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Abstract—In this paper, we introduce a new extragradient
algorithm for solving variational inequality problems involv-
ing pseudomontone with Lipschitz continuous operators. The
algorithm which combines the inertial technique and the
extragradient algorithm. We show that the algorithm is globally
convergence without any knowledge of the Lipschitz constant
of the mapping. Besides, linear convergence is guaranteed
under additional strong pseudo-monotonicity. Finally, compared
with other algorithms, the numerical results indicate that our
algorithm has a better behavior.

Index Terms—Variational inequality problem, Extragradient
method, Inertial-type algorithm, Lipschitz continuity, Q-linear
convergence.

I. INTRODUCTION

IN this paper, let us consider the following classical
variational problem, denoted by V IP (F,C), is to find

a point x∗ ∈ C such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ C. (1)

Where F : Rm → Rm is an operator, C ∈ Rm is a nonempty
closed convex set, 〈·, ·〉 denotes the inner product in Rm and
the solution set of V IP (F,C) is denoted by C∗, respectively.

As an important part of nonlinear programming, varia-
tional inequalities have applications in many aspects and
have been widely used in operational research problem-
s, equilibrium problems in the economic field, and urban
transportation network modeling [1]. It not only unifies the
concepts in applied mathematics, but also strengthens the
knowledge system of complementary problems, optimization
problems and equilibrium problems [2]. In recent years, with
more and more scholars studying the variational inequalities,
it has achieved very outstanding success in the field of
mathematics, and it has been widely applied in engineering,
economics, operations research, game theory, and traffic
assignment (see, e.g., [3], [4] and the references therein).
There are many methods for solving the variational inequality
problem and its variants [5]–[11]. In the above methods, the
most notable and general popular methods are projection
and regularized. In this paper, we mainly study projection
algorithms, the oldest and simplest one is the following
gradient projection method [12], [13],

xn+1 = PC(xn − λF (xn)),

where λ ∈ (0, 2η
L2 ), F is η-strongly monotone L−Lipschitz

continuous on C. Obviously, the assumption of this algorithm
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is very strong. In order to overcome the above problem-
s, Korpelevich [14] proposed the following extragradient
method(EGM):{

yn = PC(xn − λF (xn))
xn+1 = PC(xn − λF (yn)),

where λ ∈ (0, 1
L ), the operator F is monotone and Lipschitz

continuous. Obviously, the step size of the above two meth-
ods depends on the Lipschitz constant. However, when the
Lipschitz constant is unknown or difficult to approximate,
these methods are not applicable. Recently, the EGM has
been interested and developed under suitable conditions
[15]–[19]. Iusem [20] proposed a new algorithm that its
convergence is guaranteed without the Lipschitz continuity,
the algorithm’s stepsize rule is as follow: λn = λl

jn ,
where jn is the smallest non-negative integer j satisfying
λl

j‖F (xn)−F (yn)‖ ≤ µ‖xn−yn‖; in particular, Trinh [21]
introduced an self-adaptive step-size algorithm which with-
out any information of Lipschitz constant of operator(see
Algorithm 1) for solving the pseudomonotone and Lipschitz
continuous VIP as follows:
Algorithm 1
Initialization Choose arbitrarily x−1, x0, y0 ∈ C; ρ, δ ∈
(0, 1); λ−1 ∈ (0,∞). Set n:=0
Step 1 Given λn−1, yn and xn.
If λn−1‖F (xn−1) − F (yn)‖ ≤ ρ‖xn−1 − yn‖ then set
λn = λn−1, else set λn = λn−1δ.
Compute

yn+1 = PC(xn − λnF (xn)),

xn+1 = PC(xn − λnF (yn+1)).

Step 2 If yn+1 = xn, then stop, else update n := n+1 and
go to Step 1.

Note that, different from [20], this algorithm does not need
to calculate values of the operator F many times at each itera-
tion and not require its step-sizes tending to zero. Therefore,
the algorithm reduces the amount of calculation and time
consumed, it requires the mapping F being pseudomonotone
and Lipschitz continuous only on the feasible set instead of
on the whole space.

It is also known that the inertial-type algorithm is one of
the effective methods for speeding up the convergence prop-
erties of fundamental algorithms, see [22]. The main feature
of inertial algorithms is that the next iterate is constructed
from the two previous iterates. Motivated and inspired by
inertial-type method [23] and above algorithms [24], we will
introduce a kind of inertial extragradient algorithm.

Our paper structure is as follows. In Section 2, we first
introduce some concepts and preliminary results used in this
paper. Section 3 propose an inertial extragradient algorithm
and analyze the convergence of it. Some experiment results
are presented in Section 4.
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II. PRELIMINARIES

In this section, we introduce some concepts and lemmas
that will be used. Throughout the paper, let C ∈ Rm is a
nonempty closed convex set and the operator F : C → Rm

is pseudomonotone and Lipschitz continuous.
In this paper, the orthogonal projection of x onto C is

denoted by PC(x) such that

PC(x) = argminy∈C‖y − x‖.

and the natural residual of V IP (F,C) be denoted by

r(x) = x− PC(x− λF (x)), where λ > 0.

For all λ > 0, x∗ is a solution of (1) if and only if

r(x∗) = 0.

Definition 2.1: Let F : C → Rm be a mapping, then
(1) F is monotone on C if for all x, y ∈ C, we have

〈F (x)− F (y), x− y〉 ≥ 0.

(2) F is pseudomonotone on C, if for all x, y ∈ C, we have

〈F (x), y − x〉 ≥ 0 =⇒ 〈F (y), y − x〉 ≥ 0.

(3) F is γ-strongly pseudomonotone on C, if there exists a
constant γ > 0, for all x, y ∈ C, we have

〈F (x), y − x〉 ≥ 0 =⇒ 〈F (y), y − x〉 ≥ γ‖x− y‖2.

(4) F is called L − Lipschitz continuous, if there exists a
constant L > 0, for all x, y ∈ C, we have

‖F (x)− F (y)‖ ≤ L‖x− y‖.

Obviously, (3) is included in (2), (1) is included in (2) ,
but the converse is not true. This paper will use the following
lemmas:

Lemma 2.1: [24] Let C be a nonempty, closed and
convex subset of Rm, for ∀x ∈ Rm. Then
(1) 〈PC(x)− x, y − PC(x)〉 ≥ 0, ∀y ∈ C;
(2) ‖PC(x)−PC(y)‖2 ≤ 〈PC(x)−PC(y), x−y〉, ∀y ∈ Rm;
(3) If y ∈ C, then ‖PC(x)−y‖2 ≤ ‖x−y‖2−‖x−PC(x)‖2.

Lemma 2.2: [23] Let {an}, {bn}and{cn} be sequences
in [0,∞) such that

an+1 ≤ an + bn(an − an−1) + cn∀n ≥ 1,Σ∞n=1cn <∞,

and there exists a real number b with 0 ≤ bn ≤ b < 1 for all
n ∈ N . Then the following results hold:
(1) Σ∞n=1Σ∞n=1[an−an−1]+ <∞, where [t]+ := max{t, 0};
(2) there exists a∗ ∈ [0,∞) such that limn→∞ an = a∗.

III. MAIN RESULTS

In this section, under mild assumptions, we give a mod-
ified algorithm which is called a self-adaptive inertial ex-
tragradient algorithm for solving variational inequalities, the
information of L is not necessary to be known. Based on
Algorithm 1, our algorithm adds an inertial term. Now we
assume the following conditions that will be used in the proof
process.

Condition 1: C is a nonempty, closed, and convex set.
We always assume that the solution set of the variational
inequality is nonempty i.e., ∃x∗ ∈ C∗.

Condition 2: The operator F is L−Lipschitz continuous
and pseudomonotone on C.

Condition 3: The operator F is L−Lipschitz continuous
and γ-strongly pseudomonotone on C.

When the Condition1 and Condition2 hold, our self-
adaptive inertial extragradient algorithm is as follows:
Algorithm 2
Initialization Choose arbitrarily x0, x1 ∈ C, ρ, δ ∈ (0, 1)
and λ1, a ∈ (0,∞).
Set n:=1
Step 1 Computer ωn = xn + an(xn − xn−1). Where

an =

{
min{ 1

n2‖xn−xn−1‖2 , a}, if xn 6= xn−1,

a, otherwise.

Step 2 Compute

yn = PC(ωn − λnF (ωn)).

xn+1 = PC(ωn − λnF (yn)).

step 3 If yn = ωn, then stop, yn is a solution of (1).
Otherwise update

λn+1 =

{
λn, if λn‖F (ωn)− F (yn)‖ ≤ ρ‖ωn − yn‖,
λnδ, otherwise.

(2)
Set n := n+ 1 and go to step 1 .

Remark 1: Since δ ∈ (0, 1), then the sequence {λn} is
nonincreasing. Meanwhile, if λn → 0, then which contradicts
the operator F is Lipschitz continuous, so there has a
constant q > 0 such that limn→∞ λn = q.

Lemma 3.1: Assume that Condition1 and Condition2
hold, let {xn} be the sequence generated by Algorithm 2,
we have

‖xn+1 − x∗‖2 ≤ ‖ωn − x∗‖2 − (1− ρ)‖xn+1 − yn‖2

− (1− ρ)‖yn − ωn‖2. (3)

Proof: As the sequence {λn} is lower bounded, there
exists n0 > 0 such that λn+1 = λn, and

λn‖F (ωn)− F (yn)‖ ≤ ρ‖ωn − yn‖, ∀n ≥ n0. (4)

Since yn = PC(ωn − λnF (ωn)), by Lemma 2.1 we have

〈z − yn, ωn − λnF (ωn)− yn〉 ≤ 0, for ∀z ∈ C,

equivalently,

〈yn − ωn, yn − z〉 ≤ λn〈F (ωn), z − yn〉, for ∀z ∈ C.
(5)

Besides, from projection properties and the definition of
xn+1, we get

〈z − xn+1, ωn − λnF (yn)− xn+1〉 ≤ 0, for ∀z ∈ C,

similarly, we get

〈xn+1−ωn, xn+1−z〉 ≤ λn〈F (yn), z−xn+1〉, for ∀z ∈ C.
(6)
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Then

‖xn+1 − z‖2

= ‖xn+1 − yn − z + yn‖2

= ‖xn+1 − yn‖2 + ‖yn − z‖2 + 2〈xn+1 − yn, yn − z〉
= −‖xn+1 − yn‖2 + ‖yn − ωn + ωn − z‖2

+ 2〈xn+1 − yn, xn+1 − z〉
= −‖xn+1 − yn‖2 + ‖yn − ωn‖2 + ‖ωn − z‖2

+ 2〈yn − ωn, ωn − z〉+ 2〈xn+1 − yn, xn+1 − z〉
= −‖xn+1 − yn‖2 + ‖ωn − z‖2 − ‖yn − ωn‖2

+ 2〈yn − ωn, yn − z〉+ 2〈xn+1 − yn, xn+1 − z〉
= −‖xn+1 − yn‖2 + ‖ωn − z‖2 − ‖yn − ωn‖2

+ 2〈yn − ωn, yn − xn+1〉+ 2〈xn+1 − ωn + ωn, xn+1 − z〉.
(7)

Which together with (3.4) and (3.5) shows that

‖xn+1 − z‖2

≤ −‖xn+1 − yn‖2 + ‖ωn − z‖2 − ‖yn − ωn‖2

+ 2λn〈F (ωn), xn+1 − yn〉+ 2〈F (yn), z − xn+1〉
= −‖xn+1 − yn‖2 + ‖ωn − z‖2 − ‖yn − ωn‖2

+ 2λn[〈F (ωn)− F (yn), xn+1 − yn〉+ 〈F (yn), xn+1 − yn〉]
+ 2λn[〈F (yn), z − yn〉+ 〈F (yn), yn − xn+1〉]
= ‖ωn − z‖2 − ‖xn+1 − yn‖2 − ‖yn − ωn‖2

+ 2λn〈F (ωn)− F (yn), xn+1 − yn〉
+ 2λn〈F (yn), z − yn〉. (8)

Using (4) and (8), when z = x∗ ∈ C, for ∀n ≥ n0, we
obtain

‖xn+1 − z‖2

≤ ‖ωn − x∗‖2 − ‖xn+1 − yn‖2 − ‖yn − ωn‖2

+ 2λn〈F (yn), x∗ − yn〉+ 2ρ‖ωn − yn‖‖xn+1 − yn‖
≤ ‖ωn − x∗‖2 − (1− ρ)‖xn+1 − yn‖2

− (1− ρ)‖yn − ωn‖2 + 2λn〈F (yn), x∗ − yn〉. (9)

And because the operator F is pseudo-monotonic, we have

〈F (yn), x∗ − yn〉 ≤ 0,

therefore, (3) hold.

Lemma 3.2: Assume that Condition1 and Condition2
hold, then the {xn} generated by Algorithm 2 is bounded.

Proof: According to the definition of ωn, we obtain

‖ωn − x∗‖2

= ‖xn + an(xn − xn−1)− x∗‖2

= (1 + a2n + 2an)‖xn − x∗‖2 + a2n‖xn−1 − x∗‖2

− 2an〈xn − x∗, xn−1 − x∗〉 − 2a2n〈xn − x∗, xn−1 − x∗〉
= (1 + an)‖xn − x∗‖2 + a2n〈xn − x∗, xn − x∗〉
+ a2n〈xn−1 − x∗, xn−1 − x∗〉
− a2n〈xn − x∗, xn−1 − x∗〉 − a2n〈xn − x∗, xn−1 − x∗〉
+ an〈xn − x∗, xn − x∗〉 − an〈xn − x∗, xn−1 − x∗〉
− an〈xn − x∗, xn−1 − x∗〉
= (1 + an)‖xn − x∗‖2 + a2n〈xn − x∗, xn − xn−1〉
− a2n〈xn−1 − x∗, xn − xn−1〉
+ an〈xn − x∗, xn − x∗〉 − an〈xn − x∗, xn−1 − x∗〉
− an〈xn − x∗, xn−1 − x∗〉
= (1 + an)‖xn − x∗‖2 + a2n〈xn − xn−1, xn − xn−1〉
+ an〈xn − x∗, xn − xn−1〉 − an〈xn − x∗, xn−1 − x∗〉
= (1 + an)‖xn − x∗‖2 − an‖xn−1 − x∗‖2

+ (1 + an)an‖xn − xn−1‖2 (10)

which together with Lemma 3.1 suggests that

‖xn+1 − x∗‖2

≤ (1 + an)‖xn − x∗‖2 − an‖xn−1 − x∗‖2

+ (1 + an)an‖xn − xn−1‖2

− (1− ρ)‖xn+1 − yn‖2 − (1− ρ)‖yn − ωn‖2

≤ ‖xn − x∗‖2 + an(‖xn − x∗‖2 − ‖xn−1 − x∗‖2)

+ (1 + a)an‖xn − xn−1‖2. (11)

Where we get the last inequality follows from the defini-
tion of 0 ≤ an ≤ a. Moreover, since an‖xn − xn−1‖2 ≤
1
n2 (for ∀n ∈ N ), so we have Σ∞n=1an‖xn − xn−1‖2 < ∞,
this implies that, limn→∞ ‖xn − xn−1‖ = 0. Now, we let
an = ‖xn − x∗‖2 and cn = (1 + a)an‖xn − xn−1‖2, then,
by Lemma 2.2 and (11), there has a constant α such that

lim
n→∞

‖xn − x∗‖2 = α,

which means the sequence {xn} is bounded.
Next, we start to analyze the above algorithm convergence

by proving the following theorem.
Theorem 3.1: If Condition1 and Condition2 hold, then the

sequence {xn} generated by Algorithm 2 converges to a
solution x∗ of (1).

Proof: By Lemma 2.2, we obtain
∞∑
n=1

[‖xn − x∗‖2 − ‖xn−1 − x∗‖2]+ <∞,

where t+ = max{t, 0}. Consequently,

lim
n→∞

[‖xn − x∗‖2 − ‖xn−1 − x∗‖2]+ = 0. (12)

Using (11) and the definition of an, we also obtain

(1− ρ)‖yn − ωn‖2 + (1− ρ)‖xn+1 − yn‖2

≤‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + an[‖xn − x∗‖2

− ‖xn−1 − x∗‖2]+ + (1 + a)an‖xn − xn−1‖2. (13)
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From (12) and (13), we obtain

lim
n→∞

‖yn − ωn‖ = 0, (14)

also from the definition of ωn, we have

‖ωn − xn‖2 = a2n‖xn − xn−1‖2 → 0, n→∞.

Hence
lim
n→∞

‖ωn − xn‖ = 0, (15)

Therefore, by (9) and (15), we know the sequence {‖xn −
x∗‖} is nonincreasing. Since the sequence {xn} is bound-
ed, {‖xn − x∗‖} converges, and there exists subsequence
{xni
} ⊂ {xn} such that {xni

} → x̄ ∈ C. Therefore ,we only
need to prove x̄ ∈ C∗: by (4) and (5), for ∀z ∈ C, ni ≥ n0,
we have

〈yni − ωni , yni − z〉+ λni〈F (ωni), yni − ωni〉
≤ λni〈F (ωni), yni − ωni〉. (16)

Since the F is continuous, combining (14) and (16), letting
i→∞, we obtain

〈F (x̄), z − x̄〉 ≥ 0,

from the definition of V IP (F,C), this implies that x̄ ∈ C∗.
Therefore, we have

lim
n→∞

‖xn − x̄‖ = lim
i→∞

‖xni
− x̄‖ = 0.

Now, let’s analyze the convergence rate of the Algorithm
2. Before that, we give the following Lemma.

Lemma 3.3: If Condition1 and Condition2 hold, then (1)
has a unique solution.

Proof: Suppose x∗1, x
∗
2 ∈ C∗ and x∗1 6= x∗2, for any

y, z ∈ C, because F is strongly pseudomonotonic, we get

〈F (x∗1), y − x∗1〉 ≥ 0⇒ 〈F (y), y − x∗1〉 ≥ γ‖y − x∗1‖2,

〈F (x∗2), z − x∗2〉 ≥ 0⇒ 〈F (z), z − x∗2〉 ≥ γ‖z − x∗2‖2,

when y = x∗2, we have the following inequality

〈F (x∗1), x∗2 − x∗1〉 ≥ 0⇒ 〈F (x∗2), x∗2 − x∗1〉 ≥ γ‖x∗2 − x∗1‖2.
(17)

Similarly, when z = x∗2, we obtain

〈F (x∗2), x∗1 − x∗2〉 ≥ 0⇒ 〈F (x∗1), x∗1 − x∗2〉 ≥ γ‖x∗1 − x∗2‖2.
(18)

From (17) and (18), we have

γ‖x∗1 − x∗2‖2 ≤ 0,

It implies that x∗1 = x∗2, this contradicts the condition.
Consequently, (1) has a unique solution.

Theorem 3.2: If λ1 < 1
L , Condition1 and Condition3

hold, then sequence {xn} generated by Algorithm2 Q-linear
converges to the unique solution of (1), denoted by x∗.

Proof: From Lemma 2.1, we have

〈xn+1 − yn, ωn − yn − λnF (yn)〉
= 〈xn+1 − yn, ωn − yn − λnF (ωn)〉
+ λn〈xn+1 − yn, F (ωn)− F (yn)〉
≤ λn〈xn+1 − yn, F (ωn)− F (yn)〉. (19)

Since x∗ ∈ C∗, from the pseudomonotonicity of F , this
shows that

〈F (x∗), yn − x∗〉 ≥ 0⇒ 〈F (yn), yn − x∗〉 ≥ 0,

or equivalently,

〈F (yn), xn+1 − x∗〉 ≥ 〈F (yn), xn+1 − yn〉. (20)

Let zn = ωn − λnF (yn), then

2〈zn − PC(zn), x∗ − PC(zn)〉
= 2‖zn − PC(zn)‖2 + 2〈PC(zn)− zn, zn − x∗〉 ≤ 0,

this implies that

‖zn − PC(zn)‖2 + 2〈PC(zn)− zn, zn − x∗〉
≤ −‖zn − PC(zn)‖2. (21)

By (19), (20) and (21) we have

‖xn+1 − x∗‖2

= ‖PC(zn)− x∗‖2

= ‖zn − x∗‖2 + ‖zn − PC(zn)‖2 + 2〈PC(zn)− zn, zn − x∗〉
≤ ‖zn − x∗‖2 − ‖zn − PC(zn)‖2

= 〈ωn − λnF (yn)− x∗〉〈ωn − λnF (yn)− x∗〉
− 〈ωn − λnF (yn)− xn+1〉〈ωn − λnF (yn)− xn+1〉
= ‖ωn − x∗‖2 − 2〈λnF (yn), ωn − x∗〉
− ‖ωn − xn+1‖2 + 2〈λnF (yn), ωn − xn+1〉
= ‖ωn − x∗‖2 − ‖ωn − xn+1‖2 + 2λn〈F (yn), x∗ − xn+1〉
≤ ‖ωn − x∗‖2 − ‖ωn − xn+1‖2 + 2λn〈yn − xn+1, F (yn)〉
= ‖ωn − x∗‖2 − 〈ωn − yn + yn − xn+1, ωn − yn + yn − xn+1〉
+ 2λn〈yn − xn+1, F (yn)〉
= ‖ωn − x∗‖2 − ‖ωn − yn‖2 − ‖yn − xn+1‖2

+ 2〈xn+1 − yn, ωn − yn − λnF (yn)〉
≤ ‖ωn − x∗‖2 − ‖ωn − yn‖2 − ‖yn − xn+1‖2

+ 2λn‖xn+1 − yn‖‖F (ωn)− F (yn)‖
≤ ‖ωn − x∗‖2 − ‖ωn − yn‖2 − ‖yn − xn+1‖2

+ 2λnL‖xn+1 − yn‖‖ωn − yn‖. (22)

On the other hand, since

(λnL‖ωn − yn‖ − ‖xn+1 − yn‖)2

= (λnL)2‖ωn − yn‖2 + ‖xn+1 − yn‖2

− 2λnL‖ωn − yn‖‖xn+1 − yn‖ ≥ 0,

which implies that

2λnL‖ωn − yn‖‖xn+1 − yn‖
≤ (λnL)2‖ωn − yn‖2 + ‖xn+1 − yn‖2. (23)

Combining (22) and (23), we obtain

‖xn+1 − x∗‖2

≤ ‖ωn − x∗‖2 − ‖ωn − yn‖2 − ‖yn − xn+1‖2

+ (λnL)2‖ωn − yn‖2 + ‖yn − xn+1‖2

= ‖ωn − x∗‖2 − (1− λ2nL2)‖ωn − yn‖2.

From the γ-strongly pseudo-monotone of F on C it follows

〈F (yn), yn − x∗〉 ≥ γ‖yn − x∗‖2,
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then

〈F (ωn), x∗ − yn〉
= 〈F (ωn)− F (yn), x∗ − yn〉 − 〈F (yn), yn − x∗〉
≤ ‖F (ωn)− F (yn)‖‖yn − x∗‖ − γ‖yn − x∗‖2

≤ L‖ωn − yn‖‖yn − x∗‖ − γ‖yn − x∗‖2. (24)

Also from Lemma 2.1, we have

〈x∗ − yn, yn − ωn + λnF (ωn)〉 ≥ 0,

which yields

〈x∗ − yn, ωn − yn〉
≤ λn〈F (ωn), x∗ − yn〉
≤ λnL‖ωn − yn‖‖yn − x∗‖ − λnγ‖yn − x∗‖2.

Hence,

λnγ‖yn − x∗‖2

≤ λnL‖ωn − yn‖‖yn − x∗‖ − 〈x∗ − yn, ωn − yn〉
≤ λnL‖ωn − yn‖‖yn − x∗‖+ ‖x∗ − yn‖‖ωn − yn‖
= (1 + λnL)‖ωn − yn‖‖yn − x∗‖, (25)

then it holds.

‖ωn − x∗‖ = ‖ωn − yn + yn − x∗‖
≤ ‖ωn − yn‖+ ‖yn − x∗‖

≤ ‖ωn − yn‖+
1 + λnL

λnγ
‖ωn − yn‖

=
1 + λnL+ λnγ

λnγ
‖ωn − yn‖. (26)

Replacing (26) into (24), we get

‖xn+1 − x∗‖2

≤ ‖ωn − x∗‖2 − (1− λ2nL2)(
λnγ

1 + λnL+ λnγ
)2‖ωn − x∗‖2.

By (15), for n→∞, we have

‖xn+1 − x∗‖2

≤ ‖xn − x∗‖2 − (1− λ2nL2)(
λnγ

1 + λnL+ λnγ
)2‖xn − x∗‖2

= [1− (1− λ2nL2)(
λnγ

1 + λnL+ λnγ
)2]‖xn − x∗‖2. (27)

Hence, according to {λn} is nonincreasing and λ1 < 1
L , we

obtain

σ = [1− (1− λ2nL2)(
λnγ

1 + λnL+ λnγ
)2]

1
2 ∈ (0, 1),

which suggests that sequence {xn} converges to x∗ with a
Q-linear rate.

IV. NUMERICAL EXPERIMENTS

In this section, we give two examples and experimental
data to illustrate the proposed algorithm. The python codes
are on a PC(with CPU Intel (R)) under Python Version 3.7.3.
Example 1 Consider the following problem: the operator
F :Rm → Rm by

F (x) = Mx+ q,

where M ∈ Rm×m is a positive semi-definite matrix, q is a
vector in Rm and the feasible set C is given by

C = {x ∈ Rm| − 1 ≤ xi ≤ 1,∀i = 1, ...,m}.

Example 2 In this example, take F : R2 → R2 be defined
by

F (x+ y + cos(x),−x+ y + cos(y)), ∀x, y ∈ C.

Where C is same as the above example.
Obviously, the operator F in the above examples are

continuous and Lipschitz continuous.
Throughout the numerical experiment, we choose the same

starting points in this example: x0 = x1 = (1, ..., 1). We
use the error ’ε’ as the algorithm stopping rule, ′Iter′

represents the number of iterations, ′CPU ′ represents the
total time of the algorithm termination. We compare Al-
gorithm 2(SIEGM) with two algorithms, these algorithm-
s were introduced by T.N.Hai [21](IEGM), D.V.thong
[25](MTEGM), respectively. The following tables summa-
rize the numerical results of this experiment under different
dimensional m.

In Table I and Table II, we used the parameters as follows:
SIEGM and IEGM : ρ = 0.6, δ = 0.8, a = 1, choose the
same initial step size is 0.8;
MTEGM : λ = 0.8, a = 1.
In Table III, we used the parameters as follows:
SIEGM ,IEGM : ρ = 0.8, δ = 0.3, a = 1, choose the same
initial step size is 1;
MTEGM : λ = 0.5, a = 0.3.

It is clearly seen that compared with Algorithm1, our
algorithm has good results on running time and number
of iterations from the above tables; compared with another
algorithm, we have fewer iterations. Therefore, we proposed
algorithm have the competitive advantages.

V. CONCLUSIONS

In this paper, we first give an inertial extragradient
algorithm for solving variational inequality problem. Un-
der the assumptions of pseudo-monotonicity and Lipschitz
continuity of F , we verify the global convergence of the
algorithm and analyze its convergence rate. Compared with
several related algorithms, the effectiveness of the algorithm
is verified.
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