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tribute, the weights of the attributes are calculated. Next,
the weighted comprehensive decision matrix is constructed.
Furthermore, the distance between all alternatives and the
positive and negative ideal solution is calculated. The relative
closeness degree function is used to comprehensively sort
the alternatives, and then the optimal decision scheme is
obtained. Finally, an illustrative example for optimization of
investment decision scheme is used to verify its effectiveness
and feasibility.

II. PRELIMINARIES

A. Neutrosophic Set

Definition 1 [23] Let X be a universal space of points (ob-
jects), with a generic element in X denoted by x. A neutro-
sophic set(NS) A ⊂ X is characterized by truth-membership
function TA(x), indeterminacy-membership function IA(x)

and falsity-membership function FA(x), where TA(x), IA(x),
FA(x) are real standard or nonstandard subsets of [−0, 1+],
so that it means TA(x): X→ [−0, 1+], IA(x): X→ [−0, 1+],
FA(x): X→ [−0, 1+].

That is to say, A NS can be expressed as

A =
{[
〈x, TA(x), IA(x), FA(x)〉

]
|x ∈ X

}
The sum of three independent membership degrees TA(x),

IA(x) and FA(x) are related as follows:
−0 ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3+

Definition 2 [24] The complement of a NS A is denoted
by AC and is defined as

TAC (x) = {1+} 	 TA(x), IAC (x) = {1+} 	 IA(x),

FAC (x) = {1+} 	 FA(x)

for all x ∈ X .
Definition 3 [25] A NS A is contained in the other NS

B, A ⊆ B if and only if

inf TA(x) ≤ inf TB(x), supTA(x) ≤ supTB(x),

inf IA(x) ≥ inf IB(x), sup IA(x) ≥ sup IB(x),

inf FA(x) ≥ inf FB(x), supFA(x) ≥ supFB(x)

for all x ∈ X .

B. Single-Valued Neutrosophic Set

Definition 4 [8] Let X be a universal space of points
(objects), with a generic element in X denoted by x. A
single-valued neutrosophic set (SVNS) A ⊂ X is charac-
terized by truth-membership function TA(x), indeterminacy-
membership function IA(x) and falsity-membership function
FA(x). A SVNS can be expressed as

A =
{[
〈x, TA(x), IA(x), FA(x)〉

]
|x ∈ X

}
where TA(x), IA(x), FA(x) are real standard or nonstan-
dard subsets of [0, 1], so that it means TA(x): X→ [0, 1],
IA(x): X→ [0, 1], FA(x): X→ [0, 1], with the condition of
0 ≤ supTA(x)+sup IA(x)+supFA(x) ≤ 3, for all x ∈ X .

When X is continuous, a SVNS A can be written as

A =
∫
X
〈TA(x), IA(x), FA(x)〉/x, x ∈ X;

When X is discrete, a SVNS A can be written as

A =
n∑
i=1

〈TA(xi), IA(xi), FA(xi)〉/xi, xi ∈ X .

Definition 5 [26, 27, 28, 35, 36, 37] Let A and
B be two SVNSs, A = 〈TA(x), IA(x), FA(x)〉, B =
〈TB(x), IB(x), FB(x)〉, then ∀ x ∈ X , λ ∈ R and λ > 0,
there is

(1)A⊕B = 〈TA(x) + TB(x) − TA(x) · TB(x), IA(x) ·
IB(x), FA(x) · FB(x)〉

(2)A⊗B = 〈TA(x) · TB(x), IA(x) + IB(x) − IA(x) ·
IB(x), FA(x) + FB(x) − FA(x) · FB(x)〉

(3)λA = (1− (1− TA(x))
λ, IA(x)

λ, FA(x)
λ)

(4)Aλ = (TA(x)
λ, 1− (1− IA(x))

λ, 1− (1− FA(x))
λ)

theorem 1 Let A = 〈TA(x), IA(x), FA(x)〉, B = 〈TB(x),
IB(x), FB(x)〉 and C = 〈TC(x), IC(x), FC(x)〉 be three
SVNSs, Peng, Wang et al. [28] proposed some properties
as follows:

(1)A⊕B = B⊕A
(2)A⊗B = B⊗A
(3)λ(A⊕B) = λA⊕ λB, λ>0
(4)(A⊗B)λ = Aλ ⊗Bλ, λ>0
(5)λ1A⊕ λ2A = (λ1 + λ2)A, λ1>0, λ2>0
(6)Aλ1 ⊗Aλ2 = Aλ1+λ2 , λ1>0, λ2>0
(7)(A⊕B)⊕ C = A⊕ (B ⊕ C)
(8)(A⊗B)⊗ C = A⊗ (B ⊗ C)
It can be proved that the theorem is valid, and the proof

process is omitted.
Definition 6 [8] Let A and B be two SVNSs, then∀ x ∈ X ,

operations can be defined as follows:
(1)A SVNS A is contained in the other SVNS B, denoted

as A ⊆ B, iff, TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x)
≥ FB(x), for all x ∈ X .

(2)Two SVNSs A and B are equal, denoted as A = B, iff,
A ⊆ B and B ⊆ A, for all x ∈ X .

(3)The complement of a SVNS A is denoted by Ac and is
defined by TAc(x) = FA(x), IAc(x) = 1−IA(x), FAc(x) =
TA(x), for all x ∈ X .

(4)A
⋃

B=〈max(TA(x), TB(x)),min(IA(x), IB(x)),
min(FA(x), FB(x))〉, for all x ∈ X .

(5)A
⋂

B=〈min(TA(x), TB(x)),max(IA(x), IB(x)),
max(FA(x), FB(x))〉, for all x ∈ X .

C. Distance Between Two SVNSs

Majumder [26] and Broumi [29] studied similarity and
entropy measures by incorporating euclidean distances of
neutrosophic sets. In this paper, we extend the concept of
the distance of a SVNS and give the generalized distance
formula of a SVNS.

Definition 7 (Hamming distance) Let A =
n∑
i=1

〈TA(xi),

IA(xi), FA(xi)〉 and B =
n∑
i=1

〈TB(xi), IB(xi), FB(xi)〉 be two

SVNSs for xi ∈ X(i = 1, 2, . . . , n), then the Hamming
distance between two SVNSs A and B can be defined as
follows:

DHamm(A,B) =
n∑
i=1

{|TA(xi)−TB(xi)|

+|IA(xi)−IB(xi)|+|FA(xi)−FB(xi)|}
(1)

and the normalized Hamming distance between two SVNSs
A and B can be defined as follows:
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DN
Hamm(A,B) =

1

3n

n∑
i=1

{|TA(xi)−TB(xi)|

+|IA(xi)−IB(xi)|+|FA(xi)−FB(xi)|}
(2)

where 0 < DN
Hamm(A,B) < 1.

Definition 8 (Euclidean distance) Let A =
n∑
i=1

〈TA(xi),

IA(xi), FA(xi)〉 and B =
n∑
i=1

〈TB(xi), IB(xi), FB(xi)〉 be two

SVNSs for xi ∈ X(i = 1, 2, . . . , n), then the Euclidean
distance between two SVNSs A and B can be defined as
follows:

DEucl(A,B) = {
n∑
i=1

[(TA(xi)−TB(xi))
2

+(IA(xi)−IB(xi))
2+(FA(xi)−FB(xi))

2]} 1
2

(3)

and the normalized Euclidean distance between two SVNSs
A and B can be defined as follows:

DN
Eucl(A,B) = { 1

3n

n∑
i=1

[(TA(xi)−TB(xi))
2

+(IA(xi)−IB(xi))
2+(FA(xi)−FB(xi))

2]} 1
2

(4)
where 0 < DN

Eucl(A,B) < 1.

Definition 9 (Weighted Hamming(Euclidean)distance) Let

A =
n∑
i=1

〈TA(xi), IA(xi), FA(xi)〉 and B =
n∑
i=1

〈TB(xi),

IB(xi), FB(xi)〉 be two SVNSs for xi ∈ X(i = 1, 2, . . . , n),
the weight of xi is wi, then the normalized weighted Ham-
ming distance between two SVNSs A and B can be defined
as follows:

DNW
Hamm(A,B) =

1

3n

n∑
i=1

{ωi[|TA(xi)−TB(xi)|

+|IA(xi)−IB(xi)|+|FA(xi)−FB(xi)|]}
(5)

and the normalized weighted Euclidean distance between
two SVNSs A and B can be defined as follows:

DNW
Eucl(A,B) = { 1

3n

n∑
i=1

{ωi[(TA(xi)−TB(xi))
2

+(IA(xi)−IB(xi))
2+(FA(xi)−FB(xi))

2]}} 1
2

(6)
where 0 < DNW

Hamm(A,B) < 1, 0 < DNW
Eucl(A,B) < 1.

The Hamming distance and Euclidean distance both take
into account truth-membership degree, indeterminacy mem-
bership degree and falsity-membership degree, which can
objectively reflect the distance between two SVNSs. On this
basis, this paper extends the distance formula of two SVNSs
and gives the generalized distance formula of two SVNSs as
follows:

Definition 10 (Generalized distance) Let A=
n∑
i=1

〈TA(xi),

IA(xi), FA(xi)〉 and B =
n∑
i=1

〈TB(xi), IB(xi), FB(xi)〉 be two

SVNSs for xi ∈ X(i = 1, 2, . . . , n), P is any nonzero
positive real number, the weight of xi is wi, then the
generalized distance between two SVNSs A and B can be

defined as follows:

DG
1 (A,B) = {

n∑
i=1

(|TA(xi)−TB(xi)|
p+|IA(xi)−IB(xi)|

p

+|FA(xi)−FB(xi)|
p)}

1
p

(7)

and the generalized normalized distance between two
SVNSs A and B can be defined as follows:

DG
2 (A,B) = { 1

3n

n∑
i=1

(|TA(xi)−TB(xi)|
p

+|IA(xi)−IB(xi)|
p+|FA(xi)−FB(xi)|

p)}
1
p

(8)

and the generalized normalized weighed distance between
two SVNSs A and B can be defined as follows:

DG
3 (A,B) = { 1

3n

n∑
i=1

[ωi(|TA(xi)−TB(xi)|
p

+|IA(xi)−IB(xi)|
p+|FA(xi)−FB(xi)|

p)]}
1
p

(9)

If p = 1, the formula (8) is degraded as formula (2), the
formula (9) is degraded as formula (5). If p = 2, the formula
(8) is degraded as formula (4), the formula (9) is degraded as
formula (6). Considering the weight of elements at the same
time, the distance between two SVNSs can be objectively
reflected , which is closer to the truth value in the actual
decision problem.

The generalized distance formula DG
i (A,B)(i = 1, 2, 3)

of the two SVNSs defined above obviously satisfies the
following distance criterion:

Standard 1 (Non-negativity): DG
i (A,B) ≥ 0

Standard 2 (Polarity): DG
i (A,B) = 0⇔ A = B

Standard 3 (Symmetry): DG
i (A,B) = DG

i (B,A)
Standard 4 (Monotonicity): ifA ⊆ B ⊆ C, then

DG
i (A,C) ≥ max{DG

i (A,B), DG
i (B,C)}

D. Entropy of SVNSs

Entropy [30] is an important research topic in fuzzy set
theory, it is a degree of uncertainty. For entropy of SVNSs,
we should take into account the following three factors: truth-
membership degree, indeterminacy-membership degree and
falsity-membership degree.

Definition 11 Let D = (aij)m×n be a decision matrix, if
Cj(j = 1, 2, . . . , n) be the beneficent attribute, then the deci-
sion matrix remains unchanged. Otherwise, D = (aij)m×n is
standardized as follows to obtain the standard SVN decision
matrix D̃ = (ãij)m×n. Where, if Cj is the beneficent
attribute, ãij = aij . If Cj is the cost attribute, ãij = acij .

Definition 12 Let ãij = 〈α1, α2, α3〉 is a single-valued
neutrosophic number, trigonometric functions are used to
construct the following information entropy measure formu-
la:

E1(ãij) =
1

3(
√
2− 1)

3∑
t=1

(sin
αt − αtc + 1

4
π

+ cos
αt − αtc + 1

4
π − 1)

(10)

E(Cj) =
1

m

m∑
i=1

E1(α̃ij), j = 1, 2, . . . , n. (11)
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In the multi-attribute decision-making problems, the prop-
erties of each alternative are often complex and ambiguous,
different attributes have different degrees of importance in
the decision-making process. Based on the above considera-
tions, according to the lagrange multiplier method, the weight
ωj calculation formula of each attribute Cj can be obtained,
as follows:

ωj =
(E(Cj))

−1

n∑
j=1

(E(Cj))−1

(12)

III. PROBLEM DESCRIPTION

When investors choose enterprises for investment, they
need to consider more and more aspects, such as enterprise
output value index, enterprise sales volume index, environ-
mental pollution index, employees’ education level and so
on. Most of these properties are real numbers, only by
correctly evaluating the investment objectives, we can choose
the appropriate investment objects and maximize the profits.
Before investment, investors will investigate several attribute
values of each enterprise, and then choose the most satisfied
enterprise for investment. In this paper, we assume that
investors want to invest in a business. At this time, we can
choose m enterprises to invest. Before investment, investors
will investigate the n attribute values of each enterprise
and select the most satisfied enterprise for investment. In
a nutshell, let A = {A1, A2, . . . , An} is a finite set of
schemes(n ≥ 2), where Ai represents the ith alternative.
C = {C1, C2, . . . , Cm} is a collection of attributes (m ≥ 2),
where Cj represents the jth attribute. ω = (ω1, ω2, . . . , ωn)

T

is the weight vector of the attribute, where ωj represents the
importance of the attribute Cj and meets the condition of
ωj ≥ 0. Based on the above description, investors who want
to choose the best enterprises from many investments will
analyze the different attributes of different enterprises and
prioritize these schemes according to the known theories, so
as to make the best decision.

IV. TOPSIS METHOD FOR MADM BASED ON SVNSS

TOPSIS [31] is short for Technique for Order Preference
by Similarity to Ideal Solution, this is, a evaluation method
for order preference by similarity to ideal solution, it was
proposed by Hwang C. L and Yoon K in 1981. The solution
principle of TOPSIS is based on the concept of positive and
negative ideal solutions. In other words, in the alternative
scheme, it is found that the solution which is closest to the
positive ideal solution, but not necessarily far away from the
negative ideal solution. Therefore, the concept of closeness
degree is put forward by combining the two indexes. Then,
according to the value of closeness, the alternatives are sorted
and optimized.

In the MADM problem, there are usually decision experts,
alternatives, and scheme attributes. Next, we consider that
there are t experts who choose the best scheme from m
alternatives by analyzing n attributes of m alternatives in
the SVNSs environment. Let A = {A1, A2, . . . , Am} is a
discrete set of alternatives, C = {C1, C2, . . . , Cn} is a set of
attributes, the ratings provided by decision makers describe
the performance of alternative Ai relative to attribute Cj , the

weight of Cj is ωj , ω = {ω1, ω2, . . . , ωn} is a set of weight

vectors, where 0 ≤ ωj ≤ 1,
n∑
j=1

ωj = 1, 1 ≤ j ≤ n. D =

{D1, D2, . . . , Dt} is a set of decision experts, the weight
of each expert is ek, e = {e1, e2, . . . , et} is a set of expert

weights, where 0 ≤ ek ≤ 1,
t∑

k=1

ek = 1. The values related

to the scheme of the MADM problem can be expressed in
the following decision matrix:

D = (dij)m×n =


C1 C2 · · · Cn

A1 d11 d12 · · · d1n
A2 d21 d22 · · · d2n
...

...
... · · ·

...
Am dm1 dm2 · · · dmn

 (13)

In the decision matrix, dij is the attribute value of the
ith scheme under the jth attribute, where dij ≥ 0, i ∈
{1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}.

The following gives the complete TOPSIS method (Figure
1).

Step 1: Determining the weights of decision makers;
In the MADM problem, the optimization of investment

decision scheme is very important. In general, there are t
experts to investigate n attributes of m alternatives and then
give the optimal alternative. Due to the differences in the
knowledge structure and qualification level ofeach decision
maker, the importance of each decision maker should be
rated, which is generally expressed by language variables.
A language variable is a variable whose value is replaced
by a descriptive language. Here, we consider the language
variables in the SVNSs environment, the corresponding rela-
tionship given in reference [32] is adopted, so their decision
rights are treated as the linguistic terms shown in table I.

TABLE I
LINGUISTIC TERMS FOR RATING OF ATTRIBUTES AND DECISION

MAKERS

Linguistic SVNNs
Very good/very important (VG/VI) < 0.90, 0.10, 0.10 >

Good/important (G/I) < 0.80, 0.20, 0.15 >
Fair/medium (F/M) < 0.50, 0.40, 0.45 >

Bad/unimportant (B/UI) < 0.35, 0.60, 0.70 >
Very bad/very unimportant (VB/VUI) < 0.10, 0.80, 0.90 >

The linguistic term along with single-valued neutrosophic
numbers (SVNNs) is defined in Table II to rate n attributes
of m alternatives.

TABLE II
LINGUISTIC TERMS FOR RATING THE CANDIDATES WITH SVNNS

Linguistic terms SVNNs
Extremely good/high (EG/EH) < 1.00, 0.00, 0.00 >

Very good/high (VG/VH) < 0.90, 0.10, 0.05 >
Good/high (G/H) < 0.80, 0.20, 0.15 >

Medium good/high (MG/MH) < 0.65, 0.35, 0.30 >
Medium/fair (M/F) < 0.50, 0.50, 0.45 >

Medium bad/medium law (MB/ML) < 0.35, 0.65, 0.60 >
Bad/law (B/L) < 0.20, 0.75, 0.80 >

Very bad/low (VB/VL) < 0.10, 0.85, 0.90 >
Very very bad/low (VVB/VVL) < 0.05, 0.90, 0.95 >

We assume that the importance of each decision maker
is treated as a linguistic variable, which corresponds to a
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SVNN. Let Ek = 〈Tk, Ik, Fk〉 be a SVNN defined for the
rating of kth decision maker, where Tk is the degree of truth,
Ik is the indeterminacy degree and Fk is the falsity degree.
Of course, we want to know as much information as possible,
the determination part of preference information contained in
indeterminacy degree Ik should also be taken into account,
so that the evaluation is more objective and closer to the
reality. Based on this consideration, the weight of the kth
decision maker can be defined as follows [33]:

ek =
µk
t∑

k=1

µk

=
Tk + Ik · ( Tk

Tk+Fk
)

t∑
k=1

[Tk + Ik · ( Tk

Tk+Fk
)]

t∑
k=1

ek = 1, 0 ≤ ek ≤ 1.

(14)

Then, the weight vector of t decision makers is obtained
as follows:

e = {e1, e2, . . . , et} (15)

Step 2: Constructing the aggregated SVN decision matrix
based on the assessments from each decision maker;

Let Dk = (dkij)m×n is the SVN decision matrix of the
kth decision maker, e = {e1, e2, . . . , et} is the weight vector
for decision makers. In the group decision making process,
all individual evaluations need to consider the weight vector,
so as to generate the NS decision matrix that aggregates the
views of each decision maker. The decision matrix can be
expressed as [34] D = (dij)m×n, where

dij = 〈1−
t∏

k=1

(1− T tij)ek ,
t∏

k=1

(Itij)
ek ,

t∏
k=1

(F tij)
ek〉 (16)

So,

D = (dij)m×n = 〈Tij , Iij , Fij〉m×n =



C1 C2 · · · Cn

A1 〈T11, I11, F11〉 〈T12, I12, F12〉 · · · 〈T1n, I1n, F1n〉
A2 〈T21, I21, F21〉 〈T22, I22, F22〉 · · · 〈T2n, I2n, F2n〉
...

...
... · · ·

...
Am 〈Tm1, Im1, Fm1〉 〈Tm2, Im2, Fm2〉 · · · 〈Tmn, Imn, Fmn〉


(17)

for i = 1, 2, . . . ,m; j = 1, 2, . . . , n.
Step 3: Determining the attribute weights;
In the decision-making process, the decision maker may

think that the attributes in the evaluation scheme are not
equally important, so each decision maker has its own
opinion on the selection of attribute values. Because the
attribute weight is completely unknown, it conforms to the
entropy property of fuzzy theory. Therefore, we use Equ.(11)
and Equ.(12) to determine the weights of n attributes ω =
{ω1, ω2, . . . , ωn}, where ωj is the weight of the nth attribute.

Step 4: Determining the positive ideal scheme and the
negative ideal scheme for SVNSs;

Let J1 is the benefit-type attribute, J2 is the cost-type
attribute, A+ is the positive ideal scheme and A− is the
negative ideal scheme. Then A+ is defined as

A+ = [dw+
1 , dw+

2 , . . . , dw+
n ]

= [〈Tw+
1 , Iw+

1 , Fw+
1 〉, 〈Tw+

2 , Iw+
2 , Fw+

2 〉,
. . . , 〈Tw+

n , Iw+
n , Fw+

n 〉]
(18)

where

Tw+
j = {(max

i
{Tωj

ij } | j ∈ J1), (min
i
{Tωj

ij } | j ∈ J2)}

Iw+
j = {(min

i
{Iωj

ij } | j ∈ J1), (max
i
{Iωj

ij } | j ∈ J2)}

Fw+
j = {(min

i
{Fωj

ij } | j ∈ J1), (max
i
{Fωj

ij } | j ∈ J2)}
(19)

and A− is defined as

A− = [dw−
1 , dw−

2 , . . . , dw−
n ]

= [〈Tw−
1 , Iw−

1 , Fw−
1 〉, 〈Tw−

2 , Iw−
2 , Fw−

2 〉,
. . . , 〈Tw−

n , Iw−
n , Fw−

n 〉]
(20)

where

Tw−
j = {(min

i
{Tωj

ij } | j ∈ J1), (max
i
{Tωj

ij } | j ∈ J2)}

Iw−
j = {(max

i
{Iωj

ij } | j ∈ J1), (min
i
{Iωj

ij } | j ∈ J2)}

Fw−
j = {(max

i
{Fωj

ij } | j ∈ J1), (min
i
{Fωj

ij } | j ∈ J2)}
(21)

Step 5: Calculating the distance of each alternative from
the positive ideal scheme and the negative ideal scheme for
SVNSs;

Let D+
i (d

ωj

ij , d
w+
j ) is the distance measure of each al-

ternative 〈Tωj

ij , I
ωj

ij , F
ωj

ij 〉 from the positive ideal scheme
〈Tw+
j , Iw+

j , Fw+
j 〉 and D−

i (d
ωj

ij , d
w−
j ) is the distance mea-

sure of each alternative 〈Tωj

ij , I
ωj

ij , F
ωj

ij 〉 from the nega-
tive ideal scheme 〈Tw−

j , Iw−
j , Fw−

j 〉. Similar to Equ.(9),
D+
i (d

ωj

ij , d
w+
j ) can be written as

D+
i (d

ωj

ij , d
w+
j ) = { 1

3n

n∑
i=1

[ωi(|T
ωj

ij (xj)− Tw+
j (xj)|p

+ |Iωj

ij (xj)− I
w+
j (xj)|p + |F

ωj

ij (xj)− Fw+
j (xj)|p)]}

1
p

(22)
Similarly, D−

i (d
ωj

ij , d
w−
j ) can be written as

D−
i (d

ωj

ij , d
w−
j ) = { 1

3n

n∑
i=1

[ωi(|T
ωj

ij (xj)− Tw−
j (xj)|p

+ |Iωj

ij (xj)− I
w−
j (xj)|p + |F

ωj

ij (xj)− Fw−
j (xj)|p)]}

1
p

(23)
By changing the value of positive number p, the accuracy

of operation can be adjusted, but the final result will not be
affected.

Step 6: Calculating the relative closeness coefficient;
The relative closeness coefficient of each alternative Ai

relative to positive ideal scheme A+ is defined as follows:

C∗
i =

D−
i (d

ωj

ij , d
w−
j )

D+
i (d

ωj

ij , d
w+
j ) +D−

i (d
ωj

ij , d
w−
j )

(24)

where 0 ≤ C∗
i ≤ 1.

Step 7: Ranking the alternatives;
According to the relative closeness coefficient values, we

can sort the schemes and find out the best scheme.
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Fig. 1. TOPSIS method

V. PRACTICAL EXAMPLE

We assume that an e-commerce enterprise decides to
cooperate with a third-party logistics service provider to
carry out its logistics distribution business, after the prelim-
inary investigation, there are four logistics service providers
(A1, A2, A3, A4) that can choose from the qualified alterna-
tives, four decision makers (DM1, DM2, DM3, DM4) are
hired from the relevant fields, through the scientific analysis
of the five attributes of quality, service, wisdom, cost and
greenness (C1, C2, C3, C4, C5), the best logistics service
provider is selected. According to the TOPSIS method we
discussed in section IV, this problem considered can be
solved by the following steps:

Step 1: Determining the weights of decision makers;
In a selection committee, the positions of the four decision

makers may not be equal. Their decision rights are treated
as the linguistic terms shown in table I. The importance
of each decision maker is expressed in the linguistic terms
and their corresponding SVNN ,which is shown in table III.
According to Equ.(14), the weight of each decision maker
can be calculated as follows:

e1=(0.9+0.1· 0.9

0.9+0.1
)/[(0.9+0.1· 0.9

0.9+0.1
)

+(0.8+0.2· 0.8

0.8+0.15
)+(0.5+0.4· 0.5

0.5+0.45
)

+(0.8+0.2· 0.8

0.8+0.15
)]=0.2722

(25)

Similarly, the weights of the other three decision makers
can also be calculated as e2 = 0.2662, e3 = 0.1953, e4 =
0.2662. Thus, the weight vector of four decision makers is

e = (0.2722, 0.2662, 0.1953, 0.2662) (26)

Step 2: Constructing the aggregated SVN decision matrix
based on the assessments from each decision maker;

Linguistic terms for rating the candidates with SVNNs
is defined in table II. The evaluation values for each alter-
native Ai(i = 1, 2, 3, 4) relative to each attribute Cj(j =
1, 2, 3, 4, 5) provided by the four decision makers DMi(i =
1, 2, 3, 4)are shown in Table IV.

According to Equ.(16), here, we only give the detailed
calculation process of T11, I11 and F11 as following:

T11=1−[(1− 0.8)0.2722 ·(1−0.8)0.2662 ·(1−0.9)0.1953

·(1−0.5)0.2662]=0.7770

I11=(0.2)0.2722 ·(0.2)0.2662 ·(0.1)0.1953 ·(0.5)0.2662

=0.2230

F11=(0.15)0.2722 ·(0.15)0.2662 ·(0.05)0.1953 ·(0.45)0.2662

=0.1622

In the same way, the aggregated SVN decision matrix can
be obtained in table V.

Step 3: Determining the attribute weights;
Each decision maker thinks the importance of attributes in

the scheme is different, so the attribute weight evaluation is
given in Table VI.

Since C4 is a cost-type indicator, according to the table
VI and the transformation definition 12, the standard SVN
decision matrix is calculated as follows:

D̃ = (ãij)4×5 =
〈0.80, 0.20, 0.15〉 〈0.90, 0.10, 0.10〉 〈0.80, 0.20, 0.15〉
〈0.90, 0.10, 0.10〉 〈0.80, 0.20, 0.15〉 〈0.50, 0.40, 0.45〉
〈0.50, 0.40, 0.45〉 〈0.80, 0.20, 0.15〉 〈0.80, 0.20, 0.15〉
〈0.80, 0.20, 0.15〉 〈0.90, 0.10, 0.10〉 〈0.80, 0.20, 0.15〉

〈0.20, 0.80, 0.85〉 〈0.50, 0.40, 0.45〉
〈0.10, 0.90, 0.90〉 〈0.80, 0.20, 0.15〉
〈0.50, 0.60, 0.55〉 〈0.90, 0.10, 0.10〉
〈0.20, 0.80, 0.85〉 〈0.90, 0.10, 0.10〉

 (27)

According to Equ.(11), we can figure out SVNSs Entropy

E(Cj) = 1
4

4∑
i=1

E1(α̃ij)(j = 1, 2, 3, 4, 5) of each attribute

Cj(j = 1, 2, 3, 4, 5). As shown in Table VI, we can get the
SVNSs entropy of five attributes. Namely, E(C1) = 3.1051,
E(C2) = 2.3166, E(C3) = 3.3986, E(C4) = 3.1051,
E(C5) = 2.8116.

According to Equ.(12), the weight ωj=
(E(Cj))

−1

n∑
j=1

(E(Cj))−1
(j =

1, 2, 3, 4, 5) of each attribute Cj(j = 1, 2, 3, 4, 5) can be
determined. Thus, the weight vectors of the five attributes
are as follows:

ω = (0.1866, 0.2501, 0.1705, 0.1866, 0.2061) (28)

Step 4: Determining the positive ideal scheme and the
negative ideal scheme for SVNSs;

According to Equ.(18) and Equ.(20), the positive ideal
scheme A+ and the negative ideal scheme A− are determined
as follows:

A+ =


〈0.880, 0.120, 0.067〉
〈0.862, 0.138, 0.083〉
〈0.825, 0.175, 0.121〉
〈0.815, 0.186, 0.128〉
〈0.862, 0.138, 0.083〉


T

A− =


〈0.672, 0.328, 0.271〉
〈0.788, 0.212, 0.180〉
〈0.669, 0.331, 0.262〉
〈0.787, 0.213, 0.151〉
〈0.674, 0.326, 0.269〉


T

Step 5: Calculating the distance of each alternative from
the positive ideal scheme and the negative ideal scheme for
SVNSs and relative closeness coefficient;

Equ.(22) and Equ.(23) are used to calculate the distances
of each alternative from the positive ideal scheme and the
negative ideal scheme. In order to make the calculation result
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TABLE III
IMPORTANCE OF DECISION MAKERS EXPRESSED WITH SVNNS

DM1 DM2 DM3 DM4

Linguistic terms VI I M I

SVNNs 〈0.90, 0.10, 0.10〉 〈0.80, 0.20, 0.15〉 〈0.50, 0.40, 0.45〉 〈0.80, 0.20, 0.15〉

TABLE IV
ASSESSMENTS OF ALTERNATIVES GIVEN BY FIVE DECISION MAKERS

Alternatives(Ai) Decision makers C1 C2 C3 C4 C5

A1 DM1 G VG M G G
DM2 G VG MG G M
DM3 VG G G MG MG
DM4 M G G VG G

A2 DM1 VG G G M G
DM2 G G G VG M
DM3 VG VG VG G G
DM4 VG MG G G M

A3 DM1 VG G M G VG
DM2 G VG M G VG
DM3 G G VG M MG
DM4 VG M G VG G

A4 DM1 M G MG G VG
DM2 M VG M M VG
DM3 G M VG G G
DM4 G G M VG G

TABLE V
THE AGGREGATED SVN DECISION MATRIX

C1 C2 C3 C4 C5

A1 〈0.777, 0.223, 0.162〉 〈0.862, 0.138, 0.083〉 〈0.702, 0.298, 0.243〉 〈0.815, 0.186, 0.128〉 〈0.715, 0.285, 0.230〉
A2 〈0.880, 0.120, 0.067〉 〈0.797, 0.203, 0.180〉 〈0.825, 0.175, 0.121〉 〈0.787, 0.213, 0.151〉 〈0.674, 0.326, 0.269〉
A3 〈0.862, 0.138, 0.083〉 〈0.788, 0.212, 0.150〉 〈0.714, 0.286, 0.219〉 〈0.801, 0.199, 0.139〉 〈0.847, 0.154, 0.095〉
A4 〈0.672, 0.328, 0.271〉 〈0.801, 0.199, 0.139〉 〈0.669, 0.331, 0.262〉 〈0.788, 0.212, 0.150〉 〈0.862, 0.138, 0.083〉

TABLE VI
EVALUATION OF THE ATTRIBUTE WEIGHTS BY FIVE DECISION MAKERS

Weights Decision makers C1 C2 C3 C4 C5

ω1 DM1 I VI I I M
ω2 DM2 VI I M VI I
ω3 DM3 M I I M VI
ω4 DM4 I VI I I VI

more direct and simple, let’s say that p = 2. In fact, the value
of p does not affect the result of sorting, but the precision of
operation can be adjusted. Based on these distances, relative
closeness coefficient can be obtained by using Equ.(24).
These results are shown in Table VII.

TABLE VII
DISTANCE MEASURE AND RELATIVE CLOSENESS COEFFICIENT OF EACH

ALTERNATIVE

Alternatives(Ai) D+
i D−

i D∗
i

A1 0.0032 0.0006 0.1578
A2 0.0028 0.0009 0.2432
A3 0.0040 0.0011 0.2156
A4 0.0051 0.0012 0.1904

Step 6: Ranking the alternatives;
According to the relative closeness of each alternative in

Table VII, the ranking order of the four alternatives is

A2 > A3 > A4 > A1

Thus, A2 is the best logistics service providers.
Compared with the approach proposed by Xu [35], the

difference is that this paper proposes a new entropy measure
between SVNSs, but our ranking results and optimal supplier

have the same values to calculate the same decision problem
as that of Xu [35], which is able to show our approach is
practical and effective.

VI. CONCLUSION

In this paper, a new TOPSIS method is proposed to
solve the MADM problem under simplified SVN environ-
ment. Firstly, the weights of decision makers and attribute
values are assigned by considering evaluation opinions of
different decision makers, and then the SVN entropy is
used to determine the attribute weights. In the evaluation
process, the single-valued weighted average operator is used
to aggregate the opinions of decision makers. The positive
and negative ideal schemes are defined from the aggregate
weighted decision matrix. Secondly, the generalized distance
formula is used to determine the distance between each
scheme and positive and negative ideal schemes as well as
the relative closeness of each alternative. Finally, an example
is given to show the validity and rationality of the method.
However, we hope that the theory and method proposed in
this paper can expand the application of SVNSs in the field
of decision-making. In future studies, we propose to further
extend the TOPSIS method and adopt other aggregation
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techniques, such as unified single-valued weighted mean
operator, induction variable and improved SVNSs theory.
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