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Abstract— An MX/G/1 G-queue with single vacation, setup
times and working breakdown is analyzed in this paper. In a
normal busy period, the positive customer being served is taken
away by the negative customer who arrives. And the system
malfunctioned by reason of the arrival of negative customers.
During the repair time, the server is maintained without stop-
ping the service. If the system is not idle at the end of the repair
or the vacation, the system starts a new busy period. Otherwise,
the system turns off. And the system starts the setup when
the positive customers arrive. By applying the matrix-analytic
theory, the probability generating functions(PGF) for queue
length are obtained. The key performance indicators about the
system are also expatiated. In addition, the sensitivity analysis
and cost analysis of the queueing model are demonstrated by
numerical examples.

Index Terms—working breakdown, setup times, G-queue,
embedded Markov chain, supplementary variable method.

I. INTRODUCTION

THE queueing system with negative customers was
proposed by Erol et al. [1] in 1991, which is called G-

queues. Usually, the negative customer removes an ordinary
customer (called positive customer) and causes the equip-
ment break down. Negative customers have been explained
as synchronous signals virus on external system in the
communication. For instance, the intrusive computer viruses
can leads the file system astray and causes damage to the
operation of the computer. Based on the notion of G-queues,
Harrison et al. [2] built the reliability model of the M/M/1
queue and obtained PGF for queue length. In recent years,
Xu et al. [3] discussed an M/M/1 G-queues with working
vacation. Combined G-queue with retrial model, Yang et al.
[4] established an MX/G/1 unreliable model and analyzed
it by the state transfer analyses. Refer to Zhang and Liu
[5], Vijayashree and Anjuka [6] and Rajadurai et al. [7] for
the complete understanding of the queueing systems with
negative customers.

The unreliable model has used in many applications
such as telecommunication market, computer industry and
manufacturing system. The queues with server breakdown
are characterized by the server stopping the service under
the repair period. In 2012, Kalidass and Kasturi [8] first
introduced working breakdown strategy, where the failed
system provides service at relatively low rate. Kim and
Lee [9] applied working breakdown in a M/M/1 system
and investigated the probabilistic property about this system.
Rajadurai [10] investigated an retrial queue with working
breakdowns and working vacations. The sensitivity analysis
was carried out on main parameters of the model. Li and
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Zhang [11] presented an retrial G-queue with working break-
downs, and they derived the steady-state solutions based on
the matrix calculation. Gao et al. [12] introduced a new
sort of discrete-time queue with working breakdowns, where
the substitute server is available to work when the primary
server goes wrong. Considered the concept of reliability
cost, Yang and Chen [13] constructed a cost model of an
working breakdown queue. They also gave the measurement
interpretation of the system performance. The queueing
model with working breakdown has been widely studied and
the relevant conclusions of which can be referred to Jiang
and Liu [14], Liu and Song [15], Li and Zhang [16], and
many others.

The queueing system with setup time is applied widely
in production area, such as preventive maintenance of the
production line and the check-in counters close before the
customer arrives and so on. Considered the widespread use
of queueing models in many practical life, Choudhury [17]
worked out the MX/X/1 queues with setup times, where
the server turns off if the system becomes empty. In addition,
the server starts the set-up before it works during each
busy period. Zhou et al. [18] considered the single working
vacation G-queue with setup times and derived the PGF of
queue length.

As far as the author knows, there are many researches
on various queueing models, but none on the queueing
model of MX/G/1 with working breakdown and setup
times. In the production system, the standby machine with
a slower service rate will replace the machine when the
machine suddenly fails. And the machines are maintained
preventively to reduce the cost before starting new pro-
duction. While the server is temporarily unavailable for
service, the machine can take a vacation to reduce resource
consumption. So motivated by above situations, we analyze
an MX/G/1 G-queue with single vacation, setup times
and working breakdown. The introduced queueing model
has certain application value for production system with the
machine replacement strategy.

This paper has six parts. The remaining five sections
are expatiated as following. With the requisite assumptions,
Section II gives a detailed explanation of this model. In
Section III, the stability condition is obtained by establishing
and analyzing transition probability matrix. The stationary
distribution of the system is worked out in SectionIV. The
performance analysis is also presented. In Section V, the
sensitivity and cost optimization of the model are studied
numerically. In the end, Section VI draws conclusions.
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II. DESCRIPTION OF THE QUEUEING MODEL

The details of an MX/G/1 G-queue with single vacation,
setup times and working breakdown are described here.
1) The customer input process. There are positive customers
and negative customers in this system. The arrive process of
positive customers in batches is a compound Possion pro-
cess. The rate of this process is λ1 and the batch size X is a
random variable. The distribution of X is P (Y = m) = pm,

m=1,2,. . . and the PGF of Y is p(z) =
∞∑
k=1

pkz
k. The primary

and secondly moments of Y are expressed as E[Y ] = p′(1)

and E[Y (Y − 1)] = p′′(1). The arrival process of negative
customers is a Possion process with parameter λ2.
2) The single vacation process. In a normal busy period,
if the system becomes idle after a service completion and
no negative customers arrive during the service period, the
server takes a single vacation. The distribution function of
the vacation time U is U(x) = 1 − exp{−

∫ x
0
u(t)dt}. In

addition, the server turns off if the system becomes idle at a
vacation completion instant. Otherwise, the server boots into
it’s normal working period and works at a normal service
rate.
3) The setup process. The service of the first positive
customer must take a setup time from the turned-off server,
when the setup time is over, the system will start to work.
The setup time H has a distribution function H(x) =

1− exp{−
∫ x

0
h(t)dt}.

4) Service process during the normal busy period. The
distribution function of the normal service time S1 is
S1 (x) = 1−exp{−

∫ x
0
µ1(t)dt}, Laplace-Stieltjes transform

(LST) is
∼
S1 (s) and nth moments αn, n ≥ 1. Obviously,

α1 = E (S1)
∆
= 1/µ1.

5) The breakdown rule and repair process. When the server is
in a normal working state, the positive customer who served
is taken away and the server is down if a negative customer
arrives. The negative customer will disappear automatically
if it arrives during other period. A repair procedure starts
immediately when the server fails. If the system has no
customer after the repair is completed, the server takes
vacation. Otherwise, it starts a new normal busy period.
The repair time R obeys the exponential distribution with
parameter r.
6) The working breakdown process. In a working breakdown
period, the service rate of the server decreased from µ1

to µ2 and the lower service time S2 has a distribution
function S2 (x) = 1 − exp{−

∫ x
0
µ2(t)dt}, LST

∼
S2 (s) and

nth moments ηn, n ≥ 1. And η1 = E (S2)
∆
= 1/µ2.

We assume that the variables are referred in this paper are
independent. Other assumptions are S1 (x), S2 (x), V (x),
H (x) are continuous at x = 0 and take the value of 0 at x =

0, and all of these functions have a value of 1 at x =∞. For
any of the distribution function G (x) in this paper, we define
that the LST of G (x) is G̃ (s) =

∫∞
0
e−sxdG (x). We also

denote Ḡ (x) = 1 − G (x) and Ḡ∗ (s) =
∫∞

0
e−sxḠ(x)dx,

so, we have Ḡ∗(s) = 1−G̃(s)
s .

The number of positive customers in the queueing system
and state of the server at time t are presented by N (t) and

J (t), respectively. At time t, define

J (t) =



0, the system is in a vacation state,

1, the system is in a setup or turn

off state,

2, the system is in a regular work

state,

3, the server is in a working breakdown

state.

At time t ≥ 0, the random variable ϕ (t) is defined as :

ϕ (t) =


the elapsed vacation time, J(t) = 0,

the elapsed setup time, J(t) = 1,

the elapsed normal service time, J(t) = 2,

the elapsed lower service time, J(t) = 3.

So X (t) = {J (t) , N (t) , ϕ (t) , t ≥ 0} is a Markov process,
and the state space is {(1, 0)}∪{(3, 0)}∪{(0, 0, x) , x ≥ 0}∪
{(j, k, x) , j = 0, 1, 2, 3, k ≥ 1, x ≥ 0}.

Make {tn, n = 1, 2, 3 · · ·} for a time series at which a
vacation or a service or setup is complete or a breakdown
occurs. Define Yn = {J (t+n ) , N (t+n )}. Clearly, the serial of
stochastic variables {Yn;n ≥ 1} is an embedded MC and
the state space is {(0, 0)} ∪ {(1, 0)} ∪ {(2, n) , n ≥ 1} ∪
{(3, n) , n ≥ 0}.

III. STABLE CONDITION AND STATIONARY

DISTRIBUTION

We first define the following probability for the transition
matrix of {Yn;n ≥ 1}.
a) Define

bk =
k∑
i=0

p
(i)
k

∫ ∞
0

(λ1x)
i

i!
e−λ1xeλ2xdS1 (x) , k ≥ 0,

p
(i)
k is the probability of k positive customers arrive in i

batches and is the i-fold convolution of pk. We assume
p

(0)
0 = 1. So, {bk; k ≥ 0} is the probability of k positive

customers arrive without negative customers arrive during
S1. As know from the calculation,

B (z)
∆
=
∞∑
k=0

bkz
k = S̃1 [λ1 [1− p(z)] + λ2] ,

B (1) = S̃1 (λ2) , B′ (1) = λ1p
′(1)

∫ ∞
0

xe−λ2xdS1 (x),

B′′ (1) = λ1p
′′(1)

∫ ∞
0

xe−λ2xdS1 (x)

+ [λ1p
′(1)]

2
∫ ∞

0

x2e−λ2xdS1 (x).

b) Define

dk =

k∑
i=0

p
(i)
k

∫ ∞
0

(λ1x)
i

i!
e−λ1xλ2e

−λ2x [1− S1 (x)] dx,

where k ≥ 0. Thus, {dk; k ≥ 0} is the probability of
negative customers arrival results in incomplete service and
k positive customers arrive in the mean time. As know from
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the calculation,

D (z)
∆
=
∞∑
k=0

dkz
k =

λ2

λ1 [1− p(z)] + λ2
[1−B (z)],

D (1) = 1−B (1) , D′ (1) =
λ1p
′(1)

λ2
D(1)−B′ (1) ,

D′′ (1) =
2 [λ1p

′(1)]
2

+ λ1λ2p
′′(1)

(λ2)
2 [1−B(1)]

− 2λ1p
′(1)

λ2
B′ (1)−B′′ (1) .

c) Define

ck =
k∑
i=0

p
(i)
k

∫ ∞
0

(λ1x)
i

i!
e−λ1xe−rxdS2 (x) , k ≥ 0.

Hence, {ck; k ≥ 0} is the probability of R ≥ S2 and k

positive customers arrive during S2. We have

C (z)
∆
=
∞∑
k=0

ckz
k = S̃2 [λ1 [1− p(z)] + r],

C (1) = S̃2 (r) , C ′ (1) = λ1p
′(1)

∫ ∞
0

xe−rxdS2 (x),

C ′′ (1) = [λ1p
′(1)]

2
∫ ∞

0

x2e−rxdS2 (x)

+ λ1p
′′(1)

∫ ∞
0

xe−rxdS2 (x).

d) Define

qk =
k∑
i=0

p
(i)
k

∫ ∞
0

(λ1x)
i

i!
e−λ1xre−rx [1− S2 (x)] dx,

where k ≥ 0. Thus, {qk; k ≥ 0} is the probability of R ≤ S2

and k positive customers arrive during R. We get

Q (z)
∆
=
∞∑
k=0

qkz
k =

r

λ1 [1− p(z)] + r
[1− C (z)],

Q (1) = 1− C (1) , Q′ (1) =
λ1p
′(1)

r
Q(1)− C ′ (1) ,

Q′′ (1) =
λ1rp

′′(1) + 2 [λ1p
′(1)]

2

r2
Q(1)

− 2λ1p
′(1)

r
C ′ (1)− C ′′ (1) .

e) Define

uk =
k∑
i=0

p
(i)
k

∫ ∞
0

(λ1x)
i

i!
e−λ1xdU (x) , k ≥ 0.

Then, {uk; k ≥ 0} is the probability that there are k positive
customers arriving in U . It is easy to know

U (z)
∆
=
∞∑
k=0

ukz
k = Ũ [λ1 [1− p(z)]],

U (1) = 1, U ′ (1) = λ1p
′(1)

∫ ∞
0

xdU(x),

U ′′ (1) = [λ1p
′(1)]

2
∫ ∞

0

x2dU (x)

+ λ1p
′′(1)

∫ ∞
0

xdU(x).

f) Define

hk =
k∑
i=0

p
(i)
k

∫ ∞
0

(λ1x)
i

i!
e−λ1xdH (x) , k ≥ 0.

Then, {hk; k ≥ 0} is the probability of k positive customers
arrive in H . It is know from the calculation,

H (z)
∆
=
∞∑
k=0

hkz
k = H̃ [λ1 [1− p(z)]],

H (1) = 1, H ′ (1) = λ1p
′(1)

∫ ∞
0

xdH(x),

H ′′ (1) = [λ1p
′(1)]

2
∫ ∞

0

x2dH (x)

+ λ1p
′′(1)

∫ ∞
0

xdH(x).

g) Define

lk =
k∑
i=0

qibk−i, k ≥ 0.

Hence, {lk; k ≥ 0} is the probability that R ≤ S2 and in the
meantime there are k positive customers during R plus S1.
It is known from the analysis,

L (z)
∆
=
∞∑
k=0

lkz
k = Q (z)B (z) , L (1) = Q (1)B (1) ,

L′ (1) = Q′ (1)B (1) +Q (1)A′ (1) ,

L′′ (1) = Q′′ (1)B (1) + 2Q′ (1)B′ (1) +Q (1)B′′ (1) .

h) Define

mk =
k∑
i=0

qidk−i, k ≥ 0.

Then {mk; k ≥ 0} is the probability of R ≤ S2 and the
negative customer arrival result in incomplete the new started
service, and there are k positive customers arrive in this
period. It is easy to know that,

M (z)
∆
=

∞∑
k=0

mkz
k = Q (z)D (z) ,M (1) = Q (1)D (1) ,

M ′ (1) = Q′ (1)D (1) +Q (1)D′ (1) ,

M ′′ (1) = Q′′ (1)D (1) + 2Q′ (1)D′ (1) +Q (1)D′′ (1) .

According to the lexicographical sequence, we represent
the transition probability matrix of MC in the following
block-Jacobi matrix.

P =


W0 W1 W2 W3 · · ·
A00 A1 A2 A3 · · ·

A0 A1 A2 · · ·
. . . . . .

...

 ,

where

W0 =

 0 u0 0

0 0 0
λ1p1
λ1+r l0

r
λ1+ru0

λ1p1
λ1+r (c0 +m0)

,

A00 =

(
b0 0 d0

l0 0 c0 +m0

)
,
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Ak =

(
bk dk

lk ck +mk

)
, k ≥ 0,

Wk =


uk 0

k∑
i=1

pihk−i 0

ωk1 ωk2

, k ≥ 1,

and

ωk1 =
r

λ1 + r
uk +

k+1∑
i=1

λ1pi
λ1 + r

lk−i+1,

ωk2 =
k+1∑
i=1

λ1pi
λ1 + r

(ck−i+1 +mk−i+1).

Let e0 = (1, 1)T , e = (1, 1, 1)T , it is easy to prove that

A00e+
∞∑
k=1

Ake0 = e0,

W0e+
∞∑
k=1

Wke0 = e,

∞∑
k=0

Ake0 = e0.

Theorem 1. The sufficient and necessary condition of the
embedded MC {Yn;n ≥ 1} is ergodic is(

λ1

λ2
+
λ1

r

)
· [1− S̃1(λ1)][1− S̃r(r)]p′(1)

1− S̃r(λ2)S̃2(r)
< 1.

Proof: It can easily check that MC {Yn;n ≥ 1} is an
unreduced and non-periodic Markov chain. Therefore we just
have to prove the sufficient and necessary condition that this
MC is an positive recurrent chain is that(

λ1

λ2
+
λ1

r

)
· p
′(1)[1− S̃1(λ2)][1− S̃2(r)]

1− S̃1(λ2)S̃2(r)
< 1.

Denote

A =
∞∑
k=0

Ak =

(
B(1) D(1)

L(1) C(1) +M(1)

)
,

then A is a degenerative stochastic matrix.
Let τ = (τ1, τ2) is the invariant probability vector of A, we
can get

τ1 =
L(1)

L (1) +D(1)
, τ2 =

D (1)

L (1) +D(1)
.

The vector η is denoted by η =
∞∑
k=0

kAke0. Thus η is

explicitly given by

η =

 λ1p
′(1)
λ2

[
1− S̃1(λ2)

][
λ1p

′(1)
r + λ1p

′(1)
λ2

[
1− S̃1(λ2)

]]
·
[
1− S̃2(r)

]  .

It is obvious from Neuts [19] that the sufficient and
necessary condition that {Yn;n ≥ 1} is positive recurrent
is

τη < 1⇔
(
λ1

λ2
+
λ1

r

)
p′(1)[S̃1(λ2)− 1][S̃2(r)− 1]

1− S̃1(λ2)S̃2(r)
< 1.

And with the Burke’s theorem [20], the sufficient and nec-

essary condition for Markov process X (t) have the steady
state probabilities is

(
λ1

λ2
+ λ1

r

)
· [S̃1(λ2)−1][S̃2(r)−1]p′(1)

1−S̃1(λ2)S̃2(r)
< 1

holds.
The limiting probabilities and limiting probability densi-

ties are defined as:

P1,0 = lim
t→∞

P (J (t) = 1, N (t) = 0),

P3,0 = lim
t→∞

P (J (t) = 3, N (t) = 0),

P0,k (x) dx = lim
t→∞

P (J (t) = 0, N (t) = k,

x ≤ ϕ (t) < x+ dx), k ≥ 0,

Pj,k (x) dx = lim
t→∞

P (J (t) = j,N (t) = k,

x ≤ ϕ (t) < x+ dx), k ≥ 1, j = 1, 2, 3.

IV. STEADY STATE ANALYSIS

First we give the following equilibrium equations of the
queueing system.

λ1P1,0 = rP3,0 +

∫ ∞
0

P0,0 (x)u(x)dx, (1)

(λ1 + r)P3,0 = λ2

∫ ∞
0

P2,1(x)dx+

∫ ∞
0

P3,1(x)µ2(x)dx,

(2)
dP0,k (x)

dx
= − [λ1 + u(x)]P0,k (x)

+ (1− δk,0)
k∑
i=1

λ1piP0,k−i (x) , k ≥ 0, (3)

dP1,k (x)

dx
= − [λ1 + h(x)]P1,k (x)

+ (1− δk,1)
k−1∑
i=1

λ1piP1,k−i (x) , k ≥ 1, (4)

dP2,k (x)

dx
= − [λ1 + λ2 + µ1(x)]P2,k (x)

+ (1− δk,1)
k−1∑
i=1

λ1piP2,k−i (x) , k ≥ 1, (5)

dP3,k (x)

dx
= − [λ1 + r + µ2(x)]P3,k (x)

+ (1− δk,1)
k−1∑
i=1

λ1piP3,k−i (x) , k ≥ 1, (6)

where δk,0 and δk,1 are the kronecker delta.
Then we give the boundary conditions.

P0,k (0) = P0,0(0) =

∫ ∞
0

P2,1 (x)µ1(x)dx, k ≥ 0, (7)

P1,k(0) = λ1pkP1,0, k ≥ 1, (8)

P2,k(0) =

∫ ∞
0

P2,k+1(x)µ1(x)dx+ r

∫ ∞
0

P3,k(x)dx

+

∫ ∞
0

P0,k(x)u(x)dx+

∫ ∞
0

P1,k(x)h(x)dx, k ≥ 1,

(9)

P3,k(0) = λ2

∫ ∞
0

P2,k+1(x)dx+

∫ ∞
0

P3,k+1(x)µ2(x)dx

+ λ1pkP3,0, k ≥ 1, (10)
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Finally we get the normalization condition.

P1,0 + P3,0 +
∞∑
k=0

∫ ∞
0

P0,k (x) dx+
3∑
j=1

∞∑
k=1

Pj,k (x) dx

= 1. (11)

According to the generating functions

Pj (x, z) =
∞∑
k=a

Pj,k (x) zk, j = 0, a = 0; j = 1, 2, 3, a = 1.

Based on (3)-(6), we can deduce that

P0 (x, z) = e−[λ1[1−p(z)]]x · [1− U(x)]P0 (0, z) , (12)

P1 (x, z) = e−[λ1[1−p(z)]]x · [1−H(x)]P1 (0, z) , (13)

P2 (x, z) = e−[λ1[1−p(z)]+λ2]x · [1− S1(x)]P2 (0, z) , (14)

P3 (x, z) = e−[λ1[1−p(z)]+r]x · [1− S2(x)]P3 (0, z) . (15)

By (1), (2), (7)-(10), after some computations, we can have

λ1P1,0 = rP3,0 + U(0)P0,0(0), (16)

(λ1 + r)P3,0 = D(0)P2,1(0) + C(0)P3,1(0), (17)

P0(0, z) = B(0)P2,1(0) = P0,0(0), (18)

P1(0, z) = λ1P1,0p(z), (19)

P2(0, z) =
P1,0f1(z) + P3,0f2(z)

g(z)
, (20)

P3(0, z) = P1,0f3(z) + P3,0f4(z), (21)

where

g (z) , [B(z)− z] · [C(z)− z]− zQ(z)D(z),

f1(z) ,
λ1 [z − C(z)]

U(0)
· zU(0) [p(z)H(z)− 1]

+
λ1 [C(z)− z]

U(0)
· [1− zU(z)],

f2(z) ,
r

U(0)
· [C(z)− z] [zU(z)− zU(0)− 1]

+ zQ(z) [λ1[zp(z)− 1]− r] ,

f3(z) ,
D(z)f1(z)

[z − C(z)]g(z)
,

f4(z) ,
D(z)f2(z) + g(z) [λ1[zp(z)− 1]− r]

[z − C(z)]g(z)
.

Before we calculate Pj(0, z), j = 0, 1, 2, 3, we give the
following lemma to analyze the roots of g(z) = 0 when
z ∈ (0, 1).

Lemma 1. In the interval (0, 1), the equation g(z) = 0 has
a root z = δ if

(
λ1

λ2
+ λ1

r

)
· [1−S̃1(λ2)][1−S̃2(r)]p′(1)

1−S̃1(λ2)S̃2(r)
< 1.

Proof: Denote f0(z) = z − C(z) and we have

f0(0) < 0, f0(1) > 0.

Moreover, for any 0 < z < 1, we know analytically that

f ′0(z) = 1− C ′(z), f ′′0 (z) = −C ′′(z),

which shows in the interval (0, 1), f0(z) is a convex func-
tion. Then f0(0) < 0 and f0(1) > 0 mean f0(z) has the
unique root z = γ when z ∈ (0, 1).

Clearly, g(0) = D(0)C(0) > 0, and

g(γ) = [γ −B(γ)][γ − C(γ)]− γQ(γ)D(γ) < 0,

which mean that g(z) = 0 has the root z = δ when z ∈
(0, 1).
Then, plug z = δ in (20) and we get f1(δ)P1,0+f2(δ)P3,0 =

0.
Thus, we have

P0(0, z) =
λ1f2(δ) + rf1(δ)

U(0)f2(δ)
P1,0, (22)

P1(0, z) = λ1p(z)P1,0, (23)

P2(0, z) =
f2(δ)f1(z)− f1(δ)f2(z)

f2(δ)g(z)
P1,0, (24)

P3(0, z) =
f2(δ)f3(z)− f1(δ)f4(z)

f2(δ)
P1,0. (25)

Next we need to introduce the following lemma before find
P1,0, and we omit the proof of this.

Lemma 2.

g(1) = 0, f1(1) = 0, f2(1) = 0,

g′(1) = 1−B(1)C(1)−
[
λ1p
′(1)

λ2
+
λ1p
′(1)

r

]
D(1)Q(1),

g′′(1) = 2[1−B′(1)][1− C ′(1)]− 2Q′(1)D′(1)

−Q(1) [B′′(1) + 2D′(1) +D′′(1)]

−D(1) [C ′′(1) + 2Q′(1) +Q′′(1)] ,

f ′1(1) =
λ1Q(1)

U(0)
[1 + U ′(1) + U(0)[p′(1) +H ′(1)]] ,

f ′′1 (1) =
λ1Q(1)

U(0)
[2U ′(1) + U ′′(1)] + 2λ1U(0)p′(1)

+ λ1U(0) [2H ′(1) + p′′(1) +H ′′(1) + 2p′(1)H ′(1)]

+
2λ1[1− C ′(1)]

U(0)
[1 + U ′(1) + U(0)[p′(1) +H ′(1)]] ,

f ′2(1) = r[1− C ′(1)−Q′(1)] + λ1Q(1) [p′(1) + 1]

− rQ(1)[1 + U ′(1)]

U(0)
,

f ′′2 (1) = λ1[Q(1) +Q′(1)][p′(1) + 1] + p′′(1) + 2p′(1)

+
2r

U(0)
[C ′(1)− 1][1− U(0) + U ′(1)]

− r[2Q′(1) +Q′′(1) + C ′′(1)],

f3(1) =
D(1)f ′1(1)

Q(1)g′(1)
, f4(1) =

D(1)f ′2(1)− rg′(1)

Q(1)g′(1)
,

f ′3(1) = g′(1)Q(1)[2D′(1)f ′1(1) +D(1)f ′′1 (1)]

−D(1)f ′1(1) [2g′(1)[1− C ′(1)] +Q(1)g′′(1)] ,

f ′4(1) =
D(1)f ′′2 (1)− rg′′(1) + 2g′(1)[λ1 + λ1p

′(1)]

2Q(1)g′(1)

− [D(1)H ′2(1)− rg′(1)][2g′(1)[1− C ′(1)]]

(g′(1)Q(1))2

− [D(1)H ′2(1)− rg′(1)]Q(1)g′′(1)

(Q(1)g′(1))2
.

By definition of the marginal generating functions
Φj(z) =

∫∞
0
Pj(x, z)dx, j = 0, 1, 2, 3. Plug(22)-(25)

into (12)-(15), respectively. Then the following theorem is
obtained by calculation.
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Theorem 2.

Φ0(z) =

∫ ∞
0

P0(x, z)dx = P1,0·

λ1f2(δ) + rf1(δ)

U(0)f2(δ)
V ∗ [1[1− p(z)]] ,

Φ1(z) =

∫ ∞
0

P1(x, z)dx = λ1p(z)H
∗ [λ1[1− p(z)]]P1,0,

Φ2(z) =

∫ ∞
0

P2(x, z)dx = P1,0·

f1(z)f2(δ)− f2(z)f1(δ)

g(z)f2(δ)
S∗1 [λ1[1− p(z)] + λ2] ,

Φ3(z) =

∫ ∞
0

P3(x, z)dx = P1,0·

f3(z)f2(δ)− f4(z)f1(δ)

f2(δ)
S∗2 [λ2[1− p(z)] + r] .

Based on the normalization condition

P1,0 + P3,0 +
3∑
j=0

Φj(1) = 1.

P1,0 is calculated by

P1,0 =

[
∆0 + ∆1 + ∆2 + ∆3 +

f2(δ)− f1(δ)

f2(δ)

]−1

,

where

∆0 =
U ′(1)

λ1p′(1)

λ1f2(δ) + rf1(δ)

U(0)f2(δ)
,

∆1 =
H ′(1)p(1)

p′(1)
,

∆2 =
D(1)[f ′1(1)f2(δ)− f ′2(1)f1(δ)]

λ2f2(δ)g′(1)
,

∆3 =
Q(1)[f3(1)f2(δ)− f1(δ)f4(1)]

rf2(δ)
.

Apparently, PGF for queue length is

Φ(z) = P1,0 + P3,0 +
3∑
j=0

Φj(z).

The probability of the server in the vacation state is

Pu = Φ0(1) = ∆0P1,0.

The probability of the server in the normal busy state is

P1 = Φ2(1) = ∆2P1,0.

The probability of the server is in a turn off or setup period
is

Ph = P1,0 + Φ1(1) = (1 + ∆1)P1,0.

The probability of the server in a working breakdown state
is

P2 = P3,0 + Φ3(1) =

[
∆3 −

f1(δ)

f2(δ)

]
P1,0.

E[Lj ] is defined as the average number of positive cus-
tomers when the system is in state j, j = 0, 1, 2, 3. Based
on Theorem 2, it can be calculated easily that

E[L0] = lim
z→1

Φ
′

0(z) = ε0P1,0,

E[L1] = lim
z→1

Φ
′

1(z) = ε1P1,0,

E[L2] = lim
z→1

Φ
′

2(z) = ε2P1,0,

E[L3] = lim
z→1

Φ
′

3(z) = ε3P1,0.

where

ε0 =
[p′(1)U ′′(1)− p′′(1)U ′(1)][λ1f2(δ) + rf1(δ)]

2λ1U(0)f2(δ)[p′(1)]2
,

ε1 =
H ′(1)p′(1) + p′(1) +H ′(1)

2p′(1)
+
p′′(1)[1− 2H ′(1)]

2[p′(1)]2
,

ε2 =
D(1)[f ′1(1)f2(δ)− f ′2(1)f1(δ)]

2λ2f1(δ)[g′(1)]2
· [g′(1)f2(δ)g′′(1)]

− D(1)[f2(δ)f ′1(1)− f ′2(1)f1(δ)]

2λ2f1(δ)[g′(1)]2
· [2g′′(1) + 2g′(1)]

+
D′(1)f2(δ)[f2(δ)f ′1(1)− f ′2(1)f1(δ)]

λ2f1(δ)

+
D′(1)g′(1)[f2(δ)f ′1(1)− f ′2(1)f1(δ)]

2λ2f1(δ)[g′(1)]2
,

ε3 =
1

rf2(δ)
{Q′(1)[f2(δ)f3(1)− f1(δ)f4(1)]}

+
1

rf2(δ)
{Q(1)[f2(δ)f ′3(1)− f1(δ)f ′4(1)]}.

Hence, the mean system length (E[L]) can be get by means
of

E[L] = lim
z→1

Φ′(z) = E[L0] +
3∑
j=0

E[Lj ].

Define E[W ] as the expected sojourn time of a positive
customer. And it is easy to obtain that E[W ] = E[L]

λ1
by

the Little’s formula.

V. NUMERICAL RESULTS

We discuss the effect of operating parameters on E[L]

by analyzing numerical examples. It is assumed that S1(x),
S2(x), U(x), H(x) and R(x) obey exponential distribution
with parameter µ1, µ2, θ, h and r, respectively. Moreover,
we assume that the distribution function of the arrival batch
size Y is P (Y = k) = p(1 − p)k−1. Clearly, p′(1) = 1/p

and p′′(1) = 2(1− p)/p2.
Under the stable condition λ1r+λ1λ2 < p(λ1 +µ1)(r+

µ2)−µ1µ2, the values of some parameters in the model are
chosen as λ1 = 1.4, λ2 = 1, θ = 2, p = 0.8, r = 0.5, µ1 =

6, µ2 = 1, h = 2, unless they are selected as independent
variables in numerical analysis.

A. Sensitivity Analysis

Fig.1 indicates that E[L] will become bigger with the
increase of negative customer input rate λ2 when the value
of r is constant. The reason for this trend is that the system
enters the repair mode when the server fails due to the arrival
of negative customer. In addition, the rate of service during a
working breakdown period is lower than the normal service
rate. Fig.1 also shows the influence of r on E[L]. It reflects
that the increase of r reduces the value of E[L], this is
because that the expected repair time is 1/r.

Engineering Letters, 28:4, EL_28_4_16

Volume 28, Issue 4: December 2020

 
______________________________________________________________________________________ 



2.2 2.4 2.6 2.8 3 3.2

6
2

60

80

100

120

140

160

180

E
[L

]

r=0.5
r=0.6
r=0.7
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Fig. 3: The effect of µ1 on E[L].(different p)

Fig.2 presents E[L] versus µ2 for different r, it illustrates
that the bigger the value of µ2 is, the smaller the mean
system length E[L] is. It will be sent to repair immediately
if the server fails. And the expected repair time is 1/r.
Therefore, from Fig.2, the increase of r causes the value
of E[L] to decrease. It also reflects that the influence degree
of r on E(L) gets smaller as µ2 gets larger.

Fig.3 reveals the trend of E[L] with respect to µ1, it is
fairly easy to see that E[L] decreases with increasing values
of µ1. Furthermore, the smaller the batch size Y is, the
shorter the average queue length is, that is, E[L] decreases
as p increases.

B. Cost Analysis

Cost minimization has a very important theory and prac-
tical value in actual production. Based on the model studied,

we seek the the optimal service rate µ2 that minimizes the
expected cost per unit of time. Before establishing the cost
function, consider the following definitions to represent cost
per unit of time in different situations.
CL: cost for each positive customer present in the system;
Cµ1

: cost for service during a normal service period;
Cµ2

: cost for service during a working breakdown period;
Cθ: cost during a vacation period;
Cr: cost during a repair period;
Ch: cost during a setup or turn off period.
According to the above cost definition and performance

indicators of the system, the expected operating cost function
per unit time can be established as

min
µ2

: f (µ2) = CLE[L] + Cµ1
µ1 + Cµ2

µ2

+ Cθθ + Crr + Chh.
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Fig. 4: The effect of µ2 on the expected cost per unit time.

TABLE I: The Result of the Parabolic Method.

iterations 0 1 2 3

x1 3.000000 3.200000 3.200000 3.200000

x2 3.200000 3.214022 3.207614 3.207576

x3 3.300000 3.300000 3.214022 3.207614

f(x1) 323.870228 322.284346 322.284346 322.284346

f(x2) 322.284346 322.283847 322.282538 322.282537

f(x3) 322.534546 322.534546 322.283847 322.282538

x∗ 3.214022 3.207614 3.207576 3.207558

f(x∗) 322.283847 322.282538 322.282537 322.282537

tolerance 0.014022 0.006407 0.000037 0.000008

Because of the complexity and highly non-linearity of
the above cost function, the parabolic method is used to
solve the optimization problem. Based on the polynomial
approximation theory, the quadratic function has the unique
optimum at 3-point pattern {x1, x2, x3} and it occurs at

x∗ =
1

2

(x2
2 − x2

3)f(x1) + (x2
3 − x2

1)f(x2) + (x2
1 − x2

2)f(x3)

(x2 − x3)f(x1) + (x3 − x1)f(x2) + (x1 − x2)f(x3)
.

Then we assume CL = 40, Cµ1
= 35, Cµ2

= 20, Cθ = 25,
Cr = 25,Ch = 20, and search for the optimal value µ∗r
according to the specific steps of the parabolic method [21].

As can be seen from Fig.4 that the value of the cost
function decreases at first and then increases. So there is an
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optimal value of µ2 that minimizes the cost function. The
process and results of the parabolic method are shown in
Table.1. After three iterations, the results of optimal service
rate and the minimum expected cost per unit of time are
µ∗2 = 3.207558 and f(µ∗2) = 322.282537 respectively when
the error is controlled within ε = 10−5.

VI. CONCLUSION

This paper discusses an MX/G/1 G-queue with single
vacation, setup times and working breakdown. Considering
the practical applications, we present a detailed description
of this model. The steady-state conditions of the system are
derived. Queues generating function is derived by solving the
state transfer equation. In addition, we discuss the various
representative indicators about the model. The effects of
different parameters on the queue length are explained by
means of numerical examples and optimization drawings.
The cost optimization problem of the model is also solved.
Based on this model, we can further study that both working
breakdown and working vacation are introduced into the
MX/G/1 G-queue.
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