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Abstract—In this paper, a novel methodology that
automatically identifies segments of EEG recordings with
epileptic activity based on multi-rate adaptive filter banks is
presented. As an advantage, the proposed approach accurately
tracks parameters variability in the specific frequency band
of each filter according to its energy in the spectrogram.
To this end, the Shannon energy is used as information
criteria for filter variability computed over the time-frequency
information of the EEG data. Hence, both time and frequency
data variability are considered. The proposed approach is
evaluated in a real scenario where the information extracted
from the obtained filter bank is used to feed a support vector
machine to discriminate between normal and epileptic events.
In the obtained results are validated that the proposed adaptive
approach outperforms fixed filter bank alternatives.

Index Terms—Epilepsy detection, multi-rate filter banks,
adaptive.

I. INTRODUCTION

Detecting epileptiform discharges that appear in EEG
(electroencephalography) recordings, is an important
component in the diagnosis of epilepsy that provides a
valuable understanding of its nature, cause, and location.

Analysis of EEG signals is usually accomplished in
temporal or frequency domains. For instance, in [1], [2],
authors proposed frequency analysis methods based on
power spectra for epileptic seizure detection using multiple
signal classification (MUSIC), auto-regressive (AR), and
periodogram methods. However, such methods do not
consider time information and temporal variability causing
a low-accurate detection of epileptiform discharges. As
an alternative, several authors have proposed filter-bank
based methods that allow analysis in both time and
frequency domains [3], [4]. However, in bank analysis, filter
bandwidths are fixed, yielding equally weighted frequency
bands for further analysis, which is not always true when
dealing with epileptic activity over EEG data [5]. As
a result, these methods do not take into account the
spectral variability in each frequency band. Examples of
the above-mentioned methods are wavelets and many other
time-frequency representations, which are usually calculated
through filter banks [6]. Consequently, such conventional
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methods for epilepsy detection do not consider EEG temporal
variability [7].

In order to model more adequately the EEG signals
behavior, the spatio-temporal dynamics of the brain should
be considered [8]. However, in lack of an explicit criterion,
temporal analysis is usually performed visually by experts
(neurologists) to detect the onset of epileptic seizures. As
such analysis may be insufficient and highly depends on the
expertise level of the medical team, some studies suggest
empirical mode decomposition analysis as a tool to include
temporal EEG dynamics into account [9], [10].

However, biological signals have a time-variant structure
that demands feature extraction techniques, changing and
adapting itself according to the dynamical behavior. In this
sense, an important modification of the fixed filters bank
analysis consists of modifying filter parameters, particularly
its order, that might change according to the dynamical
information of the signal. As a result, filter banks with
adaptive parameters might track in a more accurate way
any change of parameters of a time-varying sequence [11],
[12], [13], [14], [15]. Nevertheless, approaches based on
filter banks need to tune a set of thresholds for filter order
changes. However, the threshold tuning depends on each
application. In [14] the thresholds are tuned according to
perfect reconstruction criteria, but these methods depend
just on the selected filters instead of the analyzed signal.
Therefore, it is necessary to develop a dynamic time-varying
method to select an automatic threshold that depends on the
actual signal [16].

In this work, an adaptive filter bank that varies according
to the level energy of the signal is proposed. As an advantage,
the method allows a dynamical signal processing structure.
In order to get a better description of the time-frequency
patterns present in the data in hand, adaptive multi-rate
filter banks are proposed for EEG feature extraction [17],
using their spectral information. The frequency range of
the designed filters change according to the estimated
energy level in each sample. To this end, Shannon energy
is used as adaptability criteria because: i)it emphasizes
the medium-intensity signals and attenuates the effect of
low-intensity signals much more than that of high-intensity
signals, and ii) the Shannon entropy accentuates the effect
of low value noise that makes the envelope too noisy to
read. As a result, each frequency band preserves relevant
information of the signal. This paper is organized as follows.
In section II recalls the theoretical background for multi-rate
filter banks and the selection of adaptive multi-rate filters.
Finally, in section III are presented the results for epilepsy
detection over EEG signals including the tuning of the
adaptive multi-rate decomposition and the support vector
machines used to solve the classification task.
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II. THEORETICAL FRAMEWORK

A. Multi-rate Filter banks

Multi-rate filter banks allows signal decomposition in M
frequency bands. Further, each sub-band can be processed
to reconstruct solely the events of interest. The process
of multi-rate decomposition is as follows: First, data is
passed through the analysis bank. Later, the information of
interest is extracted in the processing block. Finally, data
comprising merely the selected information is reconstructed
in the Synthesis bank. The entire process is depicted in Fig. 1.

Fig. 1. Multi-rate filter bank

Specifically, the analysis filters Hk(z) split the input signal
x(n) into M sub-band signals, which are decimated by
a factor M . The synthesis filters Fk(z) interpolate and
recombine the M sub-band signals. In Fig. 2 is depicted
a multi-rate decomposition for equally distributed filters.

…

Fig. 2. Ideal frequency for multi-rate filter banks

The decimator and expander that decreases and expand
the sampling rate, respectively, are denoted by (↓M) and (↑
M). For M = 2 orthogonality or biorthogonality conditions
are more restrictive than for M > 2. This conditions are
given in section II-B. The conditions for filter selection can
be extended for the case of M > 2. However, the number
of freedoms grows faster than the number of restrictions.
Consequently, the choice of one M − th band filter does not
determine the other choices.

B. Mathematical restrictions of filter banks

The conditions for filter selection of a two channel filter
bank, in orthogonal and biorthogonal cases, are described as
follows. Let h[n] be a FIR filter defined by the sequence
h[n] = {h[0], h[1], . . . , h[L− 1]}. For orthogonal filter
banks, consider that h[n] is orthogonal to its own translations:

〈h[n− 2k], h[n− 2l]〉 = δkl (1)

where δkl is the Kronecker delta. Let H(z) be the
z-transform of a low-pass filter h[n]. Then, a high-pass
filter g[n] is defined such that it is orthogonal to its own
translations:

〈g[n− 2k], g[n− 2l]〉 = δkl, (2)

and it is satisfied that h[n] and g[n] are mutually orthogonal

〈h[n− 2k], g[n− 2l]〉 = 0. (3)

Therefore, an orthonormal set {h[n− 2k], g[n− 2l]}k,l∈Z
is called orthonormal basis in `2.

For the biorthogonal case, a low-pass filter h̃ and a
high-pass filter g̃ are defined according to:

〈h̃[n− 2k], h[n− 2l]〉 = δkl (4)
〈g̃[n− 2k], g[n− 2l]〉 = δkl, (5)

and

〈h̃[n− 2k], g[n− 2l]〉 = 〈g̃[n− 2k], h[n− 2l]〉 = 0. (6)

Using the dual basis set h̃ y g̃ and h y g, any sequence in
`2 can be represented as

x[n] =
∑
k∈Z

αk h̃[n− 2k] +
∑
l∈Z

βl g̃[n− 2l], (7)

where

αk = 〈h[n− 2k], x[n]〉 , k ∈ Z (8)
βl = 〈g[n− 2l], x[n]〉 , l ∈ Z, (9)

and any sequence in `2 can be represented as

x[n] =
∑
k∈Z

α̃k h[n− 2k] +
∑
l∈Z

β̃l g[n− 2l], (10)

where

α̃k = 〈h̃[n− 2k], x[n]〉, k ∈ Z (11)
β̃l = 〈g̃[n− 2l], x[n]〉, l ∈ Z. (12)

In Fig. 3 and Fig. 4 are presented the frequency and phase
responses of the filters h and g used in this work according to
(11) and (12). These filters are near symmetrical, orthogonal
and bi-orthogonal

Fig. 3. Low pass frequency and phase response
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Fig. 4. High pass frequency and phase response

It is noticeable that the band-pass filters are constructed
by using the filters shown in Figs. 3 and 4 by
applying successive decomposition and dyadic sub-sampling.
Therefore, the resulting band-pass filter is constructed from
a multi-rate decomposition for the low and high-pass filters.

C. Adaptability criteria

An automatic selection for multi-rate filter banks is applied
based on an entropy information criteria. The search of the
adequate multi-rate filters is perform by using a depth first
search strategy by including a dyadic sub-sample strategy.
The selection of the frequency bands is determined by the
entropy of the decomposed segment. Since the signal is
analyzed by linear sliding windows, the resulting selection
of frequency bands is time-varying, based in the information
of the decomposition tree. This decomposition is known as
best tree selection [18].

The selection of the bands for the classification stage takes
into account the similarity of the selected bands during a
segment by considering sliding windows. Therefore, even
when an adaptive time-varying best tree decomposition is
obtained, a fixed band-pass filter is used for each record but
considering only the bands that are repeated during the whole
interval.

III. RESULTS AND DISCUSSION

A. Data recording and pre-processing

EEG data were collected from one patient with
epilepsy who underwent pre-surgical evaluation at the
Neurological Center for Epilepsy Treatment and other
Neurological Disorders (Neurocentro de Occidente). The
ethical committee of Universidad Tecnológica de Pereira
approved the study, and the patient gave written informed
consent. Data was recorded in six different sessions,
consequently, we treat each session as a single database,
which comprises about five minutes of each class (epilepsy
and normal EEG activity), but including the seizure onset
time. Each database was pre-processed independently using
the following steps: Data was filtered from 1 to 30 Hz, as
suggested in [19] for epileptic activity. Later, Independent
Component Analysis (ICA) is performed in order to remove

artifacts. Once data is clean, we created one-second-long
epochs that would be used to feed the characterization and
machine learning processes. An example of two epochs
during normal and pathological conditions, along with the
power of each segment projected over the scalp, is presented
in Figs. 5 and 6. It is noticeable that the power during
both conditions (normal and pathological) is very similar if
considering the whole frequency spectrum, and therefore, a
selection of bands of interest is required.

Fig. 5. Example of EEG data in normal conditions

Fig. 6. Example of EEG data in epileptic conditions

Engineering Letters, 29:1, EL_29_1_05

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



B. Tuning of Adaptive Analysis and feature selection

The adaptability scheme consists of selecting, for each
EEG segment, an appropriated filter Hk(z) according to the
entropy of the spectral information of the analyzed signals.
Moreover, as we used a sliding window of 0.5 seconds
to cover the whole EEG segment, the resulting multi-rate
decomposition is selected in such a way that considers the
same distribution of all the analyzed windows. In Fig. 7 are
presented the cut frequencies of the selected multi-rate filters.

Fig. 7. Cutoff frequencies for the Multi-rate filter banks.

Fig. 8. Multirate passband filters band frequencies responses

Moreover, to look at a feature selection stage, three
different multi-rate approaches are used: In the first case, the

selected band-pass filters are the ones that are repeated in all
the sliding windows. In the second case, the band-pass filters
selected in the first case are increased by completing the
spectrum at least to the half of the spectrum (60Hz). Finally,
the case 3 includes a decomposition of the segment by
using wavelet packets. In Fig. 8 is shown the corresponding
frequency responses of the multi-rate filter banks for the three
analyzed cases.

In Fig. 9 are summarized the differences between raw
and filtered data for normal and epileptic recordings in the
power topographical plot for one of the selected frequency
bands. It can be seen that when data is processed according
to the multi-rate filter banks, differences between normal
and epileptic events are highlighted, improving the chance
to separate such events using machine learning techniques.

Power
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Power
0.754-

0.624-

Power
0.570-

0.515-

Power
0.575-

0.522-

Epileptic
Event

Normal
Event

All Spectrum Best Band Range

Fig. 9. Differences between raw and filtered data for normal and epileptic
recordings

C. Characterization of filtered EEG data

Once each EEG recording has been filtered according to
the multi-rate filter bank, we computed several statistical
measures to the coefficients of each channel at each
frequency band. Namely, we computed the maximum value,
minimum value, mean, median, variance, standard deviation,
skweness, and kurtosis. Accordingly, for each EEG recording
and frequency band, we compute 8 × Nc features, being
Nc the number of EEG channels. As a result, for each
EEG segment belonging to either normal or epileptic event,
the features belonging to all the frequency bands are
concatenated into a single vector that will be used as input
to the machine learning stage.

D. Classification of epileptic events using Support Vector
Machines

Towards discriminating epileptic from normal EEG
epochs, we used the statistical features explained above to
feed a Support Vector Machine (SVM) classifier with a
radial basis function (RBF) kernel. Implementation was done
using the Scikit-learn library in Python [20]. As we are
more interested in identifying epileptic activity, we used as
performance measure the recall that, intuitively, is the ability
of the classifier to find all the positive samples. Consequently,
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we targeted as positive samples the epochs with epileptic
activity. We also used 5-folds cross-validation to search for
the best SVM parameters, namely, kernel band-with and
regularization. The used grid of values is shown in Fig. 10.
The tuning procedure is presented in the form of a heat map,
where the parameters c and Gamma are selected in terms
of the classification performance.

Fig. 10. Example of the used grid to tune the SVM parameters.

E. Classification Results

Tables I, II, and III show the classifications results (mean
± std) for each of the considered multi-rate decomposition,
namely, best band selection, best band with full spectrum,
and wavelet packet. As seen, classification was performed
individually per frequency band and also combining all the
features obtained in each decomposition. As expected for
epileptic activity, when seeing independently per frequency
band, higher results are obtained in lower bands, namely,
0 − 7.5Hz. This holds for all the considered filter banks.
However, the best results are achieved when combining all
the available information.

TABLE I
ACHIEVED RECALL WITH MULTI-RATE DECOMPOSITION AND FULL

SPECTRUM.

Recall
Segment B1 (0 - 7.5 Hz) B2 (30 - 60 Hz)

1 0.807 (0.037) 0.642 (0.095)
2 0.851 (0.006) 0.828 (0.089)
3 0.791 (0.026) 0.777 (0.098)
4 0.789 (0.037) 0.819 (0.053)
5 0.895 (0.004) 0.895 (0.004)
6 0.812 (0.034) 0.766 (0.127)

Segment B3 ( 7.5 - 15 Hz) All Bands
1 0.736 (0.079) 0.881 (0.004)
2 0.772 (0.042) 0.879 (0.004)
3 0731 (0.125) 0.879 (0.004)
4 0.798 (0.054) 0.879 (0.004)
5 0.895 (0.004) 0.895 (0.004)
6 0.789 (0.102) 0.879 (0.004)

Moreover, it can be seen that results do not improve when
completing the spectrum of the EEG data. Consequently,
we can conclude that the best band selection performed by
the multi-rate decomposition is able to properly identify the
frequency bands with relevant information.

TABLE II
ACHIEVED RECALL WITH MULTI-RATE DECOMPOSITION AND FULL

SPECTRUM.

Recall with full spectrum
Segment B1 (0 - 7.5 Hz) B2 (30 - 60 Hz) B3 (7.5 - 15 Hz)

1 0.807 (0.037) 0.642 (0.095) 0.802 (0.061)
2 0.851 (0.006) 0.828 (0.089) 0.795 (0.053)
3 0.791 (0.026) 0.777 (0.098) 0732 (0.111)
4 0.789 (0.037) 0.819 (0.053) 0.789 (0.031)
5 0.895 (0.004) 0.895 (0.004) 0.895 (0.004)
6 0.812 (0.034) 0.766 (0.127) 0.784 (0.120)

Segment B4 (15 - 30 Hz) All Bands
1 0.736(0.079) 0.879 (0.004)
2 0.772 (0.042) 0.879 (0.016)
3 0.7311 (0.125) 0.879 (0.004)
4 0.798 (0.054) 0.879 (0.004)
5 0.895 (0.004) 0.895 (0.004)
6 0.789 (0.102) 0.879 (0.004)

Finally, it can be seen that by combining all the
information provided by a fixed multi-rate decomposition,
as wavelet packet, it is not suitable to identify the relevant
information of the process. Consequently, the identification
of epileptic activity is not properly carried out. This is evident
when seeing the last column of Table III.

TABLE III
ACHIEVED RECALL WITH WAVELET PACKETS AS MULTI-RATE

DECOMPOSITION.

Recall Wavelet Packets
Segment B1 (0 - 15 Hz) B2 (15 - 30 Hz)

1 0.795 (0.028) 0.802 (0.061)
2 0.846 (0.009) 0.795 (0.053)
3 0.798 (0.040) 0.732 (0.111)
4 0.825 (0.053) 0.789 (0.031)
5 0.895 (0.004) 0.895 (0.004)
6 0.793 (0.057) 0.784 (0.120)

Segment B3 (30 - 45 Hz) All Bands
1 0.731 (0.112) 0.623 (0.188)
2 0.830 (0.032) 0.777 (0.107)
3 0784(0.062) 0.790 (0.158)
4 0.823 (0.018) 0.597(0.023)
5 0.895 (0.004) 0.544 (0.107)
6 0.800 (0.076) 0.752 (0.004)

IV. CONCLUSIONS

In this work, a methodology to model and describe
a set of EEG signals from a patient with epilepsy
using time-frequency information through the design and
application of adaptive filters is proposed. This methodology
allows the adequate description of two classes: normal EEG
activity and epileptic seizures. Also, a classification stage
by using the proposed method is used to characterize and
extract features from the EEG. A comparison with fixed
multi-rate filters, as wavelet packet, and by using the full
spectrum, information is performed to validate the proposed
approach. As a result, the proposed methodology achieves
the highest scores in almost all the segments and frequency
bands assessed by recall metric to consider the epileptic class
as the objective class.

Finally, it is worth noting that the best results are
achieved when all the available information among the
several frequency bands are considered.
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