follows that there exists a paipt, p2) such

thatp. < p1 < 1, pr < P2 < ps, and the solution is shown P> P2 > P+

by 55 - 5%,

Subcase 1.241(p1) < g2(p»). Similarly, there exists a

point (p1, p2) satisfyingp, < p1 < p2 and0 < p2 < p, and

>
the solution is expressed @g - STR.
Case 2.k = k,. It is equivalent tog;(p.) = g2(ps)

and there is no contact discontinuity of the new Riemann gypcase 1.3.1u

solution, the statéV; is connected to the stafé,. by the state

Q* directly and we know the solution is given @3 —
S S.

Case 3.k, > k.. It is equivalent tog; (p.) > g2(p.) and
we should seek solution ii(p1,2)|0 < p1 < ps, p2 >
p«}. There exist respectivelys and s, which satisfy that
u =ug (p3) andug (0) =ug (1), ps < ps < pa.

Subcase 3.1.g1(p3) > g2(pi). From the continuity of
the wave curves, it follows that there exists a pdint, p2)
satisfyingp; < p1 < ps, p« < p2 < ps3, and the solution is
shown by?ﬂg — <§(<]?

Subcase 3.2¢1(p3) < g2(p1). There exists a poir(ipy, p2)
which satisfied) < p; < p; andps < p2 < pg and we know

o & &<
that the solution is given bﬁs — RJ?.

Since

ﬁrB(Nr) Tu=u, + fpp Vretkip

——dp, p<pr,

b H
ﬁmB(Nm) U= Um + fppm %d/% P < Pm;

2 2

2 2
m P ko Pm
2

Dm + Dr + =57, Uy, = Up and p,, > p,. From
Lemma 3.1., we know that the cur\ﬁ,‘B(N,.) lies always
above the curveR,,5(N,,). Thus, there are two possible
cases:R;p(N;) intersects withR, 5(N,) at N.p where a
new Riemann problem is formed, ét; 5 (1V;) intersects with
+5(N,) at N.p where a new Riemann problem is formed.
Case 1.p1 > p,, Wherep, satisfiesu, = “Em(ﬁl) which
&
shows thatR;z(N;) intersects With?,‘B(N,.) at N,z (Fig
8 and Fig 9).
Subcase 1.1k; = k,, thatisg; (p«) = g2(p«). Thereis no
contact discontinuity of the new Riemann solution for this

>
case and the solution is expressedﬁyf ~ RS,

Subcase 1.2k; > k,, we know thatg; (p«) > g2(px«). In
this case, we should seek the solution{{ip;, p2)|0 < g1 <
}+. It follows that there exists a poir({p:, p2)
which satisfied) < p1 < p.«, p« < p2 and the solution is

> <
given byﬁj — RJ?.

Subcase 1.3%; < k., we get thatg; (p.) < g2(p«). In
this case, we should look for the solution {p1, p2)|p1 >
P, 0 < pa < p.}. Due tou; < u,, we divide our discussions
into the following two subcases.

, (0) < up < Up.

If g2(pr) < g1(p1), from the continuity we obtain that

there exists a poin{p:, p2) satisfyingp. < p1 < p1 and

>
pr < P2 < ps. Thus, the solution is described by —
<>
RIS

If g2(pr) > g1(p1) and gi(p) > g2(p2), Where py is
determined byu; = ug B(ﬁg). Thus, there exists a point
(p1, p2) which satisfiesp,. < p1 < p1 < pp andps < p2 <

>
pr < px, and we know that the solution is given @J —
—>
RIR.

If g2(pr) > g1(p1) and g1(p1) < g2(p2), it is obvious
that g1(p3) > g2(0), whereps > p satisfiesus (0)
u<§LB(ﬁ3). Therefore there exists a poify#;, p2) satisfying
px < pr < p1 < p3 and0 < po < po < p. and the solution

. ﬁ> e>ﬁ
Theorem 3.1 When a forward shock collides with aiS expressed byzJ — SJR.

backward shock, the forward (backward) shock will cross
immediately the backward (forward) shock, or a new forward
(backward) rarefaction wave will appear. Furthermore, the
contact discontinuity may appear or not after the wave
interaction.

In what follows, because there is a penetration process in N

the interaction, we can not obtain the global solution by J

solving the new Riemann problem like the above discussions. (r)

However, the local solution of the new Riemann problem is 2 b ;31 >
still important for investigating the global solution which can — 5>

be used to construct the approximate solution by Glimm's o Imeract?;‘:gfﬁ and 3. Fig 9 51 > pr.
scheme and to describe the asymptotic behavior of theg pcase 132y <ug  (0) < u,.

solution whent — oo [11]. Next we investigate the wave Obviously there exists’ a poinp, < p such that

interactions containing the rarefaction wave.
Case (ii) The interaction of the rarefaction wave with

i . i >
the contact discontinuity ﬁj .

7,0) =ug (pa).
If g1(p1) > g2(pr), there exists a poinip;, p2) satisfying
px < p1 < p1 and p,. < pa < ps, thus the solution is
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expressed byRJ — RJS. Theorem 3.2 When a rarefaction wave collides with a
If g1(p1) < g2(pr), from gi(ps) > ¢2(0) and the contact discontinuity which is of a jump decrease in density,
continuity, there exists a poirp;, 5») which satisfiesp, < We observe that the rarefaction wave in the local solution
p1 < p1 < ps<p and0 < py < p, < p, Which shows that of the initial value problem (4) and (6) continues to move
S > > in i i irecti
the solution is given byﬁJ . RJﬁ. fo_rward in its propagatmg direction or a new shock wave
- . : = will appear. Meanwhile, a new rarefaction wave (or shock
Case 2.p1 <,pr, for this case it follows thati?,5(N)) wave) propagating in the opposite direction will appear
intersects withﬁrB(Nr) at N, p (Fig 10). propagating bp ppear.

Furthermore, th n iscontinuity m rorn
Subcase 2.1k — k,. urthermore, the contact discontinuity may appear or not

Since g1(p.) = ga(p.), we know that the solution is 2c (e wave interaction.
Z g Pe) = J2Peh Case (iii) The interaction of the rarefaction wave with
ﬁj — Rﬁ. Note that for this case there is no contac‘ﬁ1

discontinuity.

Subcase 2.2k; > k,. In this caseg:(p«) > g2(p.) and we
should seek the solution {71, 72)|0 < p1 < pa, P2 > put-
There are two possible cases as follows.

e contact discontinuity ﬁj .
Itis easy to see that; < u,, = u, andp,, < p,. Similarly
with the discussions in Case (i) of this section, we know that
the curveR ,,5(NN,,) lies always above the curvgrB(Nr)
and the curveS ;5 (N;) intersects withR? . 5 (N,.) at the point
N.p (Fig 11 and Fig 12).
Subcase 1% = k,.

It holds thatg; (p.) = g2(p«) which shows that there is
no contact discontinuity, and we obtain the solution is given

by HJ - 5.

Subcase 2k; < k.. In this case, we know (p.) < g2(p«)
and should look for the solution ii(p1, p2)|p1 > ps, 0 <
p2 < p«}. We define s, which satisfiesuy; (0) =

<

P 12 “§13(51>' Thus, there exists a poifip1, p2) :  p« < p1
p1 < pr L=< >
Fig 10 The interaction ol andj p1 < pr. /31, 0< P2 < P« and the solution |§J — Sjﬁ-
Subcase 3k; > k.. In this case, we know thaj; (p.) >
Subcase 2.2.1u, > f1(0). g2(p«) and should look for the solution (5, p2)[0 <
There existsps € (ps,pr) such thatusg (0) = 5 < p., 52 > p.}. There are two possible cases as follows.

~ - IB A
ug, ,(P5) and gi(0) < g2(ps). It follows that there exists Subcase 3.1.u; < u, < ug, (0). Since there exists
(ﬁl>, p2) <0 < p1 < px, px < p2 < ps and the solution is respectivelyp, € (0,p;) and p3 € (p«,p,) such that
RJ > RIR. ur = usg (p2) andu; = ug (ps).

Subcase 2.2.2u, < f1(0). If g1(p1) < g2(p3), similar discussions with the above, there
If go(p) > 91(ps), we know that there exists a pointexists a point(py,p2) @ pr < p1 < ps, ps < p2 < p3 and

_ ~ _ _ . . < <
(p1,p2) : PLS LS Poy P < P2 < Pr and the solution is the solution isK. — S J &.

. <~ - ~ . .
given byﬁj ~ RIE. If g1(p1) > g2(p3) andga(p,) > g1(p2), there exists a point
If g2(pr) < g1(ps), we obtain a pointpi, p2) : 0 < p1 < (ﬁlaﬁ<2) t P2 <pL=pi ps < p2 < pr, W get the solution
01 < px, px < pr < p2, and the solution is expressed b ey
PLS Pry e < Pr < P2 P s BT — RJE. | |
R RJS. If g1(p1) > g2(p3) andg2(p-) < g1(p2), since there exists
Subcase 2.3k < k.. That is to saygi(p.) < g2(p«) and a point(py,p2) : 0 < p1 < p2, p2 > pr, We oObtain the

. . =L _ < <
\/;vejk;oijld look for the solution if(p1, p2)|p1 > p«, 0 < solution is given byﬁj L %79,

2 * [ o
Subcase 2.3.1u; < f3(0).

Obviously there exists a poinis € (p.,p) such that
usg (ps) = ug (0) and g1(ps) > g2(0). We know there
exists a point(p1, p2) :  p« < p1 < pg, 0 < p2 < p, and

i . > >
the solution |sﬁJ — EJ?
Subcase 2.3.2u; > f>(0).

Since there exists a point; € (0, p,) such thatu; =

(p7), then it follows that

us

t

e ~ i T = B andJ Wave interaction

i gl?pl) 2_92 (p7)’ there exists a pOIr(.tol’ p2) PoPe s s Fig 11 Interaction ofﬁ andj Fig 12 Wave interactior{p, u).

o1, pr < p2 < p. and the solution is given by as follows . .

ﬁ> %>ﬁ- Subcase 3.2.u; < U‘EzB(O) < u,. Define respectively
J = RJR; pa > px andpy < ps < pr such thatu; = ug " (ps) and

if g1(p1) < g2(p7), since there exists a p0|(y§1,.;52) .: fl < “EB(O) =up (75).
p1, 0 < pa < pr < p«, and we get the solution |§J —  Subcase 3.2.191(p;) < g2(p4). There existgp1, p2) : o1 <

—> < <

SIE. - - 1 < ps, px < p2 < pg and the solution isH) — SR,
Notice that the wave interaction betweérand R can be Subcase 3.2.2¢1(p;) > g2(p4). In view of g2(p5) > ¢1(0),

studied similarly and omitted for simplicity. we get that there exist®,p2) : 0 < p1 < pr < ps, psx <
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p1 < po < ps < pr and the solution is expressed @f] —  Due togi(ps) > g2(0), we get the solution is given by
RIE. RE - RIR.

The wave interaction betweeh and & can be studied Subcase 3.2u; > f»(0). There are two possible cases as
similarly and omitted for simplicity. follows.

Theorem 3.3When a rarefaction wave collides with aSubcase 3.2.1g1(p;) > g2(p4), similarly there exists a point
contact discontinuity which is of a jump increase in densityf1,/2) :  px < p1 < pi, pa < p2 < p» and we obtain that
we obtain that the rarefaction wave in the local solutiothe solution isﬁﬁ N ﬁ?]ﬁ
of the initial value problem (4) and (6) continues to movgypcase 3.2.2¢:(p1) < g2(ps), since there exists a point
forward in its propagating direction or a new shock wave;, 5,): p; < 1 < js, 0 < pa < fs, Whereps satisfies
will appear. Meanwhile, a new rarefaction wave (or shock, (ps) = ug (0), and we get the solution i R —
wave) propagating in the opposite direction will appeag._sgB B
Furthermore, the contact discontinuity may appear or n&Jﬁ-

after the wave interaction . Theorem 3.4When a forward rarefaction wave collides
<gase (iv) The collision of the two rarefaction waves with a backward rarefaction wave, we find that the forward
ﬁR. (backward) rarefaction wave in the local solution of the initial

In this case, it hold thaty < w,, and w,, < wu,. Vvalue problem (4) and (6) continues to move forward in its
Similar with Case (i) of this section, we _obtain that the curvieropagating direction or a new forward (backward) shock
+5(N,) lies always above the curv&,,z(N,,) and the wave will appear. Furthermore, the contact discontinuity may
curve R ,5(N,,) lies always above the curv&,z(IV;). It appear or not after the wave interaction.
yields thatR 5 (IV;) intersects withE , 5 (N,.) at N,z where Case (V) Th<e_collision of the rarefaction wave and the
a new Riemann problem is formed (Fig 13 and Fig 14). [phock wave ki S'.
order to obtain the solution of the new Riemann problem, Since the curveR .5 (IV,,) lies always above the curve

we discuss as follows. +5(N,) and the curveSmB(]&n) lies always above
Subcase 1k; = k,. the curve S5 (V). It yields that S;5(N;) intersects with
It holds thatg;(p.) = g¢2(p.) and there is no contact R, z(N,) at N.p where a new Riemann problem is formed
discontinuity. Thus, we obtain the solution B R — . (Fig 15 and Fig 16). We discuss the construction of the
Gop solution of the new Riemann problem as follows.
u Subcase 1k; = k,. We know g (ps) = g2(p-) and there
t is_ no contact discontinuity. Thus, the solution is given by
R
S SR

Subcase 2.k; < k,. This shows thaiy; (p.) < g2(px)-
Since there exist$p1, p2) : p < p1 < p1, 0 < P2 < ps
where p; > p, satisfiesuz (0) = ung(ﬁl). It follows

>
that the solution is given bﬁg - STR.

u

B andR Wave interaction
Fig 13 Collision of B and R. Fig 14 Wave interaction irffp, u). t

Subcase 2k; > k.. In this case, we know (p.) > g2(p«)
and should seek the solution {iip1, p2)|0 < p1 < p«, p2 >
p«}. There are two possible cases as follows.

-
Subcase 2.1.u, > f1(0). We can definep; such that L s
ug (1) = f1(0). Thus, there exists a poif, p2) : 0 < Y (m) (r)“
p1 < p«, p« < p2 < p1 and the solution is expressed by —€ e ¥ 12
ﬁ? N ﬁjﬁ _ ﬁ a_nd<§ - _ Wave_ interagtion_

' . Fig 15 Interaction of R and 5. Fig 16 Wave interaction ir{p, ).
Subcase 2~.2u,,A < f1(0). There exists) < p» < p. sSUCh  gyhcase 3.k > k.. This means tha (p.) > ga(p.).
thatug (p2) = ur. There are three possible cases as follows.

Subcase 2.2.1.gx(pr) > gi(p2). There exists a point  gypcase 3.1u; > u,. It is shown that there exisf such
(P1:p2) + P2 < P1 < pas ps < P2 < pr @Nd WE Q€L thaty — ye (5.
- S~ = Sip . .
that the solution isF R — RJ K. If g2(pr) > g1(p2), since there exist§p1, p2) : p2 < p1 <
~ ; : i . — +—<

(Sybﬁa)se_ 2-02'292(/”2 =< <91(f’2); Tgere e>XIStSa2d pt(r):gt pes ps < P2 < pr, the solution is shown bys S — S J R.
pope) s (SRS e 2 e It g2(pr) < 91(p2) andgi(pi) < g2(ps), whereps > p,
solution isER — RJS. satisfiesu; = up (ps). Since there existépy, p2) : p1 <

Subcase 3k; < k.. In this case, we have: (p.) < g2(px) 51 < pa, pr < s < fs, the solution is given bﬁg N
and should seek the solution {iip1, p2)|p1 > p«, 0 < p2 < ?f]?

ps«}. There are two possible cases as follows. R R ) )
Subcase 3.1u; < f2(0> If gg(pr) < 91(/72) andgl(pl) > gg(pd), since there exists

It is obvious that there exisps € (p.,p;) such that (£1<a p2) : 0 < p1 < pi, p2 > ps. Thus, the result iz S —
u%m(/}z;) =ug (0), andu; = ug (p4), respectively. RJ?,
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Subcase 3.2u; < u, < “EB(O)' There existp, €
(ps,pr) and ps € (0,p;) satisfies respectively that; 1]
up (ps) andu, = u§lB(ﬁ5).

I g1(p1) < g2(pa), since there existépy, po) : p1 < p1 < &
px> P« < p2 < ps4, We obtain that the solution is given bys

< &<
RS - SJIR. "

If 91(p1) > g2(71) andgz(p,) > g1(ps), since there exists
(P1,02) : ps < 1 < pi, pa < p2 < pr, We get that the :
solution is expressed bﬁg — %jﬁ

If 91(p1) = 92(p4) andga(p;) < g1(ps), since there exists
(p1,p2) : 0 < p1 < ps, pr < P2 < ps, Wherepg satisfies [6]
ug (0) = ug (p6). Therefore, we obtain that the solution

< [7]

is given byﬁg — %J?

Subcase 3.3u; < U (0) < u,. There exist respectively 8]
7 € (ps«, pr) @ndps € (pr, p,-) satisfies thaty, = ug (p7)
and UEB(O) =ug (ps)- i . "

Subcase 3.3.1g1(p1) < g2(p7). There exists a point
(p1, p2) which satisfiesy; < p1 < ps, ps < p2 < pr < prr

. . . . <~ <

and it follows that the solution is given bﬁs — Sjﬁ.

Subcase 3.3.291(p1) > g2(p7). Since there exists a point
(p1, p2) such thatd < p1 < pi, pr < p2 < ps < pr, WE

know that the solution is shown bﬁ? pd Ef]ﬁ

The wave interaction betweeﬁ and R can be investi-
gated similarly and omitted for simplicity.

Theorem 3.5When a rarefaction wave collides with a
shock wave, we obtain that the rarefaction wave in the lodd
solution of the initial value problem (4) and (6) continues

]
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of the conventional gas dynamics. The projection of the
contact discontinuity on the phase plafe«) which is a
straight line parallel to the-axis, while the projection of

the contact discontinuity for the conventional gas dynamics

on the phase plang, «) which is just a point. Based on the
above discussions, we obtain the following main result.
Theorem 4.1 There exists uniquely the solution of the
initial value problem (4) with the initial data (6).
we have finished the discussions for all kinds of wave
interactions. It is important to study the interactions of

elementary waves for system (4) not only because of their
significance in practical applications in Magnetogasdynamics
system such as comparison with the numerical and experi-
mental results, but also because of their basic role as building
blocks for the theory of Magnetogasdynamics.

While the system (4) is one-dimensional idealized sim-
plified system, in our next works we will consider the
high dimensional corresponding system which reveals the
deep mechanism of the Magnetogasdynamics system. In our
coming works, we also would like to study the above problem
from the numerical calculation point of view and investigate
the Magnetogasdynamics system furthermore.
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