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Abstract—In areas of many developing countries in which 

landfill operations are used, leachate water is a source of the 

issue of surface water and groundwater contamination. To 

evaluate drinking water quality, groundwater quality 

assessment is required, and the location of the polluting 

concentration must be approximated. There are several 

approaches for assessing the quality of groundwater, such as 

sampling and mathematical simulation. Under various 

scenarios, mathematical models are used to simulate the effect 

on groundwater quality over long periods of time. In this 

research, the use of numerical technique introduces a one-

dimensional mathematical model of groundwater quality 

assessment. Two-level explicit methods, the Lax-Wendroff 

method and the traditional upwind method, are used to 

precisely estimate a better solution to the problem than the 

upwind method. The proposed simulation may be used in the 

future to forewarn of the problems of groundwater pollution 

around landfills.     

 
Index Terms— groundwater quality assessment, one-

dimensional advection-diffusion equation, the upwind explicit 

formula, the Lax-Wendroff formula, two-level explicit methods 

 

I. INTRODUCTION 

aste generation in developing countries is increasing 

due to the rapid growth of urbanization and 

industrialization. Thailand and Indonesia report similar 

waste generation per person of about 0.65 kg per person per 

day. The waste generated in Indonesia was 1.80 billion tons 

per year and, in Indonesia, 1.75 billion tons. The problems 

are mainly due to the non-segregation of wet and dry solid 

wastes, the composition of solid waste dumping at landfill 

sites, and poor management of landfill sites [1]. A site for 

the disposal of waste materials by burial is a landfill site. It 

is also the oldest method of treatment for solid waste. 

Historically, the most common methods of organized waste 

disposal have been landfills and are still so in many nations. 

Landfills which include internal waste disposal sites where, 

at the place of processing, a waste producer performs its 

own waste disposal, as well as sites used by multiple 

producers. Most of the land is also used for waste 

management purposes, such as temporary storage,  
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consolidation and transition or the processing, disposal or 

recycling of waste materials [1]. The serious problem of 

solid waste is faced by developing countries such as India, 

where economic development and urbanization have become 

faster. According to a 2006 study by the Ministry of the 

Environment in Japan, the amount of waste produced in 

2000 was approximately 12.7 billion tons, which is expected 

to rise to approximately 19 billion tons worldwide by 2025 

and By 2050, to about 27billion tons [2]. The environmental 

dangers of the generation of leachate stem from escaping to 

the atmosphere around landfills, and in particular to waste 

and groundwater courses. By planning and engineering 

landfill sites, these threats can be mitigated. These sites are 

those that are built on geologically impermeable materials, 

or sites that use geotextile or engineered clay impermeable 

liners. Within the United States and the European Union, the 

use of linings is now obligatory, except where waste is 

carefully regulated and completely inert [3]. The 

composition of solid waste, as well as the rainfall conditions 

at a location, mainly determine the characteristics and 

composition of the leachates from these landfill sites. In both 

countries, the management of the collection of the leachates 

from these sites affects the groundwater and, thus, is a highly 

important aspect to consider for minimizing the adverse 

effects on groundwater quality. The management of 

leachates from landfill sites is different for India and 

Indonesia; as in some countries, specialized technologies 

and practices are adopted for their management, while in 

others, they are poorly managed. In this paper, a 

comparative scenario is presented regarding groundwater 

contamination from leachates from landfill sites located 

India and Indonesia. From this study, it was found that the 

unscientific design of landfill and the absence of liners allow 

leachate to percolate into the ground and contaminate the 

groundwater. The various factors affecting the groundwater 

contaminations from the leachates were also examined, and 

it was found that the landfill sites in both countries were not 

managed effectively. It was also revealed that the scientific 

disposal of the mixture of solid waste was not practiced [4]. 

Most developing countries are presently facing the problem 

of MSW management. Urbanization and industrialization 

have contributed higher amounts of generation of solid waste 

in developing nations [5]. There are hazardous compounds 

in many products that end up as waste. These toxins leach 

into our soil and groundwater over time and become threats 

to the atmosphere for years. Electronic waste is a good 

example. Waste such as televisions, computers, and other 

electronic appliances contain a long list of hazardous 
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substances, including mercury, arsenic, cadmium, PVC, 

solvents, acids, and lead. As waste breaks down in a landfill 

and water filters through the waste, leachate is the liquid 

created. This liquid is extremely toxic and can contaminate 

the pathways of soil, ground water, and water. Landfill 

leachate generation can cause environmental and health 

effects due to soil, surface, and groundwater contamination. 

The three main issues, the design of landfill liner systems, 

and the finding and valuation of the degree of contaminant 

that percolates in groundwater, are risks for human health 

and cause environment issues [6]. Groundwater quality 

monitoring systems help to determine the likelihood and 

severity of contamination problems. MSW composition 

contains glass pieces, metals, papers, rags, plastics, ashes, 

and flammable materials [7]. In addition to these, solid waste 

contains other substances, such as discarded chemicals, 

paints, scrap materials, hazardous waste generated from 

hospitals, dead animals, industrial, agricultural, and 

horticultural residues, and concrete and demolition waste 

[8]. In developing countries, serious environmental problems 

are caused due to landfill sites which are not scientifically 

designed and the absence of proper leachate collection and 

control systems. Leachate composition depends mainly on 

the composition of solid waste, annual rainfall, per capita 

waste generation, and characteristics of the total waste [9-

11]. Point sources, such as landfills, can release high 

concentrations of contaminants into the groundwater because 

of the migration of leachate from its bottom [12-13].      

Landfill leachate generation can cause environmental and 

health effects due to soil, surface, and groundwater 

contamination. The three main issues as seen previously, the 

design of landfill liner systems and the finding and valuation 

of the degree of contaminants that percolate in groundwater, 

are risks for human health and cause environmental issues 

[14-15]. He found that after they were fed formulas which 

were mixed with water from shallow wells, both infants 

became sick. Concentrations of nitrate-nitrogen (nitrate-N) 

were 90 and 150 mg/L in the associated wells. Many similar 

cases were documented after Comly's findings were 

released. Walton in 1951 [16-17]. There were computational 

techniques for solving the non-uniform flow of stream water 

comprising a one-dimensional equation of advection-

dispersion-reaction in [18] and [20]. To solve groundwater 

contamination concerns, a fourth-order compact finite 

difference scheme of the two-dimensional convection-

diffusion equation was suggested. To simulate the law of 

movement of contaminants in the medium, which was 

spatially precise in the fourth order and temporally precise in 

the second order, an effective system was created [21]. In 

the empirical solution of the convection diffusion equation, 

the two-dimensional Fourier transform and the inverse 

Fourier transform were taken into consideration. To obtain 

the numerical solution, the Crank-Nicolson finite difference 

method, which was second-order precise in time and space, 

was developed. Simulations of Numerical Simulations [22]. 

To solve the hydrodynamic model, the Crank-Nicolson 

method was also used, while the explicit Saulyev scheme 

was used to solve the dispersion model. For model use, 

simple finite difference schemes are becoming more 

appealing. The forward time-central space (FTCS) scheme, 

the MacCormack scheme, and the Saulyev scheme are 

simply explicit techniques. The BTCS and Tacit Schemes 

include and the Crank-Nicolson scheme [23] and [24]. 

Mathematical models describing groundwater flow and 

solute transport in homogeneous and heterogeneous porous 

media have been developed in the past and are available in 

literature. In Yule and Gardener [25-26]. The advection-

diffusion one-dimensional equation with a constant 

coefficient was solved by computational techniques. The 

two-level finite difference approximations are based on these 

techniques. The results of a numerical experiment were 

presented and it discussed and compared the time needed for 

the accuracy and central processor (CPU) [27].  

In addition, the numerical method has been used for other 

works, as well as having been useful in scientific, 

technological, biological, and biomedical problems, such as 

a thin film flow problem on a moving belt. One nonlinear 

differential equation could model a thin film flow velocity 

on a moving belt. The model was given velocity of film flow 

in each layer of thickness. A finite differential method and 

an iterative Newton method were used to estimate the 

nonlinear thin fluid film velocity model solutions. Their 

numerical simulations of a third-grade fluid's thin film flow 

velocity on a moving belt with varying physical parameters 

were investigated. The numerical techniques proposed gave 

approximate solutions in many moving belt speed rates in 

good agreement [28]. The article provided a solution to 

problems with boundary values using the finite difference 

scheme and the Laplace transform process. Some examples 

were solved to demonstrate the methods; Laplace transforms 

gave a closed form solution, while the extended interval 

increased convergence in the finite difference scheme of the 

solution [29].  

In a one-dimensional heat equation, subject to initial 

boundary conditions for both Neumann and Dirichlet, a 

Homotopy Perturbation Method was used to solve the 

problem. Compared with previous studies, the findings 

obtained were extremely reliable. In contrast to the finite 

difference approach, HPM also provides a continuous 

solution, which offers only discrete approximations. This 

method is considered a powerful mathematical technique 

and can be applied to a wide variety of linear and nonlinear 

problems in various fields of science and technology [30]. 

An analysis of a three-dimensional diffusion equation 

solution with non-local state using method of decomposition 

was efficient and provided a highly accurate solution in a 

series form. This also provided substantial savings in volume 

and times of measurement relative to conventional methods. 

The results obtained showed that the method of 

decomposition was effective and delivered a solution in a 

closed form [31]. 

 In this research, accurately numerical techniques for a 

groundwater quality assessment model in heterogeneous soil 

are proposed. The two-level explicit methods, the upwind 

method and the Lax-Wendroff method, are employed to 

approximate their model solutions. The computational 

solutions of both methods are compared for long-term 

groundwater pollutant dispersion from a landfill. 
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II. GOVERNING EQUATION  

A. Groundwater pollution dispersion flow through 

inhomogeneous soil model  

In a model of groundwater efficiency, the governing 

equation is a partial differential equation of one-dimensional 

advection-diffusion as [19]; 

 

 
( , ) ( , )

, ( , ) ( , ) ,
C x t C x t

D x t u x t C x t
t x x

   
  

   
               (1) 

for all      , 0, 0, ,x t L T    

where ( , )C x t  is the dispersing concentration of 

groundwater pollutant at position x  along the longitudinal 

direction at time  , Dt  is the pollutant method's dispersion 

coefficient, u  is a uniform flow velocity, L  is the length of 

the considered area from the pollutant origin to the end 

point, and T  is the rate of chance simulation time. The 

inhomogeneity of the soil causes variation in the 

groundwater flow velocity. Kumar et al. [19] proposed a 

variation of increasing nature. They also believed that 

functions were given to the dispersion parameter and the 

velocity parameter 1( , )f x t  and 2 ( , ).f x t  It is possible to 

rewrite Eq.(1) as [32]; 

 0 1 0 2

( , ) ( , )
, ( , ) ( , ) .

C x t C x t
D f x t u f x t C x t

t x x

   
  

   
      (2) 

 

Eq. (2) can be written in the following form; 

 

1

0 0 2

( , )( , ) ( , )
( , )

f x tC x t C x t
D u f x t

t x x x

   
  

    
 

2

2

0 1 02

( , )( , )
( , ) ( , ).

f x tC x t
D f x t u C x t

xx


 

                           (3) 

In the equation above, 0D and 0u  are constants, the 

dimensions of which depend on the expression 1( , )f x t  and 

2 ( , ).f x t  The inhomogeneity of the soil allows the rate of 

flow to differ. A difference in the growing dispersion of 

groundwater contaminants in heterogeneous soil has been 

considered by Kumar et al. [32]. The dispersion parameter is 

often believed to be proportional to the velocity square. 

Consequently, Eq. (2) is becoming; 

 
2

1( , ) 1 ,f x t ax     and   2 ( , ) 1 ,f x t ax                        (4)  

the parameter a  with the 1( )length  dimension accounts for 

the inhomogeneity of the soil, Eq. (3) is becoming; 

 

  0 0

( , ) ( , )
1 2

C x t C x t
ax aD u

t x

 
       

2
2

0 02

( , )
(1 ) ( , ),

C x t
D ax u aC x t

x


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                                    (5) 
2

2

( , ) ( , ) ( , )
( ) ( ) ( , ).

C x t C x t C x t
g x h x KC x t

t x x
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  
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         (6) 

where 

  0 0( ) 1 (2 ),g x ax aD u                                                  (7) 

2

0( ) (1 ) ,h x D ax                                                              (8) 

0 ,K au                                                                             (9) 

( ),g x                                                                        (10) 

( ).h x                                                                            (11) 

B.  Initial and boundary conditions 

The soil's originally groundwater-contaminated free state 

of concentration suggests the following initial condition; 

( ,0) ( ),C x r x 0 ,x L  0.t                                         (12) 

where  r x  is a given initially measured groundwater 

pollutant function. Because of a continuous input, 

groundwater pollutant concentration is introduced at the 

origin, while the concentration gradient at the end point is 

defined by the average chance rate of groundwater pollutant 

concentration around them, obtained by the following 

boundary conditions; 

0(0, ) ,C t C     0,t                                                         (13) 

( , )
,s

C x t
C

x





  ,x L    0.t                                          (14) 

 

where 0C  is a given average groundwater pollutant 

concentration at the considered landfill, and sC  is the rate of 

change of the pollutant concentration around the far field 

monitoring station. 

III. NUMERICAL TECHNIQUES 

A. The two-level explicit methods 

A mesh of the grid line covers the solution domain of the 

problem. The grid point ( , )i nx t is defined by ix i x   for all 

0,1,2,...i M and nt n t   for all 0,1,2,...n N , in which 

M  and N  are positive integers, and where ix  and nt  are 

parallel to the synchronized axes of space and time. The 

spacing of the constant spatial and temporal grid is 

/x L M  and /t T N  . Take into account the following 

derivative approximations in advection-diffusion Equation 

(6). A weight that integrates   as follows; 

 

( , ) ,n

iC x t C                                                                     (15)                         

1
( , )

,
n n

i iC CC x t

t t

 


 
                                                      (16) 

1 1 1 1( , )
(1 ) ,

2

n n n n

i i iC C C CC x t

x x x
    

  
  

                      (17) 

2

1 1

2 2

2( , )
.

( )

n n n

i i iC C CC x t

x x

  


 
                                          (18) 

Substituting Eqs.(15)-(18) in to Eq. (6), we can obtain that; 

 

 
1

0 0(1 )(2 )
n n

i iC C
ai x aD u

t

 
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
 

       1 1 1(1 )
2

n n n n

i i i iC C C C

x x
   
  

   
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2 1 1

0 02

2
(1 ) ,

n n n

ni i i

i

C C C
D ai x au C

x

 
  

    
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             (19) 
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
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x x

  
     
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    12

(1 )
( ) ( ) ,
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n

i

t t
g x h x C

x x




   
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  
                            (22) 

Thus   1

1( 1 ) (1 2 )n n n

i i iC E F C F E H C 

        

           
1((1 ) ) .n

iF E C                                                  (23) 

where 
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x


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
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t
F g x

x





                                                                 (25) 

.H K t                                                                           (26) 

for all 1 1i M    and 1 1n N    

where 

,
t

c
x







                                                                        (27) 

2
.

( )

t
s

x






                                                                    (28) 

A von Neumann stability of (22) yields [34] the condition of 

stability; 
2 1

.
2 2

c c c
s

  
                                                          (29) 

This method's modified equivalent partial differential 

equation is in the following form [35]; 
2
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( , ) ( , ) ( ) ( , )
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C x t C x t x c C x t
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 
 

     
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 
2 3

2 3

3

( , )
(1 3 2 6 ) (( ) ) 0.

6

x C x t
c c s O x

x
 

 
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
      

                                                                                      (30) 

It is noteworthy that the quantity of numerical diffusion is 

independent of s values, although the usable range of c 

varies with s values. Error of truncation for difference Eq. 

(19) is 2( , )O t x  . Using a value of x   and t  that is small 

enough, the truncation error can be reduced until the 

accuracy achieved is within the error tolerance [33]. The 

initial condition Eq. (12) for Eq. (19) can be expressed in the 

finite difference form as;  

 

0 ( ) ( ) ,i iC r x r i x r      0,x     0.t                             (31) 

 

In the finite difference form, Boundary Condition Eq. (13) 

can be written as; 

0 0.nC C                                                                           (32) 

 

If we employ the forward space method in Eq. (14) to the 

right boundary condition, we have; 

 

1 .n n

N N sC C xC 
                                                           (33) 

B. The upwind explicit method 

Setting 1    in Eq(19) gives the explicit method of the 

following upwind-type finite difference; 
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For which is stable; 
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where 
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.s E                                                                                (40) 

This method's modified equivalent partial differential 

equation is in the following form [35]; 
2
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     (41) 

The coefficients on the right side of the formula Eq. (40) in 

its stability range Eq.(41) are always non-negative. Usage of 

this upwind approach can never, therefore, create spurious 

negative values. This is the key reason why this formula is 

also used by hydrologists and oceanographers. It is only 

accurate in the first order, however, and generates 

unnecessary numerical diffusion quantities. 

Engineering Letters, 29:1, EL_29_1_21

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



 

C. The Lax-Wendroff  method 

Putting  c   with Eq. (19) returns the following formula 

for finite-difference; 
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Thus  1

1( (3 ) ) (1 2 2 )n n n

i i iC E c F C cF E H C

        
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Using Eq. (19), this scheme can be shown to be stable for; 
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where 

 

,c F H                                                                        (46) 

 

.s E                                                                                (47) 

Note that Eq. (41) shows that numerical diffusion will be 

eliminated by the c  option. In the following form, the 

modified equivalent partial differential equation that 

corresponds to the finite difference formula Eq. (44) 

consistent with the equation of advection-diffusion can be 

written;
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Note that Eq.(36) shows that this finite difference scheme is 

free of numerical diffusion. This technique was first 

developed by Lax and Wendroff [36]. The Lax-Wendroff 

method is stable for a larger range of values of the Courant 

number than the upwind method. 

 

IV. NUMERICAL EXPERIMENTS 

Consider the measurement of groundwater pollutant 

concentration C  under a landfill and its vicinity. The 

considered area is aligned with longitudinal distance, 1.0 km 

total length. There is a landfill which discharges leachate as 

a pollutant source into the underground.  The pollutant 

parameters at the considered landfill are 0C  kg/l, 0 0.71D   

km-2/year, 0 0.60u  km/year, and 1a   km-1. In the 

numerical experiment, space and time are discretized by 

0.1x  km and 0.0001t   year, respectively. The 

groundwater concentration is approximated by using the 

upwind explicit method and the Lax-Wendroff method. We 

obtain an analytical solution of an ideal advection-diffusion 

equation, proposed in [29]; 
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where 
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If we employ the upwind explicit method, in Eqs. (34)-

(37), we get the approximated groundwater pollutant along 

the considered area until 1.3 years, as shown in Figs. 1 and 2 

and Table I. If we use the Lax-Wendroff method, in Eqs 

(42)-(44), we obtain the approximated groundwater pollutant 

concentration along the longitudinal considered area in Figs. 

3 and 4 and Table II. The accuracy of the upwind explicit 

method and the Lax-Wendroff method are shown in Fig. 2 

and Fig. 4. The accuracy of both approximations are tested 

by using analytical solution and the absolute error, as shown 

in Table III and IV.  

 

 

 

 
Fig 1. Approximated groundwater pollutant by using the upwind explicit 

method 
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Fig 3. Approximated groundwater pollutant by using the Lax-Wendroff 

method 

 

 
Fig 2. Groundwater pollutant using the upwind explicit method at 0.1, 0.4, 

0.7, 1.0, and 1.3 years, when star represents the upwind explicit method 

solution and curved line represents analytical solution 

 
 

 
  

Fig 4. Groundwater pollutant concentration at 0.1, 0.4, 0.7, 1.0, and 1.3                

years, when star represents the Lax-Wendroff method solution and curved 

line represents analytical solution 

 

  

TABLE I APPROXIMATED GROUNDWATER POLLUTANT CONCENTRATION USING 

THE UPWIND EXPLICIT METHOD ALONG A CONSIDERED AREA BETWEEN 0.1-1.3 

YEARS 

   ( , )C x t     

x  

t  
0.0 0.1 0.2 0.3 0.4 0.5 

0.1 1.00 0.784135 0.605103 0.460967 0.347623 0.260112 

0.4 1.00 0.872311 0.764294 0.672245 0.593332 0.525337 

0.7 1.00 0.890264 0.797834 0.719028 0.651159 0.592208 

1.0 1.00 0.897854 0.812104 0.739122 0.676290 0.621665 

1.3 1.00 0.901852 0.819641 0.749780 0.689690 0.637468 

x  

t  
0.6 0.7 0.8 0.9 1.0  

0.1 0.193494 0.143325 0.105852 0.078029 0.057461  

0.4 0.466487 0.415354 0.370764 0.331754 0.297521  

0.7 0.540626 0.495203 0.454980 0.419182 0.387179  

1.0 0.573775 0.531482 0.493890 0.460286 0.430094  

1.3 0.591678 0.551214 0.515214 0.482989 0.453988  

 

 

 

 

 

TABLE II APPROXIMATED GROUNDWATER POLLUTANT CONCENTRATION 

USING THE LAX-WENDROFF METHOD ALONG A CONSIDERED AREA 

BETWEEN 0.1-1.3 YEARS 

   ( , )C x t     

x  

t  
0.0 0.1 0.2 0.3 0.4 0.5 

0.1 1.00 0.784700 0.606089 0.462209 0.348974 0.261460 

0.4 1.00 0.872553 0.764744 0.672869 0.594096 0.526211 

0.7 1.00 0.890418 0.798121 0.719432 0.651662 0.592795 

1.0 1.00 0.897961 0.812305 0.739407 0.676647 0.622086 

1.3 1.00 0.901930 0.819789 0.749990 0.689954 0.637780 

x  

t  
0.6 0.7 0.8 0.9 1.0  

0.1 0.194764 0.144474 0.106860 0.078893 0.058189  

0.4 0.467447 0.416374 0.371827 0.332843 0.298623  

0.7 0.541284 0.495520 0.455745 0.419986 0.388015  

1.0 0.574251 0.532005 0.494453 0.460884 0.430722  

1.3 0.592032 0.551606 0.515638 0.483442 0.454466  

 

 

 

 

TABLE III THE ABSOLUTE ERROR OF THE UPWIND EXPLICIT METHOD 

APPROXIMATION WHERE ( , ) ( , ) ( , )e x t C x t C x t   

   ( , )e x t     

x  

t  
0.0 0.1 0.2 0.3 0.4 0.5 

0.1 0.00 0.001853 0.003230 0.004071 0.004434 0.004431 

0.4 0.00 0.000792 0.001473 0.002041 0.002501 0.002865 

0.7 0.00 0.000510 0.000941 0.001320 0.001647 0.001923 

1.0 0.00 0.000350 0.000660 0.000932 0.001170 0.001377 

1.3 0.00 0.000256 0.000484 0.000686 0.000864 0.001021 

x
 

t  
0.6 0.7 0.8 0.9 1.0  

0.1 0.004181 0.003787 0.003328 0.002857 0.002410  

0.4 0.003142 0.003346 0.003486 0.003573 0.003616  

0.7 0.002156 0.002349 0.002508 0.002636 0.002739  

1.0 0.001556 0.001711 0.001845 0.001959 0.002057  

1.3 0.001159 0.001281 0.001389 0.001483 0.001565  
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V. DISCUSSION 

The upwind explicit method and the Lax-Wendroff 

method give good agreement for approximated groundwater 

pollutant concentration in an ideal case, as shown in Fig. 2 

and Fig. 4, respectively. In both simulations, the ground 

water pollutant measurement is simulated for a long period 

of time, around 0-1.3 years, as shown in Tables I-II and Fig. 

1 and Fig. 3, respectively. In the numerical aspect, the Lax-

Wendroff method gives better approximated solutions than 

the upwind explicit method, as shown by the absolute error 

between Table III and Table IV. The proposed numerical 

techniques provide accurate approximated solutions. 

 

VI. CONCLUSION 

The long-term conditions for calculating groundwater 

contamination was tested in heterogeneous soil. An updated 

model of groundwater quality was applied over a long time. 

The polluting concentration positions were approximated 

using numerical technique, and the concentration of 

groundwater pollutants at their monitoring stations was 

assumed to be the model's initial and boundary condition. To 

approximate the model solution, explicit two-level methods, 

the upwind method and the Lax-Wendroff method, were 

used. The Lax-Wendroff method provided a better 

approximation than the traditional upwind method. The 

proposed simulation can be used to warn of what happens in 

the future with groundwater contamination. The proposed 

numerical techniques provide an accurate approximate 

solution and do not result in excessive numerical diffusion. 
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