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Abstract—The problem of salinity in tap water is a very
important problem. Drinking water that is higher than the
World Health Organization designation can greatly affect peo-
ple’s health. In this research, a salinity management model is
also applied in a river with a dam with an interpolation process
for initial and boundary conditions. An unconditionally stable
explicit finite difference scheme with the Lagrange interpolating
polynomials for the initial and boundary conditions is utilized to
estimate the saltiness level with a few conditions of a proposed
model. The suggested computational technique allows for a clear
consensus on the effects of realistic implementations for water
supply processes.

Index Terms—Salinity, Barrage dam, Water quality, Interpo-
lation method, Sualyev method

I. INTRODUCTION

To supply tap water, water supply frameworks may utilize
surface water or crude water. The salinity of the water is an
important aspect impacting the quality of the water. As it can
not be processed in the traditional way, this is a very critical
factor in production. As such, it is required to have a salinity
level to bring the water to the treatment process.

Thailand’s Waterworks Authority has seven observation
stations for water quality located along a river. Distance from
the estuary of each station as appeared in Table 1.

TABLE I
DISTANCE FROM THE ESTUARY OF EACH OBSERVATION STATIONS

Stations Distance
S1 0
S2 12
S3 23
S4 52
S5 79
S6 84
S7 90

In Bangkok, the water supply handle for use includes
a water saltiness issue above the norm. It has a salinity
up to standard that impacts the quality of water generated.
By measuring the salinity as of December 14, 2019 and
December 25, 2019, the salinity value is as appeared in the
table 2.
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TABLE II
THE SALINITY AS OF DECEMBER 14, 2019 AND DECEMBER 25, 2019

Stations Salinity level at 14/12/2019 Salinity level at 25/12/2019
S1 24.74 23.78
S2 19.64 18.72
S3 14.6 17.34
S4 8.82 11.72
S5 3.99 5.79
S6 0.25 1.73
S7 0.2 0.79

At present, the pumping station has an excess of salinity,
which affects the quality of tap water in Bangkok. This
impacts the quality of water produced.

In [1], the finite difference method was utilized to ex-
plain water contamination models. In [13], the interpolation
method was utilized to initial and boundary conditions.
In [20] and [21], the three dimension advection diffusion
model was proposed. In [18], the water pollution model was
introduced. In [14], the implicit finite difference method was
to solve the water pollution model. In [16], [17] and [19], the
fluid flow model was proposed. In [15], the numerical method
was used to solve the fluid flow problem. Research reports
on the effect of salt drinking water on standards have been
undertaken, such as [6]. The water was excessively salty, up
to levels that influence the body. In this way, look into has
been introduced on the expansion of salt water, for example,
[7]. In [8], the one-dimensional salinity water was proposed,
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where A(x) is the river cross-sectional area (m2), Q(x, t) is
flow rates (m3/s), The coefficient of water diffusion is Dx

(m2/s), S is water salinity level (ppt), x is the length of
river (m) and t is times (s)

To solve this problem, a salinity management model is also
introduced in a river with a barrage dam with an interpolation
process suggested for the initial and boundary conditions.
Under a few conditions from the suggested model, the
Sualyev scheme is used to estimate the saltiness level. The
suggested evaluation method for water supply forms can be
used in reasonable circumstances.

II. GOVERNING EQUATIONS

2.1 One-dimensional salinity water measurement model

The fluid one-dimensional advection-dispersion equation
is the governing equation in the salinity dispersion model.
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Simpler representation, The equation is measured over the
waters, as appeared in [11]

∂c

∂t
+ u(x, t)

∂c

∂x
= D

∂2c

∂x2
, (2)

where (x, t) ∈ [0, L] × [0, T ], u is the speed of the salinity
flow and D is coefficient of diffusion.

Expecting that the saltiness is weakened by the fresh water.
These are then the saltiness shift in weather conditions level
is decreased by the fresh water speed. The rate of fresh water
efficiency to weaken saltiness is accepted by k ∈ [0, 1]. In
[11], the model for salinity problem was proposed

∂c

∂t
+ (us − kuw)

∂c

∂x
= Ds

∂2c

∂x2
, (3)

where c(x, t) is the salinity level of water(kg/m3), k is
the efficiency rate of water salinity removal, us is the salinity
water advective velocity (m/s) and uw is the velocity of fresh
water flow

2.2 Initial conditions

A Lagrange interpolating polynomials of the salinity data
of Chao Phraya River is defined as the initial condition, along
90 km of the river form the estuary is taken into consideration
using salinity data, defined by

c(x, 0) = f(x), (4)

where x ∈ [0, L] and f(x) is a measured salinity data
interpolation function.

2.3 Left boundary condition

The left boundary condition is a Lagrange interpolating
polynomials of the raw data measured, dependent on the
river’s salinity at the first station, defined by

c(0, t) = g(t), (5)

where t ∈ [0, T ] and g(t) is a given Lagrange interpolating
polynomials at the first observation station via calculated
salinity data.

2.4 Right boundary condition

The right boundary condition were determined by the
change in salinity at the last station, defined by

∂c

∂x
= CR, (6)

where t ∈ [0, T ] and CR is an estimated the rate of change
of the water salinity level at the last station.

III. NUMERICAL TECHNIQUE

3.1 Lagrange interpolating polynomial

The problem of evaluating the first degree polynomials
that passes through the (x0, y0) separate points (x0, y0) and
(x1, y1) is the same as estimating a f function for which
f(x0) = y0 and f(x1) = y1 by means of a first degree
polynomial interpolation at the specified points with the
values of f . Using this polynomial for approximation is

called polynomial interpolation within the interval provided
by the endpoints. Define the functions

L0(x) =
x− x1

x0 − x1
, L1(x) =

x− x0

x1 − x0
, (7)

The linear Lagrange interpolating polynomial through
(x0, y0) and (x1, y1) is

Pn(x) = L0(x)f(x0) + L1(x)f(x1)

=
x− x1

x0 − x1
f(x0) +

x− x0

x1 − x0
f(x1). (8)

Note that

L0(x0) = 1, L0(x1) = 0, L1(x0) = 0, L1(x1) = 1, (9)

which implies that

P (x0) = 1 · f(x0) + 0 · f(x1) = f(x0) = y0,

P (x1) = 0 · f(x0) + 1 · f(x1) = f(x1) = y1. (10)

Then, P is the most unique polynomial of degree that passes
through (x0, y0) and (x1, y1). In this case, we construct first,
for every k = 0, 1, 2, ..., n, a function Ln,k(x) = 1 with the
property that Ln,k(xi) = 0 when i 6= k and Ln,k(x) = 1.
To satisfy Ln,k(xi) = 0 for each i 6= k,it is required that
the numerator of Ln,k(x) includes the term (x − x0)(x −
x1)...(x− xk−1)(x− xk+1)...(x− xn).

To satisfy Ln,k(x) = 1, The Ln,k(x) denominator must
be the same term but must be valued at x = xk. Thus,

Ln,k(x)

=
(x− x0) ... (x− xk−1) (x− xk+1) ... (x− xn)

(xk − x0) ... (xk − xk−1) (xk − xk+1) ... (xk − xn)
(11)

Theorem 1. If x0, x1, ..., xn are n+ 1 distinct numbers and
f is a function whose values are given at these numbers,
then a unique polynomial P (x) of degree at most n exists
with f(xk) = P (xk), for each k = 0, 1, ..., n.

This polynomial is given by

P (x) = f(x0)Ln,0(x) + ...+ f(xn)Ln,n(x)

=
n∑

k=0

f(xk)Ln,k(x), (12)

where, for each k = 0, 1, ..., n,

Ln,k(x) =
n∏

i=0,i6=k

(x− xi)
(xk − xi)

, (13)

We can write Ln,k(x) simply as Lk(x) when there is no
doubt as to the degree.

The approximation error of Lagrange interpolation poly-
nomial is

∣∣∣P (x)− f̃(x)
∣∣∣, where f̃(x) is the polynomial

interpolating.

3.2 Saulyev scheme

The Saulyev scheme is unconditionally stable [2]. Obvi-
ously the non strictly dependability prerequisite of Saulyev
scheme is the principle of preferred position and conservative
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to utilize. Taking the Saulyev scheme into Eq.(3), it appears
to have the following discretization:

c (xm, tn) ∼= Cn
m, (14)

∂c

∂t

∣∣∣∣
(xm,tn)

∼=
Cn+1

m − Cn
m

∆t
, (15)

∂c

∂x

∣∣∣∣
(xm,tn)

∼=
Cn

m+1 − Cn+1
m−1

2∆x
, (16)

∂2c

∂x2

∣∣∣∣
(xm,tn)

∼=
Cn

m+1 − Cn
m − Cn+1

m + Cn+1
m−1

(∆x)
2 , (17)

unsm
∼= unm, (18)

unwm
= uw (xm, tn) . (19)

Substituting Eqs.(14-19) into Eq.(3), We obtain the equa-
tion of finite difference,

Cn+1
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m

∆t
+ (unsm − ku

n
wm

)

(
Cn

m+1 − Cn+1
m−1

2∆x

)

= Ds

(
Cn
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m − Cn+1

m + Cn+1
m−1

(∆x)
2

)
. (20)

The explicit equation of finite difference then becomes

Cn+1
m+1 =

(
1

1 + λ

)
[

(
λ+

1

2
rnm

)
Cn+1

m−1 + (1− λ)Cn
m

+

(
λ− 1

2
rnm

)
Cn

m+1]. (21)

where i = 1, 2, 3, ...,M − 1, λ = Ds∆t
(∆x)2

and rnm =

(un
sm
−kun

wm)∆t

∆x . For i = M , replaced the unknown value
in Eq.(5), we obtain

Cn
M+1 =

(
Cn

M2
− Cn

M1

L2 − L1

)
∆x+ Cn

M−1. (22)

The truncation error of Sualyev scheme is
O
{

(∆x)
2

+ (∆t)
2

+ (∆t/∆x)
2
}

.

IV. NUMERICAL SIMULATIONS

4.1. Simulation 1 : Interpolation for the initial condition and
left boundary conditions.

The observation stations with 90 km along the river and
data on salinity level are considered, as appeared in Table
1 and Table 2 respectively. We simulated the boundary
and initial conditions by using Eq.(7-8). The comparison
of interpolation of boundary and initial condition with the
measuring salinity data as appeared in Fig 1-2 respectively.

4.2. Simulation 2 : the spread of salinity water into rivers.

We will to find the approximate solution of Eq.(3) for
all observation stations with 90 km along the river, as
appeared in Table 1. Provided that saltiness water coefficient
of diffusion is 0.1 m2/s, the speed of saltiness water flow
us = 0.06 m/s, the efficiency of eliminating salinity of
fresh water discharge is k = 30%, and time of simulation
is 9 days. The physical parameters are appeared in Table 3.
The approximate solution of salinity along the river and the
salinity at observation station S6 compare with the real data
as appeared in Fig 3-4 respectively.

Fig. 1. The comparison of interpolation in initial condition with the
measuring salinity data

Fig. 2. The comparison of interpolation in left boundary condition condition
with the measuring salinity data

TABLE III
THE PARAMETERS OF PHYSICAL OF SIMULATION 2.

Ds (m2/s) us (m/s) uw (m/s) K L (km) T (days)
0.1 0.06 0.3 0.3 90 9

4.3. Simulation 3 : release fresh water from the barrage dam
to dilute the salinity.

We will to find the approximate solution of Eq.(3) for
all observation stations with 90 km along the river, as
appeared in Table 1. Provided that saltiness water coefficient
of diffusion is 0.1 m2/s, the speed of saltiness water flow
us = 0.06 m/s, the efficiency of eliminating salinity of
fresh water discharge is k = 30%, and time of simulation
9 days. The physical parameters are appeared in Table 4.
The approximate solution of salinity along the river and the
salinity level at the observation station S6 as appeared in Fig
5-6 respectively.
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Fig. 3. The estimated saltiness level of simulation 2 where ∆x = 0.1 and
∆t = 0.05 for all x ∈ [0, 90] and t ∈ [0, 9].

Fig. 4. The estimated saltiness level at station S6 of simulation 2 where
∆x = 0.1 and ∆t = 0.05 for all x ∈ [0, 90] and t ∈ [0, 9].

TABLE IV
THE PARAMETERS OF PHYSICAL OF SIMULATION 3.

Ds (m2/s) us (m/s) uw (m/s) K L (km) T (days)
0.1 0.06 0.3 0.3 90 9

4.4. Simulation 4 : Maintaining a constant level of salinity to
the standard by reducing the speed of water discharge from
the barrage dam.

We will to find the approximate solution of Eq.(3) for
all observation stations with 90 km along the river, as
appeared in Table 1. Provided that saltiness water coefficient
of diffusion is 0.1 m2/s, the speed of saltiness water flow
us = 0.06 m/s, the efficiency of eliminating salinity of fresh
water discharge is k = 30%, and time of simulation is 9 days.
We want to monitor the salinity of the water at the station
S6 to be less than the specified salinity CST = 0.72 kg/m3

by the controlled release of water from barrage dams with
the following process:

1) Release at high speed when the salinity level c(84, t) >
CST at the station S6.

2) Release at low speed when the salinity level c(84, t) <
CST at the station S6.

Fig. 5. The estimated saltiness level of simulation 3 where ∆x = 0.1 and
∆t = 0.05 for all x ∈ [0, 90] and t ∈ [0, 9].

Fig. 6. The estimated saltiness level at station S6 of simulation 3 where
∆x = 0.1 and ∆t = 0.05 for all t ∈ [0, 9].

Their parameters of physical are appeared in Table 5.
The approximate salinity level for all observation station

can be obtained, as appeared in Fig 7 and Table 6. The
saltiness level at the various observation stations S6, as
appeared in Fig 8.

TABLE V
THE PARAMETERS OF PHYSICAL OF SIMULATION 4.

c(x, t) at S6 D (m2/s) us (m/s) uw (m/s)
> CST 0.1 0.06 0.23
< CST 0.1 0.06 0.205

K T (days) L (km) c(0,t)
0.3 9 90 g(t)
0.3 9 90 g(t)

TABLE VI
THE ESTIMATED SALTINESS LEVEL FOR ALL OBSERVATION STATIONS OF

SIMULATION 4.

t S2 S3 S4 S5 S6

1 18.2300 12.5500 4.2000 0.7200 0.3300
5000 17.6659 12.4890 3.9232 0.5884 0.2765
10000 17.1508 12.1402 3.6688 0.5191 0.2385
15000 16.7113 11.7453 3.4336 0.4653 0.2113
20000 16.3177 11.5042 3.2701 0.4392 0.2025
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Fig. 7. The estimated saltiness level of simulation 4 by ∆x = 0.1 and
∆t = 0.05 for all x ∈ [0, 90] and t ∈ [0, 9].

Fig. 8. The estimated saltiness level at station S6 of simulation 4 by
∆x = 0.1 and ∆t = 0.05 for all t ∈ [0, 9].

4.5. Simulation 5 : reduce the level of salinity before the
salinity exceeds the standard.

We will to find the approximate solution of Eq.(3) for
all observation stations with 90 km along the river, as
appeared in Table 1. Provided that saltiness water coefficient
of diffusion is 0.1 m2/s, the speed of saltiness water flow
us = 0.06 m/s, the efficiency of eliminating salinity of fresh
water discharge is k = 30%, and time of simulation is 9 days.
We want to monitor the salinity of the water at the station
S6 to be less than the specified salinity CST = 0.72 kg/m3

about 3 days by the controlled release of water from barrage
dams with the following process:

1) Release at normal speed when the salinity level
c(79, t) < CST at the station S5.

2) Release at high speed when the salinity level c(79, t) >
CST at the station S5

Their parameters of physical are appeared in Table 7.
The approximate salinity level for all observation station

can be obtained, as appeared in Fig 9 and Table 8. The
saltiness level at the various observation station S5 and S6,
as appeared in Fig 10 and 11.

TABLE VII
THE PARAMETERS OF PHYSICAL OF SIMULATION 5.

c(x, t) at S5 D (m2/s) us (m/s) uw (m/s)
< CST 0.1 0.06 0
> CST 0.1 0.06 0.22

K T (days) L (km) c(0,t)
0.3 9 90 g(t)
0.3 9 90 g(t)

Fig. 9. The estimated saltiness level of simulation 5 by ∆x = 0.1 and
∆t = 0.05 for all x ∈ [0, 90] and t ∈ [0, 9].

TABLE VIII
THE ESTIMATED SALTINESS LEVEL OF SIMULATION 5 FOR ALL

OBSERVATION STATIONS.

t S2 S3 S4 S5 S6

1 18.2300 12.5500 4.2000 0.7200 0.1500
5000 19.4352 13.5555 4.3278 0.6805 0.3248
10000 19.5986 13.7948 4.2646 0.6784 0.3252
15000 18.7978 13.3153 3.9964 0.5969 0.2759
20000 17.8724 12.8036 3.7464 0.5321 0.2426

Fig. 10. The estimated saltiness level at stations S5 of simulation 5 by
∆x = 0.1 and ∆t = 0.05 for all t ∈ [0, 9].

4.6. Simulation 6 : reduce the salinity before the salinity
exceeds the standard and reduce the emission from the dam
when the salinity is low.

We will to find the approximate solution of Eq.(3) for
all observation stations with 90 km along the river as,
appeared in Table 1. Provided that saltiness water coefficient
of diffusion is 0.1 m2/s, the speed of saltiness water flow
us = 0.06 m/s, the efficiency of eliminating salinity of
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Fig. 11. The estimated saltiness level of simulation simulation 5 at station
S6 by ∆x = 0.1 and ∆t = 0.05 for all t ∈ [0, 9].

fresh water discharge is k = 30%, the fresh water dilution
efficiency is 30%, and time of simulation is 9 days. We want
to monitor the salinity of the water at the station S6 to be
less than the specified salinity CST = 0.72 kg/m3 about 3
days by the controlled release of water from barrage dams
with the following process:

1) Release at normal speed when the salinity level
c(79, t) < CST at the station S5.

2) Release at high speed when the salinity level c(79, t) >
CST at the station S5 and change normal speed when S5

c(79, t) < CST .
Their parameters of physical are appeared in Table 9.

The approximate salinity level for all observation station
can be obtained, as appeared in Fig 12 and Table 10. The S5

and S6 level at the various observation station S5 and S6, as
appeared in Fig 13 and 14.

TABLE IX
THE PARAMETERS OF PHYSICAL OF SIMULATION 6.

c(x, t) at S5 D (m2/s) us (m/s) uw (m/s)
< CST 0.1 0.06 0
> CST 0.1 0.06 0.25

K T (days) L (km) c(0,t)
0.3 9 90 g(t)
0.3 9 90 g(t)

TABLE X
THE ESTIMATED SALTINESS LEVEL FOR ALL OBSERVATION STATION OF

SIMULATION 6.

t S2 S3 S4 S5 S6

1 18.2300 12.5500 4.2000 0.7200 0.1500
5000 19.2985 13.4818 4.3009 0.6688 0.3107
10000 19.3886 13.6694 4.2232 0.6614 0.3138
15000 19.4798 13.7761 4.1554 0.6549 0.3110
20000 19.4353 13.9705 4.1413 0.6656 0.3215

V. DISCUSSION

In simulation 1, approximate solutions of the initial and
boundary conditions are obtained using the interpolation
method. In simulation 2, the calculated solutions can be
obtained by demonstrating the salinity level along the river

Fig. 12. The estimated saltiness level of simulation 6 by ∆x = 0.1 and
∆t = 0.05 for all x ∈ [0, 90] and t ∈ [0, 9].

Fig. 13. The estimated salinity level at station S5 of simulation 6 by
∆x = 0.1 and ∆t = 0.05 for all t ∈ [0, 9].

Fig. 14. The estimated salinity level of simulation simulation 6 at station
S6 by ∆x = 0.1 and ∆t = 0.05 for all t ∈ [0, 9].

with a maximum error of less than 30%, as appeared in Fig
3 and Fig 4. In simulation 3, the salinity value will decrease
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as the velocity of fresh water flow increases, as appeared in
Fig 5 and Fig 6. The salinity control process is simulated
in simulation 4. If the salinity level becomes normal after
that, the speed of fresh water flow should be lowered to
preserve salinity at the normal level, as appeared in Fig 7
and Fig 8. The salinity control mechanism is simulated in
simulation 5. Salinity reduces until the saltiness level reaches
the standard. The suggested process could reduce saltiness
by at least releasing fresh water from the dam, as appeared in
Fig 9, Fig 10 and Fig 11. The salinity control mechanism is
simulated in simulation 6. The salinity decreases to less than
the standard value and increases as the velocity of fresh water
decreases alternately. The suggested technique is to reduce
salinity by at least an amount and fresh water is released
when salinity levels become standard as appeared in Fig 12,
Fig 13 and Fig 14.

VI. CONCLUSION

We also suggested a mathematical model for saltiness
water measurement in one-dimension. The proposed model
concerns the salinity advection to the river and the effect
of the dam’s release of fresh water. Also, some practical
problems are being simulated. For many practical salinity
measurements, the proposed simulation can be used. The
proposed process may decrease the level of salinity in the
salinity control aspect until the level reaches the requirement.
The proposed numerical simulation can be extended to the
practical management of salinity. From each simulation, we
can determine that the efficiency is appeared in Table 11.

TABLE XI
THE EFFICIENCY OF THE SIMULATION.

Salinity level
Simulation 3 The salinity level decreased to much

less than the standard value.
Simulation 4 The salinity level decreased to less than

standard value for acceptable level.
Simulation 5 Salinity level is not more than

and is much less than the standard.
Simulation 6 Salinity level not more than and

less than standard value for acceptable level.
Quantity of released fresh water

Simulation 3 High
Simulation 4 Quite high
Simulation 5 High
Simulation 6 Not too high

As a result, we can apply it to the salinity water problem in
different rivers to reduce the impact of people on drinking
water with salinity over the standard and help save fresh
water used to reduce salinity levels in rivers.

ACKNOWLEDGEMENT

This paper is being sponsored by the Centre of Excellence
in Mathematics, the Commission on Higher Education, Thai-
land. We are very grateful to experts for their appropriate and
constructive suggestions to improve this paper.

REFERENCES

[1] Tabuenca, P., Vila, J., Cardona, J., ”Samartin, A., Finite element simu-
lation of dispersion in the bay of santander,” Advanced in Engineering
Software, vol. 28, pp313–332, 1997

[2] Pochai, N., Tangmanee, S., Crane, L.J., Miller, J.J.H., ”A water qual-
ity computation in the uniform channel,” Journal of Interdisciplinary
Mathematics, vol. 11, pp803–814, 2008

[3] Pochai, N., ”A numerical computation of non-dimensional form of
stream water quality model with hydrodynamic advection-dispersion-
reaction equations,” Journal of Nonlinear Analysis: Hybrid Systems,
vol. 13, pp666–673, 2009

[4] Pochai, N., ”A numerical computation of non-dimensional form of
a nonlinear hydrodynamic model in a uniform reservoir,” Journal of
Nonlinear Analysis: Hybrid Systems, vol. 3, pp463–466, 2009

[5] Thongtha, K., Kasemsuwan, J., ”Analytical solution to a hydrodynamic
model in an open uniform reservoir,” Advances in Difference Equations,
vol. 2017, 2017

[6] Nahian, M.A., Ahmed, A., Lazar, A.N., Hutton, C.W., Salehin, M.,
”Streatfield, P.K., Drinking water salinity associated health crisis in
coastal bangladesh,” Elementa: Science of the Anthropocene, vol. 6,
2017

[7] Leewatchanakul, K., ”Salinity intrusion in chao phraya river,” PhD
thesis, Chulalongkorn University, 1988

[8] Chapra, S.C., ”Surface Water-Quality Modeling,” McGraw-Hill, vol. 6.,
2018

[9] Pochai, N., ”A numerical treatment of nondimensional form of water
quality model in a nonuniform flow stream using saulyev scheme,”
Mathematical Problems in Engineering 2011, vol. 2011, pp1–16, 2011

[10] Subklay, K., Pochai, N., ”Numerical simulations of a water quality
model in a flooding stream due to dam-break problem using implicit
and explicit methods,” Journal of Interdisciplinary Mathematics, vol.
20, pp461–495, 2017

[11] Othata, P., Pochai, N., ”A one-dimensional mathematical simulation
to salinity control in a river with a barrage dam using an uncondition-
ally stable explicit finite difference method,” Advances in Difference
Equations, vol. 2019, 2019

[12] Akbari, G. and Firoozi, B., ”Implicit and Explicit Numerical Solu-
tion of Saint-Venent Equations for Simulation Flood wave in Natural
Rivers,” 5th National Congress on Civil Engineering, Ferdowsi Univer-
sity of Mashhad, Iran, 2010

[13] Samalerk, P. and Pochai, N., ”Numerical Simulation of a One-
Dimensional Water-Quality Model in a Stream Using a Saulyev Tech-
nique with Quadratic Interpolated Initial-Boundary Conditions,” Ab-
stract and Applied Analysis, vol. 2018, 2018

[14] Kraychang, W. and Pochai, N., ”Implicit Finite Difference Simulation
of Water Pollution Control in a Connected Reservoir System,” IAENG
International Journal of Applied Mathematics, vol. 46, no.4, pp47–57,
2016

[15] Salah, F. and H. Elhafian, M., ”Numerical Solution for Heat Transfer
of Non –Newtonian Second – Grade Fluid Flow over Stretching Sheet
via Successive Linearization Method,” IAENG International Journal of
Applied Mathematics, vol. 49, no.4, pp505-512, 2019.

[16] Christodoulides, P., Grimshaw, R. and Demetriades, C., ”Three-fluid
System Short-wave Instability and Gap-solitons,” IAENG International
Journal of Applied Mathematics, vol. 41, no.3, pp235-240, 2011

[17] Klankaew, P. and Pochai, N., ”Numerical Simulation of a Nonlinear
Thin Fluid Film Flow Velocity Model of a Third Grade Fluid on a Mov-
ing Belt using Finite Difference Method with Newton Iterative Scheme,”
Proceedings of The International MultiConference of Engineers and
Computer Scientists 2019, pp318-321, 2019

[18] Timpitak, W. and Pochai, N., ”Numerical Simulations to a One-
dimensional Groundwater Pollution Measurement Model Through Het-
erogeneous Soil,” IAENG International Journal of Applied Mathemat-
ics, vol. 50, no.3, pp558-565, 2020

[19] Kraychang, W. and Pochai, N., ”A Simple Numerical Model for Water
Quality Assessment with Constant Absorption around Nok Phrao Island
of Trang River,” Engineering Letters, vol. 28, no.3, pp912-922, 2020

[20] Konglok, S.A. and Pochai, N., ”Numerical Computations of Three-
dimensional Air-Quality Model with Variations on Atmospheric Stabil-
ity Classes and Wind Velocities using Fractional Step Method,” IAENG
International Journal of Applied Mathematics, vol. 46, no.1, pp112-120,
2016

[21] Suebyat, W. and Pochai, N., ”A Numerical Simulation of a Three-
dimensional Air Quality Model in an Area Under a Bangkok Sky
Train Platform Using an Explicit Finite Difference Scheme,” IAENG
International Journal of Applied Mathematics, vol. 40, no.4, pp471-476,
2016

N. Pochai is a researcher of Centre of Excellence in
Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400,
Thailand.

P. Othata is an assistant researcher of Centre of Excel-
lence in Mathematics, CHE, Si Ayutthaya Road, Bangkok
10400, Thailand.

Engineering Letters, 29:2, EL_29_2_02

Volume 29, Issue 2: June 2021

 
______________________________________________________________________________________ 




