
 

 
Abstract—By using linear matrix inequality approach, this 

paper considers the problem of anti-saturation control for 
marine planktonic ecological hybrid system with saturation. A 
new marine plankton ecosystem model is established. By 
analyzing the dynamic characteristics of the model, a stable 
condition is obtained in terms linear matrix inequality. The 
anti-saturation controller design method is designed. A 
numerical simulation is been given to verify the proposed 
approach. 
 

Index Terms—Marine planktonic ecosystem, hybrid System, 
saturation, linear matrix inequality 
 

I. INTRODUCTION 

arine plankton is the basis of marine productivity. In 
recent years, due to the serious impact of human factors 

on the ecosystem and the direct or indirect impact of natural 
climate, the marine environment has been seriously degraded. 
Therefore, it is of great significance to predict and control the 

development trend of planktonic ecosystem [1 3] . In recent 
years, scholars at home and abroad have focused on the 
establishment of ecological models to observe the 

development of species through numerical simulation [4 6] . 
For example, in references [7-8], Feng and Wang studied the 
nonlinear dynamic characteristics, stability and bifurcation 
problems of planktonic ecosystem, modeled the marine 
planktonic ecosystem as a nonlinear dynamic system, and 
analyzed the system performance by using Lyapunov stability 
theory. In reference [9], the homotopy analysis method is used 
to simulate the marine planktonic ecosystem. Although the 
dynamic constraints and data constraints are considered and a 
large number of parameters are estimated, this method is 
computationally expensive and difficult to implement. The 
purpose of this paper is to find a more simple and effective 
method to simulate the system model. Herrmann et al. 
established a three-dimensional physical-biological- 
geochemical coupling model based on the interannual 
changes and atmospheric winter conditions, and performed 

statistical and budget analysis [10] . Schartau et al. studied the 
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problem of parameter identification in the modeling of marine 

planktonic ecosystems [11] . 
Saturation phenomenon exists widely in various practical 

control systems. In essence, any system has different degrees 

of saturation constraints [12 14] . If the saturation is not 
considered, the system performance will be degraded or even 

unstable in serious cases [15 17] . In 1960s, Fuller firstly 
proposed the saturation system, and adopted the strategy of 
feedback calculation and tracking to make the system quickly 
exit the saturation region. In recent decades, actuator 
saturation control has been widely concerned by many 

scholars [18 19] . About the saturated network system, Zhou et 
al. considered the problem of the observer-based output 
feedback control for networked systems with actuator 

saturation [20] .  In references [21], Zhao et al. considered the 
stabilization problem for saturated networked system. By 
updating steps of control signal of the networked control 
system, a state feedback controller is designed by a cone 
complementary linearization approach. However, the 
Lyapunov function designed in the above literature lacks the 
appropriate parameter matrix in the research process of 
saturated time-delay system, and the results are conservative. 
In addition, the influence of external interference or 
uncertainty on the system is not considered, so the planktonic 
ecosystem model is not perfect. It is difficult to realize 
because of the large amount of calculation. 

Because of this, the purpose of this paper is to find a more 
simple and effective method to study the stability and other 
dynamic properties of the planktonic ecosystem model. In this 
paper, a nonlinear dynamics model of marine planktonic 
ecosystem with saturation is established by using the hybrid 
dynamics theory, and its stability and control are studied by 
using Networked control approach. It can provide scientific 
basis for marine management department to formulate marine 
development strategies and development plans, so as to 
ensure the healthy and sustainable development of marine 
ecosystem. 

 

II. MODELLING AND PRELIMINARIES 

With the following assumptions have been given in 
reference [22]: (1) plankton follows the logistic growth model, 
and considers the weakening effect of human fishing behavior 
and the pollution caused by human fishing behavior on the 
survival of plankton; (2) the pollution caused by human 
fishing behavior and the fishing behavior itself have a 
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negative impact on the total fishing amount; (3) the plankton 
ecosystem has certain self-purification capacity. The hybrid 
dynamic model of marine planktonic ecosystem is proposed 
as follows:  
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where ˆ( )x t is the total amount of plankton, ˆ( )z t  is the 

pollution caused by human fishing behavior, ˆ( )y t  is the 

catch, ˆ( 0)a   is the internal growth rate of plankton, ˆ( 0)k  is 

the carrying capacity of plankton, ˆ( 0)c   is the reduction rate 

of the total amount of plankton with the increase of fishing 
frequency, ˆ( 0)   is the reduction rate of the total amount of 

plankton caused by the pollution caused by human fishing 
behavior, ˆ( 0)   is the utilization efficiency of plankton in 

the systems, ˆ( 0)b   is the reduction rate of the pollution 

caused by human fishing behavior to the fishing frequency, 
ˆ( 0)   is the fishing intensity, ˆ( 0)h   is the pollution rate 

caused by the increase of fishing frequency, ˆ( 0)   is the 

purification rate of the ecosystem. 
The system (1) can be changed as: 
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With the influence of external uncertainties and 
saturation, the hybrid model of marine planktonic ecosystem 
is obtained: 

( ) ( ( )) ( ) ( ( )) ( ( ))

( ) ( )

x t A A t x t B B t sat u t

x t t
     



  (2) 

where Rn nA  , n mRB   are constant matrix, n( ) Rx t   

are systems states, m( ) Ru t  are control input, n( ) Rt   is 

the given initial state.  
The saturation function 
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( ), ( )A t B t   are uncertainty satisfying 

1 1

2 2

( ) ( )

( ) ( )

( ) ( )T

A t D F t E

B t D F t E

F t F t I

 
 



                            (3) 

Remark1. In the past, the research on marine planktonic eco 
dynamic system focused on the analysis of linear system. In 
the system (2), the influence of external disturbance on the 
system was considered, and the influence of controller 
saturation on control design and system performance was 
considered. 

The following controller will be designed 

( ) 2 ( )u t Kx t                           (4) 

where Rm nK  is a constant matrix.  
With (3) and (2), the closed-loop system can be obtained 

( ) ( ) ( ) ( ) ( )

( ) ( )

x t A t x t B t t

x t t



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where 
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( ) ( ) ( ) ( )T T Tt t x t K Kx t                   (7) 

 

III. RESULTS 

Lemma1
[8]

. For a given n-order symmetric matrix 

11 12

21 22

S S
S

S S

 
  
 

 

where 11S is r-order matrix, then the following three 

conditions are equivalent 

(1) 0,S   

(2) 1
11 22 12 11 120,   0,TS S S S S    

(3) 1
22 11 12 22 120,   0.TS S S S S     

Lemma2
[11]

. For the given constant matrix ,Y D and E  with 

appropriate dimension, where Y is symmetric matrix, then 

0T T TY DEF E F D    for matrix F satisfying 
TF F I , if and only if there is a constant 0  , such that:  

1 0T TY DD E E      

Theorem1. If there are matrix
m nK R  , positive matrix 

R n nP  and constant 0  , the following inequality holds  

( ) ( ) ( )
0

T TA t P PA t K K PB t

I




  
   

   (8) 

the system (5) is stable. 
Proof: constructing the following Lyapunov function 
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( ) ( ) ( )TV t x t Px t  

where R n nP  is a positive matrix. 
Then, we have 
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                 (9) 
With (7) and a positive number , we know 
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By inserting the above formula into (9), we obtain 
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with the condition (8),  we know that the system (5) is stable. 
Remark2. In theorem1, the control saturation has been 
transformed to a matrix inequality constraint by using the 
sector region method, which can effectively deal with the 
saturation term.  
Remark3. Obviously, matrix inequality (8) is not a linear 
matrix inequality with respect to variables , ,K P  . Next, we 
will use some matrix transformations to transform the 
inequality (8) into a linear matrix inequality for 
variables , ,K P  . 

Theorem2.  If there are positive matrices R n nX  , 

matrix
m nK R  , and constants 1 20, 0, 0     , the 

following inequality holds 
1

1 2

1

2

0 0 0

00 0

0

T T TB K XE XE

I

I

I

I









 
   
    
 
    
      

         (10) 

where 

1 1 1 2 2 2( )T T TAX BK AX BK D D D D         

When we design the controller 
1( ) 2 ( )u t KX x t  

the system (5) is stable. 
Proof: According to lemma 1, it is easy to know that 
inequality (8) is equivalent to 
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Multiplying both sides of the above equation by matrix 
1 1 1{ , , }diag P I I     at the same time, we have 
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With (6) and lemma 2, we know that there are constants 

1 0  and 2 0  make the above inequality is equivalent 

to 
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By using lemma1 again, the above inequality is equivalent 
to 
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By giving some transforms 

 
1 1 1, ,X P K KP        

the above inequality is equivalent to (10).  
Remark4. By using lemma1 and lemma2, the matrix 
inequality (10) is linear matrix inequality. And the condition 
(10) is equivalent to (8). With theorem2, we know that the 
systems (5) is stable. 

IV. SIMULATION 

Example1 

Consider the following hybrid model of marine 
planktonic ecosystem (5) ，in order to compare with the PID 

Algorithm [20] , some aspects have to be specified  

1

0.6 0 0 0.5 0.01

0 0.2 0 , 0.2 , 0.5 ,

0 0 0.3 0.1 0.1

A B D
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0.3 , ( ) sin , 0.2 0.03 0.1 ,
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D F t t E

E
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By using the PID Algorithm, the state feedback controller is 
obtained 

 ( ) 1.4575 0.4692 3.6202 ( )u t x t   

On the other, by solving the linear matrix inequality (10), 
we obtain 

1.3426 0.3156 1.4265

0.3156 0.2356 2.1435

1.4265 2.1435 3.5626

X

 
   
  

 

 0.3155 1.4266 3.4678K    

1 20.1345, 1.6537, 0.1952      

the controller can be designed 

 ( ) 1.4605 0.4063 1.4367 ( )u t x t   

(1) Comparison of the two algorithms 

Choosing the initial states as 

3

(0) 1

5

x

 
   
  

 

The simulation results of the states 1 2 3( ), ( ), ( )x t x t x t  are 

shown in figure 1-3. 

 Figure 1. The response curves of 1( )x t  

The curve of the state 1( )x t   obtained by the method 

presented in this paper has better stability and faster 
convergence speed, which is smoother than that obtained by 
PID algorithm. 

In figure 2, the results show that the convergence speed of 

the curve of the state 2 ( )x t  obtained by this method is 

obviously faster, the overshoot is smaller, and smoother than 
the state curve obtained by using PID algorithm. 

 
Figure 2. The response curves of 2 ( )x t  

 
Figure 3. The response curves of 3( )x t  

The figure3 shows that the convergence speed of the curve 

of state 3( )x t  obtained by the method presented in this paper 

is obviously faster and the stability is very good, while the 
state curve obtained by using PID algorithm has obvious 
oscillation. Therefore, the algorithm in theorem2 presents 
better results than the PID Algorithm. 

(2) Verification of the system performance with the two 
algorithms 

In this paper, we select IAE function to compare the 
advantages and disadvantages of the two methods. The 
method with relatively small IAE value is a better method. The 
form of IAE is as follows 

0
| ( ) |IAE e t dt


   

By using the method of this paper and PID method, the 
value of IAE function is calculated respectively, and the 
change figure 4 is obtained. 

In figure 4, it is easy to see that when the time changes from 
0 to 0.2, the IAE values of the two methods are basically equal. 
However, after 0.2 seconds, the IAE value obtained by PID 
algorithm is much larger than that of the method proposed in 
this paper. Therefore, from the IAE value, the method in this 
paper is due to PID method. 
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Figure 4.  The curves of IAE of the two algorithms 

Example2 

The design method obtained can be extended to the control 
process of related control system.  In this example, we 
consider the 1/4 body active suspension system. The equation 
can be obtained as 

1 1 1 2 1 2 1( ) ( )m X K X X b X X u         

2 2 1 2 1 2 1 2 0 2( ) ( ) ( )m X K X X b X X K X X u         
     （10） 

where 1 2,m m  are respectively upper and lower mass of 

spring， 1 2,K K  are suspension spring stiffness and tire 

stiffness respectively, b  is equivalent suspension damping 
coefficient，u  is the acting force produced by the actuator, 

1 2,X X  are vertical displacement of body and suspension 

respectively, 0X  is the road input. 

Selecting vertical displacement 1X of car body, suspension 

vertical displacement 2X ，vehicle body vertical velocity 

1X  and vertical speed with suspension 2X  as the state 

variable x ， 1 2 1 2

T
x X X X X   

  . Selection of 

control input vector  0

T
u u X  . 

1 2

T
y X X   

  is selected as the systems output. The 

state equation can be obtained 
x Ax Bu

y Cx Du

 
 


 

where 

1 1

1 1 1 1

1 1 2

2 2 2 2

0 0 1 0

0 0 0 1

k k b b
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m m m m

k k k b b

m m m m
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 
 
 
   
 
  

 
 

 

1

2

2 2

0 0

0 0

1
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1

B
m

k

m m
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 
 
 

 

1 1

1 1 1 1

1 1 2

2 2 2 2

k k b b

m m m m
C

k k k b b

m m m m

   
 

  
 
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1

2

2 2

1
0

1

m
D

K

m m

 
 
 
 
 
 

 

The parameters of active suspension are selected as 

1 2 1300 , 50 , 20000 / ,m kg m kg k N m    

2 2000 / , 1800 /k N m b N s m    

With the PID approach, by changing P=-200, -300, -400, 
the relationship between simulation acceleration and time is 
shown in Figure 5. 

 
Figure 5.  The relation between acceleration and time at 

different P values 
In order to compare with the traditional PID control method, 

we use the design method given in this paper to design the 
controller. By solving the linear matrix inequality (10), we 
obtain the controller as 

( ) [0.2487  -1.3450] ( ).u t x t  

By using the two approaches, the relation response curve 
between acceleration and time is shown in figure 6. 

In figure 6, the solid line is the response curve of the 
algorithm in this paper. The dotted line represents the system 
state response curve under the action of PID algorithm. It is 
easy to see from figure 6 that the convergence speed of the 
solid line is faster than that of the dotted line, and the 
convergence smoothness is good, and the overshoot is 
relatively small. The design method given in theorem 2 can 
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effectively improve system performance. Therefore, the 
algorithm in this paper is superior to PID algorithm. 

 
Figure 6. The relation between acceleration and time 

Similar to example1, we compare and analyze the system 
performance through IAE function to compare the systems 
performance. The IAE functions of the two algorithms are 
shown in figure 7.  

 
Figure 7.  The curves of IAE of the two algorithms 

In Figure 7, it is easy to see that when the time changes 
from 0 to 10, the IAE values of the two algorithms are 
basically equal. However, after 10 seconds, the IAE value 
obtained by PID algorithm is much larger than that of the 
method proposed in this paper. From the IAE value, the 
algorithm in this paper is obviously better than PID algorithm. 

 

V. CONCLUSION 

In this paper, a new dynamic model of marine plankton 
ecosystem with saturation is obtained by using logistic model 
method. Based on the linear matrix inequality approach, the 
stable condition and the anti-saturation control of the hybrid 
dynamic model are presented.  
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