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Abstract—We are mainly concerned with the elementary
wave interactions for Magnetogasdynamics system and con-
struct uniquely the solution of the initial value problem when
the initial data are three piecewise constant states. We find that
the results are very different from that of the corresponding case
of the conventional gas dynamics which shows the complexity
of the solutions for Magnetogasdynamics system. Our results
can be used to construct the approximate solution by Glimm’s
scheme and to describe the asymptotic behavior of the solution.

Index Terms—Riemann problem, Wave interaction, Magne-
togasdynamics, Shock wave, Rarefaction wave, Magnetogasdy-
namics.

I. I NTRODUCTION

M AGNETOGASDYNAMICS system is important in
engineering physics and many other aspects [1], [2],

[3], [4], [5], [6], [7] and useful for studying the hyperbolic
system’s theory.

One-dimensional inviscid and perfectly conducting com-
pressible fluid, subject to a transverse magnetic field, is
expressed by
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

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u+ pI)− µrotH ×H = 0,

(ρE + 1
2µH

2)t + div(ρuE + up− µ(u ×H)×H) = 0,

Ht − rot(u ×H) = 0,

divH = 0,

p = f(ρ, S)
(1)

whereρ ≥ 0, p, S,B ≥ 0 andE = e+u2

2 are respectively the
density, pressure, specific entropy, transverse magnetic field,
and specific total energy,e is the specific internal energy.
u = (u1, u2, u3) is the velocity of the fluid in the direction
of (x1, x2, x3), H = (H1, H2, H3) is the magnetic field in
the direction of(x1, x2, x3) andH = µB, whereµ is the
magnetic permeability.

Hu and Sheng [8] studied the Riemann problem (the
other related problems in partial differential equations were
investigated by many researchers ([9], [10], [11], [12], [13],
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etc.) for
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τt − ux = 0,

ut + (p+ B2

2µ )x = 0,

(E + B2τ
2µ )t + (pu+ B2u

2µ )x = 0,

(2)

under the assumptionB = kρ, wherek is positive constant,τ
denotes the specific volume. They constructed uniquely the
Riemann solution. In [14], we investigated the elementary
wave interactions for the system (2).

T. Raja Sekhar and V.D. Sharma [15] studied






ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p+ B2

2 )x = 0,
(3)

and they constructed the Riemann solutions and investigated
the wave interactions of the elementary waves.

Shen [16] investigated the Riemann problem for (3) and
obtained that the Riemann solution converges to the corre-
sponding Riemann solution of the transport equations when
both the pressurep and the magnetic fieldB vanish.

In [17], we removed the assumptionB = kρ and studied
the Riemann problem for the following Magnetogasdynamic
system


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

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p+ B2

2 )x = 0,

(B)t + (Bu)x = 0,

(4)

with the following initial values

(ρ, u,B)(x, 0) = (ρ±, u±, B±), ± x > 0, (5)

whereρ±, u±, B± are arbitrary constants, andp is given by
p = Aργ for polytropic gas, A is positive constant andγ is
the adiabatic constant.

In this paper we investigate the wave interactions of the
elementary waves for (4) with the following initial data

(ρ, u,B)(x, 0) =







(ρl, ul, Bl), −∞ < x ≤ −ε,
(ρm, um, Bm), −ε < x ≤ ε,

(ρr, ur, Br), ε < x <∞,
(6)

for arbitraryε ∈ R.
By virtue of analyzing the concrete properties of the

elementary waves in the phase plane(ρ, u), we construct
uniquely of the solution of the initial value problem (4) and
(6) which reveals the intrinsic mechanism of our model (4).

In [17], we studied the wave interaction between the shock
wave and the contact discontinuity, in this present paper, we
just need to consider the collision of the two shock waves
for which we construct uniquely the global solution for (4)
and (6) by solving a new Riemann problem, and the wave
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interactions containing rarefaction wave for which we obtain
uniquely the local solution for (4) and (6) which plays an
important role in constructing the approximate solution by
means of Glimm’s scheme and giving a description of the
asymptotic behavior of the solution whent→∞.

This paper is organized as follows. In Section II, we give
the elementary waves and the Riemann solutions of (4) and
(5) for our later discussions. In Section III, we investigate
the wave interactions of the elementary waves by analyzing
the properties of the elementary wave curves in(ρ, u) and
obtain the unique solution for the initial value problem (4)
and (6). A final conclusion is given in Section IV.

II. PRELIMINARIES AND ELEMENTARY COMBUSTION

WAVE

First, we give briefly the results of the Riemann problem
for (4) with the initial data (5), and we refer the readers to
[11], [17] for more details.

There are three eigenvalues of (4) which areλ = u =

λ0, λ = u ±
√

pρ +
B2

ρ
= λ±. They are real and distinct

which shows that (4) is a strictly hyperbolic system. It is easy
to see that the characteristic fieldsλ± are genuinely nonlinear
and the characteristic fieldλ0 is linearly degenerate.

The forward or backward rarefaction wave
−→←−
R in the

(ρ, u,B) space passing throughN0(ρ0, u0, B0) is expressed
by

−→←−
R (N0) :















B = k0ρ,

u = u0 ±
∫

ρ

ρ0

√

pρ+
B2

ρ

ρ2
dρ,

(7)

wherek0 = B0

ρ0

.
The contact discontinuity is given as follows

J :

{

σ = u,

[u] = [p+ B2

2 ] = 0.
(8)

It follows that J is a plane curve withu = Const. in the
(ρ, u,B) space and the projection on the(ρ, u) plane is a
straight line parallel to theρ−axis which shows that it is
much more complicated than that of the conventional gas
dynamics.

The forward or backward shock wave in the(ρ, u,B)
space passing throughN0(ρ0, u0, B0) is expressed by

−→←−
S (N0) :







B = k0ρ,

u− u0 = ±
√

(ρ−ρ0)
ρρ0

(p+ B2

2 − p0 − B2

0

2 ).

(9)
Based on the above analysis, we construct the Riemann

solution for (4) and (5). From the properties of the elemen-
tary waves, there is no asymptote for both

←−
S and

−→
S while

both
←−
R and

−→
R intersect with theu-axis. Particularly, we

deal with the contact discontinuity carefully since it is much
more complex than that of our conventional gas dynamics.
We construct the solution of Riemann problem (4) and (5)
as follows.

Denote
←−
W lB(NlB) =

←−
R lB(NlB) ∪

←−
S lB(NlB) and−→

W rB(NrB) =
−→
R rB(NrB) ∪

−→
S rB(NrB). Draw

←−
W lB(NlB)

from NlB in the plane(ρ, u) and
−→
W rB(NrB) from NrB.

From the properties of
←−
W lB(NlB) and

−→
W rB(NrB), they

intersect with each other at most once. It follows that there
are five cases:

←−
W lB(NlB) ∩

−→
W rB(NrB) = (

←−
R lB(NlB) ∩−→

R rB(NrB)) or (
←−
S lB(NlB)∩

−→
R rB(NrB)) or (

←−
R lB(NlB)∩−→

S rB(NrB)) or (
←−
S lB(NlB) ∩

−→
S rB(NrB)) or ∅.

For the last case, it is obvious that there is a vacuum
solution. Thus, we just need to consider the first case because
the other cases can be discussed similarly.

Suppose
←−
W lB(NlB) ∩

−→
W rB(NrB) =

←−
R lB(NlB) ∩−→

R rB(NrB) = {N∗B}, it follows that there exists(ρ∗, u∗)
satisfying

u∗ = ul −
∫ ρ∗

ρl

√

pρ + k2l ρ

ρ
dρ, (10)

u∗ = ur +

∫ ρ∗

ρr

√

pρ + k2rρ

ρ
dρ, (11)

wherekl =
Bl

ρl
and kr = Br

ρr
.

Denote

f1(ρ1) =































ul −
∫ ρ1

ρl

√
pρ+k2

l
ρ

ρ
dρ,

(ρ ≤ ρl),

ul −
√

ρ1−ρl

ρ1ρl
(p1 +

1
2k

2
l ρ

2
1 − pl − 1

2k
2
l ρ

2
l ),

(ρ > ρl),
(12)

f2(ρ2) =































ur +
∫ ρ2

ρr

√
pρ+k2

rρ

ρ
dρ,

(ρ ≤ ρr),

ur +
√

ρ2−ρr

ρ2ρr
(p2 +

1
2k

2
rρ

2
2 − pr − 1

2k
2
rρ

2
r),

(ρ > ρr),
(13)

g1(ρ1) = p1 +
1

2
k2l ρ

2
1, (14)

g2(ρ2) = p2 +
1

2
k2rρ

2
2. (15)

We consider the following problem

{

f1(ρ1) = f2(ρ2),

g1(ρ1) = g2(ρ2),
(16)

and prove that it has a unique solution, which shows that
there exists a unique contact discontinuityJ joining the two

states which are respectively located on
−→←−
R and

−→←−
S (Fig 1).

From [17], it follows thatf1(ρ1) and f2(ρ2) are both
smooth functions, and the curveρ2 = ρ2(ρ1) defined by
f1(ρ1) = f2(ρ2) is monotonically decreasing, while the
curveρ2 = ρ2(ρ1) defined byg1(ρ1) = g2(ρ2) is monotoni-
cally increasing. Thus, the uniqueness of the solution of (16)
is obtained. Now we consider the existence of the solution
of (16).
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−→
RrB

←−
R lB

−→
S rB

←−
S lB

Elementary waves
Fig 1 The Elementary waves in the(ρ, u) plane.

Form (10) and (11) we getf1(ρ∗) = f2(ρ∗), we discuss
as follows.

Case 1.kl = kr. It is equivalent tog1(ρ∗) = g2(ρ∗). It
is obvious thatρ1 = ρ2 = ρ∗ is the solution of (16). Thus,
the Riemann solution is

←−
R +

−→
R , here the symbol“ + ”

means “followed by”. We observe that for this case there is
no contact discontinuity.

- -

66

(r)

(∗)

−→
RrB

(l)
←−
S lB

←−
R lB

−→
S rB

ρ

u

(r)

(l)

ρ̂2ρ̂1 ρ̂3

−→
S rB

←−
S lB

−→
RrB

←−
R lB

(∗)

ρ

u

Subcase 2.1
Fig 2 ur ≥ f1(0)

Subcase 2.2
Fig 3 ur < f1(0)

p

p

p

p

p

p

ur

f1(0)

f1(0)

ur

Case 2.kl > kr. It is equivalent tog1(ρ∗) > g2(ρ∗). So
we should look for solution in{(ρ1, ρ2) : ρ1 < ρ∗, ρ2 >

ρ∗}.
Subcase 2.1ur ≥ f1(0). (Fig 2)
There existsρ̂1 such thatf1(0) = f2(ρ̂1), whereρ∗ <

ρ̂1 < ρr.
Sinceg1(0) < g2(ρ̂1) and the curvesf1(ρ1), f2(ρ2) are

smooth, from the method of continuity, there exists(ρ̄1, ρ̄2)
satisfying0 < ρ̄1 < ρ∗, ρ∗ < ρ̄2 < ρ̂1 such thatf1(ρ̄1) =
f2(ρ̄2) and g1(ρ̄1) = g2(ρ̄2). Thus,(ρ̄1, ρ̄2) is the solution
of (16). It follows that the Riemann solution is given by
←−
R +

<

J +
−→
R .

Subcase 2.2ur < f1(0). (Fig 3)
There existŝρ2 andρ̂3 satisfyingf1(ρ̂2) = ur andf1(0) =

f2(ρ̂3), respectively, where0 < ρ̂2 < ρ∗ and ρ̂3 > ρr.
Subcase 2.2.1g2(ρr) < g1(ρ̂2). Since g1(ρ̂3) > g1(0)

and the curvesf1(ρ1), f2(ρ2) are smooth, from the method
of continuity, there exists(ρ̄1, ρ̄2) : 0 < ρ̄1 < ρ̂2, ρr <

ρ̄2 < ρ̂3 such thatf1(ρ̄1) = f2(ρ̄2) and g1(ρ̄1) = g2(ρ̄2).
Thus,(ρ̄1, ρ̄2) is the solution of (16). The Riemann solution

is
←−
R +

<

J +
−→
S .

Subcase 2.2.2g2(ρr) ≥ g1(ρ̂2). Similarly, we know that
there exists(ρ̄1, ρ̄2) : ρ̂2 < ρ̄1 < ρ∗, ρ∗ < ρ̄2 < ρr such
that f1(ρ̄1) = f2(ρ̄2) and g1(ρ̄1) = g2(ρ̄2). The Riemann

solution is
←−
R +

<

J +
−→
R .

Case 3.kl < kr. It is equivalent tog1(ρ∗) < g2(ρ∗). So
we should look for solution in{(ρ1, ρ2) : ρ1 > ρ∗, ρ2 <

ρ∗}.

6

-

6

-

u

ρ

u

ρ

f2(0)

ul (l)

(r)

ρ̂4

−→
RrB

−→
S rB

←−
R lB

←−
S lB

(∗)

←−
R lB

←−
S lB

−→
RrB

−→
S rB

(∗)

(r)

(l)ul

ρ̂5 ρ̂6

f2(0)

Fig 4 ul ≤ f2(0)

Subcase 3.1
Fig 5 ul > f2(0)

Subcase 3.2

Subcase 3.1ul ≤ f2(0). (Fig 4)
It is obvious that there existŝρ4 such thatf1(ρ̂4) = f2(0),

whereρ∗ < ρ̂4 < ρl. Similar discussions as above, we obtain
(ρ̄1, ρ̄2) : ρ∗ < ρ̄1 < ρ̂4, 0 < ρ̄2 < ρ∗. It follows that the

Riemann solution is
←−
R +

>

J +
−→
R .

Subcase 3.2ul > f2(0). (Fig 5) There exist respectively
ρ̂5 such thatf2(ρ̂5) = ul, where0 < ρ̂5 < ρ∗, and ρ̂6 such
that f1(ρ̂6) = f2(0), whereρ̂6 > ρl.

Subcase 3.2.1g1(ρl) ≥ g2(ρ̂5). Similarly, we know that
there exists(ρ̄1, ρ̄2) : ρ∗ < ρ̄1 < ρl, ρ̂5 < ρ̄2 < ρ∗ such
that f1(ρ̄1) = f2(ρ̄2) and g1(ρ̄1) = g2(ρ̄2). The Riemann

solution is
←−
R +

>

J +
−→
R .

Subcase 3.2.2g1(ρl) < g2(ρ̂5). Similarly, we know that
there exists(ρ̄1, ρ̄2) : ρl < ρ̄1 < ρ̂6, 0 < ρ̄2 < ρ̂5 such
that f1(ρ̄1) = f2(ρ̄2) and g1(ρ̄1) = g2(ρ̄2). The Riemann

solution is
←−
S +

>

J +
−→
R .

Based on the above results, we have the following result.
Theorem 2.1There exists uniquely solution for the Riemann
problem (4) with the initial values (5).

III. WAVE INTERACTIONS OF THE ELEMENTARY WAVES

Now we consider the wave interactions of the elementary
waves obtained from the Riemann problem (4) and (5). In
order to solve the initial value problem (4) and (6), we divide
our discussions into the following five cases: the collision
of the two shock waves

−→
S
←−
S , and the wave interactions

containing rarefaction wave
−→
R

>

J ,
−→
R

<

J ,
−→
R
←−
R and

−→
R
←−
S .

In [17], we studied the wave interaction between the shock
wave and the contact discontinuity, in this paper for the
case which containing the shock wave, we just consider the
collision of the two shock waves.

Case (i) The collision of the two shock waves
−→
S
←−
S .

Similar discussions with Lemma 3.3.7. in [11], we have
the following result and the proof is omitted for simplicity.

Lemma 3.1 Suppose the pointN2 ∈
−→←−
RB(N1) ∪

−→←−
S B(N1),

then the curve
−→←−
S B(N1) does not intersects with

−→←−
S B(N2) on

the side whereρ increases while
−→←−
RB(N1) does not intersects

with
−→←−
RB(N2) on the side whereρ decreases.

It is easy to see that
−→
S will intersect with

←−
S in a finite

time and a new Riemann problem is formed. From Lemma
3.1., we have

←−
S B(Nl) does not intersect with

←−
S B(Nm)

and
−→
S B(Nr) does not intersect with

−→
S B(Nm), respectively.

Thus we haveN∗ ∈
←−
S B(Nl) ∪

−→
S B(Nr) (Fig 6 and Fig 7)

and discuss as follows.
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−→
S

←−
S

x

t

-

6
u

ρ

Fig 6 Collision of
−→
S and

←−
S .

−→
S and

←−
S

Fig 7 Wave interaction in(ρ, u).

Wave interaction

(m)

(l)

(r)

(∗)

−→
S mB

←−
S mB

←−
R lB

←−
S lB

−→
RrB

−→
S rB

p

p

p

p

Case 1. kl < kr. It is equivalent tog1(ρ∗) < g2(ρ∗)
and we should seek a solution in{(ρ̄1, ρ̄2)|ρ̄1 > ρ∗, 0 <

ρ̄2 < ρ∗}. It is obvious that there exist respectivelỹρ1 and
ρ̃2 which satisfy thatur = u←−

S lB
(ρ̃1), ρ∗ < ρ̃1 < ρ̃2 and

u−→
RrB

(0) = u←−
S lB

(ρ̃2), ρ∗ < ρ̃1 < ρ̃2.
Subcase 1.1.g1(ρ̃1) ≥ g2(ρr). From the continuity of the

wave curves, it follows that there exists a point(ρ̄1, ρ̄2) such
thatρ∗ < ρ̄1 < ρ̃1, ρr < ρ̄2 < ρ∗, and the solution is shown

by
−→
S
←−
S →←−S

>

J
−→
S .

Subcase 1.2.g1(ρ̃1) < g2(ρr). Similarly, there exists a
point (ρ̄1, ρ̄2) satisfyingρ̃1 < ρ̄1 < ρ̃2 and0 < ρ̄2 < ρr and

the solution is expressed by
−→
S
←−
S →←−S

>

J
−→
R .

Case 2. kl = kr. It is equivalent tog1(ρ∗) = g2(ρ∗)
and there is no contact discontinuity of the new Riemann
solution, the stateNl is connected to the stateNr by the state

N∗ directly and we know the solution is given by
−→
S

>

J →←−
S
−→
S .
Case 3.kl > kr. It is equivalent tog1(ρ∗) > g2(ρ∗) and

we should seek solution in{(ρ̄1, ρ̄2)|0 < ρ̄1 < ρ∗, ρ̄2 >

ρ∗}. There exist respectivelỹρ3 and ρ̃4 which satisfy that
ul = u−→

S rB
(ρ̃3) andu←−

R lB
(0) = u−→

S rB
(ρ̃4), ρ∗ < ρ̃3 < ρ̃4.

Subcase 3.1.g1(ρ̃3) ≥ g2(ρl). From the continuity of
the wave curves, it follows that there exists a point(ρ̄1, ρ̄2)
satisfyingρl < ρ̄1 < ρ∗, ρ∗ < ρ̄2 < ρ̃3, and the solution is

shown by
−→
S
←−
S →←−S

<

J
−→
S .

Subcase 3.2.g1(ρ̃3) < g2(ρl). There exists a point(ρ̄1, ρ̄2)
which satisfies0 < ρ̄1 < ρl and ρ̃3 < ρ̄2 < ρ̃4 and we know

that the solution is given by
−→
S
←−
S →←−R

<

J
−→
S .

Theorem 3.1 When a forward shock collides with a
backward shock, the forward (backward) shock will cross
immediately the backward (forward) shock, or a new forward
(backward) rarefaction wave will appear. Furthermore, the
contact discontinuity may appear or not after the wave
interaction.
In what follows, because there is a penetration process in
the interaction, we can not obtain the global solution by
solving the new Riemann problem like the above discussions.
However, the local solution of the new Riemann problem is
still important for investigating the global solution which can
be used to construct the approximate solution by Glimm’s
scheme and to describe the asymptotic behavior of the
solution whent → ∞ [11]. Next we investigate the wave
interactions containing the rarefaction wave.

Case (ii) The interaction of the rarefaction wave with

the contact discontinuity
−→
R

>

J .

Since
−→
R rB(Nr) : u = ur +

∫ ρ

ρr

√
pρ+k2

rρ

ρ
dρ, ρ < ρr,

−→
RmB(Nm) : u = um +

∫ ρ

ρm

√
pρ+k2

mρ

ρ
dρ, ρ < ρm,

pm +
k2

mρ2

m

2 = pr +
k2

mρ2

m

2 , um = ur and ρm > ρr. From

Lemma 3.1., we know that the curve
−→
R rB(Nr) lies always

above the curve
−→
RmB(Nm). Thus, there are two possible

cases:
←−
R lB(Nl) intersects with

−→
R rB(Nr) at N∗B where a

new Riemann problem is formed, or
←−
R lB(Nl) intersects with−→

S rB(Nr) atN∗B where a new Riemann problem is formed.
Case 1.ρ̃1 ≥ ρr, whereρ̃1 satisfiesur = u←−

R lB
(ρ̃1) which

shows that
←−
R lB(Nl) intersects with

−→
S rB(Nr) at N∗B (Fig

8 and Fig 9).
Subcase 1.1.kl = kr, that isg1(ρ∗) = g2(ρ∗). There is no

contact discontinuity of the new Riemann solution for this

case and the solution is expressed by
−→
R

>

J →←−R−→S .
Subcase 1.2.kl > kr, we know thatg1(ρ∗) > g2(ρ∗). In

this case, we should seek the solution in{(ρ̄1, ρ̄2)|0 < ρ̄1 <

ρ∗, ρ̄2 > ρ∗}. It follows that there exists a point(ρ̄1, ρ̄2)
which satisfies0 < ρ̄1 < ρ∗, ρ∗ < ρ̄2 and the solution is

given by
−→
R

>

J →←−R
<

J
−→
S .

Subcase 1.3.kl < kr, we get thatg1(ρ∗) < g2(ρ∗). In
this case, we should look for the solution in{(ρ̄1, ρ̄2)|ρ̄1 >

ρ∗, 0 < ρ̄2 < ρ∗}. Due toul < ur, we divide our discussions
into the following two subcases.

Subcase 1.3.1.u−→
RrB

(0) < ul < ur.
If g2(ρr) ≤ g1(ρ̃1), from the continuity we obtain that

there exists a point(ρ̄1, ρ̄2) satisfyingρ∗ < ρ̄1 < ρ̃1 and

ρr < ρ̄2 < ρ∗. Thus, the solution is described by
−→
R

>

J →
←−
R

>

J
−→
S .

If g2(ρr) > g1(ρ̃1) and g1(ρl) ≥ g2(ρ̃2), where ρ̃2 is
determined byul = u−→

RrB
(ρ̃2). Thus, there exists a point

(ρ̄1, ρ̄2) which satisfiesρ∗ < ρ̃1 < ρ̄1 < ρl and ρ̃2 < ρ̄2 <

ρr < ρ∗, and we know that the solution is given by
−→
R

>

J →
←−
R

>

J
−→
R .

If g2(ρr) > g1(ρ̃1) and g1(ρl) < g2(ρ̃2), it is obvious
that g1(ρ̃3) > g2(0), where ρ̃3 > ρl satisfiesu−→

RrB
(0) =

u←−
S lB

(ρ̃3). Therefore there exists a point(ρ̄1, ρ̄2) satisfying
ρ∗ < ρl < ρ̄1 < ρ̃3 and0 < ρ̄2 < ρ̃2 < ρ∗ and the solution

is expressed by
−→
R

>

J →←−S
>

J
−→
R .

6

-
ρ

u

Fig 8 Interaction of
−→
R and

>

J .

−→
R and

>

J
Fig 9 ρ̃1 ≥ ρr .

ρ̃1 ≥ ρr .

-

6

(l) (m) (r)

−ε ε x

t

−→
R

>

J

ρ̃1

(l)

(m)(r)

(∗)

−→
RmB

>

J

←−
R lB

←−
S lB

−→
RrB

−→
S rB

p

pp

p

Subcase 1.3.2.ul < u−→
RrB

(0) < ur.
Obviously there exists a point̃ρ4 < ρl such that

u−→
RrB

(0) = u←−
R lB

(ρ̃4).
If g1(ρ̃1) ≥ g2(ρr), there exists a point(ρ̄1, ρ̄2) satisfying

ρ∗ < ρ̄1 < ρ̃1 and ρr < ρ̄2 < ρ∗, thus the solution is
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expressed by
−→
R

>

J →←−R
>

J
−→
S .

If g1(ρ̃1) < g2(ρr), from g1(ρ̃4) > g2(0) and the
continuity, there exists a point(ρ̄1, ρ̄2) which satisfiesρ∗ <
ρ̃1 < ρ̄1 < ρ̃4 < ρl and0 < ρ̄2 < ρr < ρ∗ which shows that

the solution is given by
−→
R

>

J →←−R
>

J
−→
R .

Case 2. ρ̃1 < ρr, for this case it follows that
←−
R lB(Nl)

intersects with
−→
R rB(Nr) at N∗B (Fig 10).

Subcase 2.1.kl = kr.
Since g1(ρ∗) = g2(ρ∗), we know that the solution is
−→
R

>

J → ←−
R
−→
R . Note that for this case there is no contact

discontinuity.
Subcase 2.2.kl > kr. In this case,g1(ρ∗) > g2(ρ∗) and we
should seek the solution in{(ρ̄1, ρ̄2)|0 ≤ ρ̄1 < ρ∗, ρ̄2 > ρ∗}.
There are two possible cases as follows.

6

-
ρ

u

Fig 10 The interaction of
−→
R and

>

J , ρ̃1 < ρr .

ρ̃1 < ρr

ρ̃1

(l)

(m)
(r)

(∗) −→
RmB

>

J

←−
R lB

←−
S lB

−→
RrB

−→
S rB

p

pp

p

Subcase 2.2.1.ur ≥ f1(0).
There exists ρ̃5 ∈ (ρ∗, ρr) such that u←−

R lB
(0) =

u−→
RrB

(ρ̃5) and g1(0) < g2(ρ̃5). It follows that there exists
(ρ̄1, ρ̄2) : 0 < ρ̄1 < ρ∗, ρ∗ < ρ̄2 < ρ̃5 and the solution is
−→
R

>

J →←−R
<

J
−→
R .

Subcase 2.2.2.ur < f1(0).
If g2(ρr) ≥ g1(ρ̃5), we know that there exists a point
(ρ̄1, ρ̄2) : ρ̃1 ≤ ρ̄1 < ρ∗, ρ∗ < ρ̄2 < ρr and the solution is

given by
−→
R

>

J →←−R
<

J
−→
R .

If g2(ρr) < g1(ρ̃5), we obtain a point(ρ̄1, ρ̄2) : 0 < ρ̄1 <

ρ̃1 < ρ∗, ρ∗ < ρr < ρ̄2, and the solution is expressed by
−→
R

>

J →←−R
<

J
−→
S .

Subcase 2.3.kl < kr. That is to sayg1(ρ∗) < g2(ρ∗) and
we should look for the solution in{(ρ̄1, ρ̄2)|ρ̄1 > ρ∗, 0 <

ρ̄2 < ρ∗}.
Subcase 2.3.1.ul ≤ f2(0).

Obviously there exists a point̃ρ6 ∈ (ρ∗, ρl) such that
u←−
R lB

(ρ̃6) = u−→
RrB

(0) and g1(ρ̃6) > g2(0). We know there
exists a point(ρ̄1, ρ̄2) : ρ∗ < ρ̄1 < ρ̃6, 0 < ρ̄2 < ρ∗ and

the solution is
−→
R

>

J →←−R
>

J
−→
R .

Subcase 2.3.2.ul > f2(0).
Since there exists a point̃ρ7 ∈ (0, ρ∗) such thatul =

u−→
RrB

(ρ̃7), then it follows that
if g1(ρl) ≥ g2(ρ̃7), there exists a point(ρ̄1, ρ̄2) : ρ∗ < ρ̄1 <

ρl, ρ̃7 ≤ ρ̄2 < ρ∗ and the solution is given by as follows
−→
R

>

J →←−R
>

J
−→
R ;

if g1(ρl) < g2(ρ̃7), since there exists a point(ρ̄1, ρ̄2) : ρl <

ρ̄1, 0 < ρ̄2 < ρ̃7 < ρ∗, and we get the solution is
−→
R

>

J →
←−
S

>

J
−→
R .

Notice that the wave interaction between
<

J and
←−
R can be

studied similarly and omitted for simplicity.

Theorem 3.2 When a rarefaction wave collides with a
contact discontinuity which is of a jump decrease in density,
we observe that the rarefaction wave in the local solution
of the initial value problem (4) and (6) continues to move
forward in its propagating direction or a new shock wave
will appear. Meanwhile, a new rarefaction wave (or shock
wave) propagating in the opposite direction will appear.
Furthermore, the contact discontinuity may appear or not
after the wave interaction.

Case (iii) The interaction of the rarefaction wave with

the contact discontinuity
−→
R

<

J .
It is easy to see thatul < um = ur andρm < ρr. Similarly

with the discussions in Case (i) of this section, we know that
the curve

−→
RmB(Nm) lies always above the curve

−→
R rB(Nr)

and the curve
←−
S lB(Nl) intersects with

−→
R rB(Nr) at the point

N∗B (Fig 11 and Fig 12).
Subcase 1.kl = kr.

It holds thatg1(ρ∗) = g2(ρ∗) which shows that there is
no contact discontinuity, and we obtain the solution is given

by
−→
R

<

J →←−S−→R .
Subcase 2.kl < kr. In this case, we knowg1(ρ∗) < g2(ρ∗)
and should look for the solution in{(ρ̄1, ρ̄2)|ρ̄1 > ρ∗, 0 <

ρ̄2 < ρ∗}. We define ρ̃1 which satisfiesu−→
RrB

(0) =

u←−
S lB

(ρ̃1). Thus, there exists a point(ρ̄1, ρ̄2) : ρ∗ < ρ̄1 <

ρ̃1, 0 < ρ̄2 < ρ∗ and the solution is
−→
R

<

J →←−S
>

J
−→
R .

Subcase 3.kl > kr. In this case, we know thatg1(ρ∗) >

g2(ρ∗) and should look for the solution in{(ρ̄1, ρ̄2)|0 <

ρ̄1 < ρ∗, ρ̄2 > ρ∗}. There are two possible cases as follows.
Subcase 3.1.ul < ur < u←−

R lB
(0). Since there exists

respectively ρ̃2 ∈ (0, ρl) and ρ̃3 ∈ (ρ∗, ρr) such that
ur = u←−

R lB
(ρ̃2) andul = u−→

RrB
(ρ̃3).

If g1(ρl) ≤ g2(ρ̃3), similar discussions with the above, there
exists a point(ρ̄1, ρ̄2) : ρl ≤ ρ̄1 < ρ∗, ρ∗ ≤ ρ̄2 ≤ ρ̃3 and

the solution is
−→
R

<

J →←−S
<

J
−→
R .

If g1(ρl) > g2(ρ̃3) andg2(ρr) ≥ g1(ρ̃2), there exists a point
(ρ̄1, ρ̄2) : ρ̃2 < ρ̄1 ≤ ρl, ρ̃3 < ρ̄2 < ρr, we get the solution

is
−→
R

<

J →←−R
<

J
−→
R .

If g1(ρl) > g2(ρ̃3) and g2(ρr) < g1(ρ̃2), since there exists
a point (ρ̄1, ρ̄2) : 0 < ρ̄1 < ρ̃2, ρ̄2 > ρr, we obtain the

solution is given by
−→
R

<

J →←−R
<

J
−→
S .

6

-
ρ

u

Fig 11 Interaction of
−→
R and

<

J .

−→
R and

<

J

Fig 12 Wave interaction(ρ, u).
Wave interaction

-
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(l) (m) (r)

−ε ε x

t

−→
R

<

J (l)

(m) (r)

−→
RrB

−→
RmB

−→
S rB

←−
R lB

←−
S lB (∗)

p

p p

p

Subcase 3.2.ul < u←−
R lB

(0) < ur. Define respectively
ρ̃4 > ρ∗ and ρ̃4 < ρ̃5 < ρr such thatul = u−→

RrB
(ρ̃4) and

u←−
R lB

(0) = u−→
RrB

(ρ̃5).
Subcase 3.2.1.g1(ρl) ≤ g2(ρ̃4). There exists(ρ̄1, ρ̄2) : ρl <

ρ̄1 < ρ∗, ρ∗ < ρ̄2 < ρ̃4 and the solution is
−→
R

<

J →←−S
<

J
−→
R .

Subcase 3.2.2.g1(ρl) > g2(ρ̃4). In view of g2(ρ̃5) > g1(0),
we get that there exists(ρ̄1, ρ̄2) : 0 < ρ̄1 < ρl < ρ∗, ρ∗ <
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ρ̃4 < ρ̄2 ≤ ρ̃5 < ρr and the solution is expressed by
−→
R

<

J →
←−
R

<

J
−→
R .

The wave interaction between
>

J and
←−
R can be studied

similarly and omitted for simplicity.
Theorem 3.3 When a rarefaction wave collides with a

contact discontinuity which is of a jump increase in density,
we obtain that the rarefaction wave in the local solution
of the initial value problem (4) and (6) continues to move
forward in its propagating direction or a new shock wave
will appear. Meanwhile, a new rarefaction wave (or shock
wave) propagating in the opposite direction will appear.
Furthermore, the contact discontinuity may appear or not
after the wave interaction .

Case (iv) The collision of the two rarefaction waves−→
R
←−
R .
In this case, it hold thatul < um and um < ur.

Similar with Case (i) of this section, we obtain that the curve−→
R rB(Nr) lies always above the curve

−→
RmB(Nm) and the

curve
←−
RmB(Nm) lies always above the curve

←−
R lB(Nl). It

yields that
←−
R lB(Nl) intersects with

−→
R rB(Nr) atN∗B where

a new Riemann problem is formed (Fig 13 and Fig 14). In
order to obtain the solution of the new Riemann problem,
we discuss as follows.
Subcase 1.kl = kr.

It holds that g1(ρ∗) = g2(ρ∗) and there is no contact
discontinuity. Thus, we obtain the solution is

−→
R
←−
R →←−R−→R .

6

- ρ

u

Fig 13 Collision of
−→
R and

←−
R .

−→
R and

←−
R

Fig 14 Wave interaction in(ρ, u).
Wave interaction

-
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R
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Subcase 2.kl > kr. In this case, we knowg1(ρ∗) > g2(ρ∗)
and should seek the solution in{(ρ̄1, ρ̄2)|0 < ρ̄1 < ρ∗, ρ̄2 >

ρ∗}. There are two possible cases as follows.
Subcase 2.1.ur ≥ f1(0). We can defineρ̃1 such that
u−→
RrB

(ρ̃1) = f1(0). Thus, there exists a point(ρ̄1, ρ̄2) : 0 <

ρ̄1 < ρ∗, ρ∗ < ρ̄2 < ρ̃1 and the solution is expressed by
−→
R
←−
R →←−R

<

J
−→
R .

Subcase 2.2.ur < f1(0). There exists0 < ρ̃2 < ρ∗ such
that u←−

R lB
(ρ̃2) = ur.

Subcase 2.2.1.g2(ρr) ≥ g1(ρ̃2). There exists a point
(ρ̄1, ρ̄2) : ρ̃2 < ρ̄1 < ρ∗, ρ∗ < ρ̄2 < ρr and we get

that the solution is
−→
R
←−
R →←−R

<

J
−→
R .

Subcase 2.2.2.g2(ρr) < g1(ρ̃2). There exists a point
(ρ̄1, ρ̄2) : 0 < ρ̄1 < ρ̃2 < ρ∗, ρ̄2 > ρr > ρ∗ and the

solution is
−→
R
←−
R →←−R

<

J
−→
S .

Subcase 3.kl < kr. In this case, we haveg1(ρ∗) < g2(ρ∗)
and should seek the solution in{(ρ̄1, ρ̄2)|ρ̄1 > ρ∗, 0 < ρ̄2 <

ρ∗}. There are two possible cases as follows.
Subcase 3.1.ul ≤ f2(0).

It is obvious that there exist̃ρ3 ∈ (ρ∗, ρl) such that
u←−
R lB

(ρ̃3) = u−→
RrB

(0), andul = u−→
RrB

(ρ̃4), respectively.

Due to g1(ρ̃3) > g2(0), we get the solution is given by
−→
R
←−
R →←−R

>

J
−→
R .

Subcase 3.2.ul > f2(0). There are two possible cases as
follows.
Subcase 3.2.1.g1(ρl) ≥ g2(ρ̃4), similarly there exists a point
(ρ̄1, ρ̄2) : ρ∗ < ρ̄1 < ρl, ρ̃4 ≤ ρ̄2 < ρ∗ and we obtain that

the solution is
−→
R
←−
R →←−R

>

J
−→
R .

Subcase 3.2.2.g1(ρl) < g2(ρ̃4), since there exists a point
(ρ̄1, ρ̄2) : ρl < ρ̄1 < ρ̃5, 0 < ρ̄2 < ρ̃4, whereρ̃5 satisfies
u←−
S lB

(ρ̃5) = u−→
RrB

(0), and we get the solution is
−→
R
←−
R →

←−
S

>

J
−→
R .

Theorem 3.4 When a forward rarefaction wave collides
with a backward rarefaction wave, we find that the forward
(backward) rarefaction wave in the local solution of the initial
value problem (4) and (6) continues to move forward in its
propagating direction or a new forward (backward) shock
wave will appear. Furthermore, the contact discontinuity may
appear or not after the wave interaction.

Case (v) The collision of the rarefaction wave and the
shock wave

−→
R
←−
S .

Since the curve
−→
RmB(Nm) lies always above the curve−→

R rB(Nr) and the curve
←−
S mB(Nm) lies always above

the curve
←−
S lB(Nl). It yields that

←−
S lB(Nl) intersects with−→

R rB(Nr) at N∗B where a new Riemann problem is formed
(Fig 15 and Fig 16). We discuss the construction of the
solution of the new Riemann problem as follows.

Subcase 1.kl = kr. We knowg1(ρ∗) = g2(ρ∗) and there
is no contact discontinuity. Thus, the solution is given by−→
R
←−
S →←−S−→R .
Subcase 2.kl < kr. This shows thatg1(ρ∗) < g2(ρ∗).

Since there exists(ρ̄1, ρ̄2) : ρ∗ < ρ̄1 < ρ̃1, 0 < ρ̄2 < ρ∗
where ρ̃1 > ρ∗ satisfiesu−→

RrB
(0) = u←−

S lB
(ρ̃1). It follows

that the solution is given by
−→
R
←−
S →←−S

>

J
−→
R .

6
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u

Fig 15 Interaction of
−→
R and

←−
S .

−→
R and

←−
S

Fig 16 Wave interaction in(ρ, u).
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Subcase 3.kl > kr. This means thatg1(ρ∗) > g2(ρ∗).
There are three possible cases as follows.

Subcase 3.1.ul ≥ ur. It is shown that there exists̃ρ2 such
that ur = u←−

S lB
(ρ̃2).

If g2(pr) ≥ g1(ρ̃2), since there exists(ρ̄1, ρ̄2) : ρ̃2 < ρ̄1 <

ρ∗, ρ∗ < ρ̄2 < ρr, the solution is shown by
−→
R
←−
S →←−S

<

J
−→
R .

If g2(pr) < g1(ρ̃2) and g1(ρl) < g2(ρ̃3), whereρ̃3 > ρr
satisfiesul = u−→

RrB
(ρ̃3). Since there exists(ρ̄1, ρ̄2) : ρl <

ρ̄1 < ρ̃2, ρr < ρ̄2 < ρ̃3, the solution is given by
−→
R
←−
S →

←−
S

<

J
−→
S .

If g2(pr) < g1(ρ̃2) andg1(ρl) ≥ g2(ρ̃3), since there exists
(ρ̄1, ρ̄2) : 0 < ρ̄1 < ρl, ρ̄2 > ρ̃3. Thus, the result is

−→
R
←−
S →

←−
R

<

J
−→
S .
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Subcase 3.2.ul < ur < u←−
R lB

(0). There existρ̃4 ∈
(ρ∗, ρr) and p̃5 ∈ (0, ρl) satisfies respectively thatul =
u−→
RrB

(ρ̃4) andur = u←−
R lB

(ρ̃5).
If g1(ρl) < g2(ρ̃4), since there exists(ρ̄1, ρ̄2) : ρl < ρ̄1 <

ρ∗, ρ∗ < ρ̄2 < ρ̃4, we obtain that the solution is given by
−→
R
←−
S →←−S

<

J
−→
R .

If g1(ρl) ≥ g2(ρ̃4) andg2(ρr) ≥ g1(ρ̃5), since there exists
(ρ̄1, ρ̄2) : ρ̃5 < ρ̄1 < ρl, ρ̃4 < ρ̄2 < ρr, we get that the

solution is expressed by
−→
R
←−
S →←−R

<

J
−→
R .

If g1(ρl) ≥ g2(ρ̃4) andg2(ρr) < g1(ρ̃5), since there exists
(ρ̄1, ρ̄2) : 0 < ρ̄1 < ρ̃5, ρr < ρ̄2 < ρ̃6, where ρ̃6 satisfies
u←−
R lB

(0) = u−→
S rB

(ρ̃6). Therefore, we obtain that the solution

is given by
−→
R
←−
S →←−R

<

J
−→
S .

Subcase 3.3.ul < u←−
R lB

(0) < ur. There exist respectively
ρ̃7 ∈ (ρ∗, ρr) andρ̃8 ∈ (ρ̃7, ρr) satisfies thatul = u−→

RrB
(ρ̃7)

andu←−
R lB

(0) = u−→
RrB

(ρ̃8).
Subcase 3.3.1.g1(ρl) < g2(ρ̃7). There exists a point

(ρ̄1, ρ̄2) which satisfiesρl < ρ̄1 < ρ∗, ρ∗ < ρ̄2 < ρ̃7 < ρr

and it follows that the solution is given by
−→
R
←−
S →←−S

<

J
−→
R .

Subcase 3.3.2.g1(ρl) ≥ g2(ρ̃7). Since there exists a point
(ρ̄1, ρ̄2) such that0 < ρ̄1 < ρl, ρ̃7 < ρ̄2 < ρ̃8 < ρr, we

know that the solution is shown by
−→
R
←−
S →←−R

<

J
−→
R .

The wave interaction between
−→
S and

←−
R can be investi-

gated similarly and omitted for simplicity.
Theorem 3.5 When a rarefaction wave collides with a

shock wave, we obtain that the rarefaction wave in the local
solution of the initial value problem (4) and (6) continues
to move forward in its propagating direction or a new shock
wave will appear. Meanwhile, the shock wave continues to
move forward in its propagating direction or a new rarefac-
tion wave will appear. Furthermore, the contact discontinuity
may appear or not after the wave interaction.

IV. CONCLUSION

We have finished the wave interactions of the elementary
waves and observe that the wave interactions of Magne-
togasdynamics system (4) are more complicated than that
of the conventional gas dynamics. The projection of the
contact discontinuity on the phase plane(ρ, u) which is a
straight line parallel to theρ-axis, while the projection of
the contact discontinuity for the conventional gas dynamics
on the phase plane(ρ, u) which is just a point. Based on the
above discussions, we obtain the following main result.

Theorem 4.1 There exists uniquely the solution of the
initial value problem (4) with the initial data (6).

we have finished the discussions for all kinds of wave
interactions. It is important to study the interactions of
elementary waves for system (4) not only because of their
significance in practical applications in Magnetogasdynamics
system such as comparison with the numerical and experi-
mental results, but also because of their basic role as building
blocks for the theory of Magnetogasdynamics.

While the system (4) is one-dimensional idealized sim-
plified system, in our next works we will consider the
high dimensional corresponding system which reveals the
deep mechanism of the Magnetogasdynamics system. In our
coming works, we also would like to study the above problem
from the numerical calculation point of view and investigate
the Magnetogasdynamics system furthermore.
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