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The Generalized Riemann Problem for the
Simplified Model in Magnetogasdynamics with
Combustion

Wenhua Sun and Yujin Liu

Abstract—We consider the generalized Riemann problem for [7] studied the Riemann problem of the conventional gas

the simplified combustible model in magnetogasdynamics in dynamics flow of combustible ideal gases
a neighborhood of the origin (¢ > 0) in the (z,t¢) plane.

In the light of the different Riemann solutions situations, we Uy + pg =0,
obtain the unique solutions after perturbation. We observe that T — Uy = 0, 2
there are essential differences between the above two cases. We Ei+ (up)y = 0

Y

obtain that the transition between the detonation wave and

the deflagration wave occurs. Although the combustion wave with an infinite rate of reaction which is described by
does not appear in the corresponding Riemann problem, the .
perturbed combustion wave may appear, which shows that the 0, if sup T(z,y) > T;;
unburnt gas is unstable. q(x,t) = O=y<t (3
q(z,0), otherwise.
Index Terms—Generalized Riemann problem, Hyperbolic -
conservation laws, Detonation wave, Deflagration wave, Mag- Under the proposed global entropy conditions, they con-

netogasdynamics. structed uniquely the Riemann solutions by the characteristic
analysis.
In [10], we obtained uniquely the Riemann solutions for
the Chapman-Jouguet (CJ) combustion model (1) and (3)
AGNETOGASDYNAMICS is very important in Wwith the following initial data
studying engineering physics ([1], [2], [3], [4], [S]). , (ko E
It is difficult to investigate the governing equations of (7.0, w,9)(2,0) = (75,p%, 0, g7), £ >0, (4)
Magnetogasdynamics flows, the corresponding results avkerer* > 0,p*,u* are arbitrary constants,
less than the conventional gas dynamics. When the velocity e { 0, it 7+ > T,

I. INTRODUCTION

field and the magnetic field are everywhere orthogonal, the I
X i L 0 or qo, if T < Ti,
magnetogasdynamics flow is still important.
In [2], Helliwell discussed the non-conducting inviscid gagndgo > 0 is a constant. The specific total energy is given by
at rest, the author found that the stucture of the combustiéh= e+ “5-+¢, andgq is the chemical binding energy.is the
wave is similar with the known conventional gas dynamidemperature which satisfies the Boyle and Gay-Lussac’s law:

model. pT = RT. T; is the ignition temperature, For the polytropic
In [3], Hu and Sheng constructed the unique Riemargases, it follows that = ¢(T") and £ = - + -7 + ¢, here
solution of the one-dimensional inviscid flow ~ > 1 is the adiabatic exponent. For simplicity, it is assumed

that during the reactio® and~ remain unchanged. It is also
assumed that the combustion process is exothermic [6].
ue + (p+ g—j>z =0, (1)  Many works ([8], [11], [12], [13], [14], [15], [16], [17],
[18]) have been done for the hyperbolic system for conser-
vation laws.

In [8], we considered the generalized Riemann problem
. " for the conventional gas dynamics (2) with combustion and
u, B > 0 and p are respectively the specific volumeypained the unique perturbed Riemann solution. It was
pressure, velocity, transverse magnetic field and magngfigng that after perturbation the strong detonation wave can

permeability. The specific total energyIs = ¢ + *5-. and e transformed into the weak deflagration wave coalescing
e is the specific m_ternal energy. Many author.s ([e1, 71, [_8]th the pre-compression shock wave.
[9], [10], etc.) studied the Riemann problem with combustion |, [17] and [18], the authors studied the generalized

for the conventional gas dynamics models. Zhang and Zheggmann problem for the scalar convex and nonconvex

. : . Chapman-Jouguet combustion model respectively
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Tt — Uz = 0,

2 24

under the assumptio®s = kp, wherer > 0, p > 0,
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and global entropy conditions, they obtained constructively The Rankine-Hugoniot jump conditions at= o are as
the perturbed Riemann solution. They especially found thiatlows
the perturbation can transform the Chapman-Jouguet deto-

nation wave into the strong detonation wave and the strong olr] = —lul,
detonation wave into the weak deflagration wave followed olu] = E‘;Z“], (9)
by the shock wave. B4 B2

In the present paper, we mainly consider the generalized olE + Zptr] = lup +
Riemann problem of the CJ model (1) and (3) with the initial
data where[r] = 7. — 7y, etc.

The contact discontinuity is given by

(1,9, uq)(2,0) = (15", p5, up 4 ) (x), +x>0, (6) -

whereg (z) = ¢*, and 75 (), pT(x), ui (z) are arbitrary [l =[p+ ﬂ] =0. (10)

smooth functions satisfyin
ying It follows that.J is a curve in the space, p, u), the projec-

wl_igli(ﬂipéca USE)(x) = (7%, p*, u). tion of it on the planép, ) is a straight line which is parallel

. . <
We regard the problem (1)(3) and (6) as a small perturbati$fith the p axis. Denote/ by .J whenp; < p,, 7 <7, and
for our corresponding Riemann problem (1)(3) and (4). We whenp; > p,., 71 > 7.
want to know that whether the solutions of (1)(3) and (6) If [¢q] = 0 in (9), we get the forward or backward shock
are similar with the corresponding Riemann solutions (\)/\f/avesg assing through the poirt; o)
(1)(3) with (4) in the neighborhood of the origin. We find passing 9 POIN¥o, Po, to
the structures of the Riemann solutions keep their for 2 2,382 | BE
after perturbation for most of the cases, but for some cas s,(p + 0o+ 0 ( 2p T 2p ))T
the structure of the Riemann solutions change essentially. It _ +02p + 2 3Bg + B2\y
follows that the perturbation can make the combustion wa: (po b ( ® 2 )) 0

extinguished. The transition between the detonation wave and;, — ¢, + (p+ B2 _ Po — 3_3) . T=T0

. . . 0 20 0 24 B2 B2
the deflagration wave can be found after perturbation. It i P3P0~ 5,
also found that although there is no combustion wave, the (11)
combustion wave may appear after perturbation which showseref? = V_—} and B, = Tﬁo
the instability of the unburnt gas. If [¢] # 0 in (9), we obtain the combustion wave curve in

This paper is arranged as follows. We give briefly thghe (7,p) plane
results of the Riemann problem for the CJ model (1)(3) with ) ,
the initial values (4) in Section II. In Section IlI, according to D, (0) : (7 — 6%79)(p + 6%(po + ]23—3 +35)
the different cases of the corresponding Riemann solutions, 4 0210 1 12 ) 5 ) )
the perturbed Riemann solutions are constructed under the (1 = 0%)70p0 + 2 [By(3 — 0%) + B(1 — 36%)] + 267qo.
modified global entropy conditions. Our main conclusion is (12)

given in Section IV.

In the (7, p)-plane we have

Il. PRELIMINARIES R,(1): prT=p_77, (0<p<p),
As a preparation, we study the Riemann problem for the
CJ model (1), (3) with the initial data (4) and we refer the S (1) - 2 L 02(p + B} 4 3B°
detailed discussions to [3], [10]. UL 2 P+ 0"+ 35+ 50)
There are three eigenvalues of (1) which are = =1-0mp + G#T[Bf(?) —62) + B2(1—362)], (13)
_(@)%’ oy = 0 and o3 = (Wﬁ_ If (0> p),
ep > 0 ande, +p > 0, (1) is strictly hyperbolic. The
characteristic fieldsr; 3 are genuinely nonlinear, ang, is 2 5
linearly degenerate. SDT(l): (1 —60°m)(p+0*(p + 5= + )
Considering the sglf—similar solutiofr, p, u)(¢)(¢ = %), — (1— 0%mp, + 027, [B2(3 — 02) + B2(1 — 302)] + 260%qo,
for any smooth solution we have "
_ (p > pa),
Cdr = —du, (14)
Cdu=d(p+ Z2), @)
2 2 . B? 2
CA(E + Z27) = d(up + Botu). WDF(i): (1= 0*m)(p+0(pi + 55 + %))
o = (1 - 0%mp; + E2[B (3 — 6%) + B2(1 — 36%)] + 26,
The forward or backward rarefaction waveés passing ((pp)i < p < pi)
through the poin{, po, uo) are ’ e (15)
T = poTy,
r 2 @ ECIDTO): P =pard. (0 <pa)
s L : :
u=mug+ [ ——=dp. R(CIDF(1)) : ' = (p)i(7e)], (b < (p1)0)-
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The combustion wave curves in the,p) plane is as

follows (Fig. 2.1.)

ﬁT(O : ’U,—’U,()*\/p*l“ p()*gﬂ)

(1-02)ro (p—po) + 270 (B2~ B2) 20%q0.
P02 (po+ 28 +322)

Now denote the backwardF' and DT wave curve by

pr(l) and WDT(Z), respectively, where

W pr(l) = WDF(is) U CTDE (i, )UR(CJDF( D),

W or(l) := SDT(1) U CTDT(1) U R(CIDT(l

combustion wave curve
Fig. 2.1. The combustion wave curve in the plane p).

Denote the backward combustion wave cuWél) which
can be linked to the stat@) = (7, p1, ui, ¢;), we have

W) = Ws() uWp(l)

where

Ws(l) = (Ws(l),q =0) or (Ws(l),q >0),

WD(Z) = WDF(Z) U WDT(Z)

- —
Similarly, we can construct the forward wave cuivé&r)

which can be linked tdr) = (7., p,, ur, ).

(C). the solution containing as many combustion wave as
possible.
Case 1.q; > 0, ¢, = 0. The gas is unburnt on the left side
for this case, while the gas is burnt on the right side, thus we
know that V(1) = Ws(1) U W pr(l) U TV pr(1), W(p) =
Ws( If there exists only one intersection point Bf (1)
andW g e obtaln the umque solution is a detonation wave
solution T+ﬁ or |f plTl =p,7), orﬁTJrJJrﬁ
it iy # pr7))

0

0)

Case 1g; >0, ¢- =0
Fig. 2.2. There are there interactions.

If there are three intersection points E(l) and W/S(r)
(Fig. 2.2.), from the modified global entropy conditi¢f),
we discard the intersection point & s(r) and W pr(1).
Denote the intersection point 61 s(r) and Wg(l) by g
and the intersection point d' s(r) and W pr(1) by *pp.
Denote the temperature at the poiat, xpr on Wgs(r) by
Ts, Tpr, respectively. The temperaturesgtr on Wpr(l)
is greater thafl; since the combustion process is exothermic.
Subcase 1.1p;7;" = p, 7).

If T, < T, thenf(xs) = 0, B(xpr) = 2, from the
condition(B), v<v_e picléout* , and we get the noncombustion
wave solutionR or S + R or S (Fig. 2.3.).

If T, > T;, then 8(xs) = 1, B(xpr) = 1, from the
condition(C), we pick outkpr, and we get the combustion

Since the image of J iffr, p,u) is a straight line which wave solutionDF + E or S (Fig. 2.4.).

parallels with ther axis and the projection on the plane
(u,p) is a point, it follows that J is a plane curve in the
space(r, p, u), and it's projection in(u, p) is a straight line
which parallels with the axis. Thus the Riemann prblem for
(1) is much more complicated than that of the conventional
gas dynamics.

If ¢ = ¢ = 0, the gas on both sides are burnt, no
combustion wave occurs.

If ¢; andg, are not both zero, there may exist more than
one intersection points cﬁ/(l) andW (r). Each intersection

point corresponds to a unique Riemann solution. When the

intersection point is unique, the solution is also unique; oth-
erwise, for the unique solution we put forward the following
modified global entropy conditions [8]:

we pick out the unique solution from nine (at the most)
intersection points oW (1) and W (r) in the following given
order:

[ﬁor? ﬁor?

<T;

< Ty Ty
T

noncombustion wave
Fig. 2.3. Riemann solutions in Subcase 1.1.

2 RorS

< T T,
>~ T

combustion waveDF
Fig. 2.4. Riemann solutions in Subcase 1.1.

(A). the propagating speed of the combustion wave solgubcase 1.2p;7] # p, 7))

tion is as low as possible;

From the conditior{A), the possible detonatioRT" wave

(B). the solution with the parametéras small as possible, solution is discarded, an<d_it is found that the possible
where is defined as oscillation frequency 6{¢) between Riemann solution isR or S +.J + R or or DF +

the set{¢ € R': T(¢) < T;} and the sef{¢é € R : T(¢) >  J+

. From the modified global entropy conditions,

T} the unigue Riemann solution is constructed as follows.
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noncombustion wave
Fig. 2.5. Riemann solutions in Subcase 1.2.

T br S od

< T; Ty

combustion waveDF
Fig. 2.6. Riemann solutions in Subcase 1.2.

a) If T. >1T;, Tpr < Ti(i Ts < Ti), thenﬁ(*s) =1,
B(xpr) = 3, from the condition(B), we pick outxg and
obtain a noncombustion wave solution (Fig. 2.5.).

b) If T. > 1T;, Tpr > T;, thenﬁ(*s) =1, 6(*DF) =
1, from the condition(C), we pick outxpr and obtain a
combustion wave solution containinglaF' (Fig. 2.6.).

c) If T, < T, Ts < T, thenB(xs) = 0, B(*pr)
2, from the condition(B), we pick outxg and obtain the
noncombustion wave solution (Fig. 2.5.).

dIFT. <T; Ts > Ti(:> Tpr > Ty), thenﬁ(*s) =2,
B(xpr) = 2, from the condition(C), we select«pr and
obtain the combustion wave solution containind@#’ (Fig.
2.6.).

Case 2.q; > 0, ¢, = 0 and there are two intersection
of W (1) andWs(r) (Fig. 2.7.).
Subcase 2.1p;7]" = p, 7).

In this case, we select the poind or xp and obtain the

. L=
possible solutionsS + ﬁ or ? or DT + ﬁ or ? Now
we select the unique Riemann solution as follows.

Wor ()

W i

O]

Case 2q; >0, ¢, =0

Fig. 2.7. There are two interactions.

If T, > T;, thenB(xs) = 1, B(xpr) 1, from the

condition (C), we pick outxpp and obtain the combustion

wave solutionDT + R or S (Fig. 2.8.).

If T, < T;, thenfB(xs) = 0, B(xpr) = 2, from the
condition(B), we pick out%g

wave solutionS + R or S (Fig. 2.9.).

points2

combustion wavedT
Fig. 2.8. Riemann solutions in Subcase 2.1.

t

I Sorﬁ ﬁor?

noncombustion wave
Fig. 2.9. Riemann solutions in Subcase 2.1.
Subcase 2.2p;7; # p,7).
We know that one possibility is that there is uniquely
intersection point ofi¥(l) and W(r), it follows that the

unigue Riemann solution |§T + 3+ ﬁ or ? The other
possibility is that there are three possible solutions which are
the noncombution wave solutiof or, R + J +§ or S,

or the DF' combustion wave solutioﬁ? +J+ R or ?

<
or the DT combustion wave solutioﬁ +J+ ﬁ or ?
From the global entropy conditiofA), we discard theDT
combustion wave solution.

a) If T, > Ty, Tpr < Ti(= Ts < T;), thenB(xs) = 1,
B(xpr) = 3, from the condition(B), we pick outxs and
obtain the noncombustion wave solution (Fig. 2.10.).

b) If . > T;, Tpr > T;, thenﬂ(*s) =1, ﬂ(*DF) =1,
from the condition(C), we pick outxpr and obtain the
combustion wave solution containing/2F (Fig. 2.11.).
) If T, <T;, Ts < T; then B(*S) =0, 6(*DF)
from the condition(B), we pick outxg and obtain the
noncombustion wave solution (Fig. 2.10.).

dIFT,. <T; Ts > Ti(:> Tpr > Ty), thenﬁ(*s) =2,
B(xpr) = 2, from the condition(C), we pick outxpr and
obtain the combustion wave solution containind@#’ (Fig.
2.11)).

noncombustion wave

Fig. 2.10. Riemann solutions in Subcase 2.2.

Fos

T,

combustion waveDF

Fig. 2.11. Riemann solutions in Subcase 2.2.

and obtain the noncombustionCase 3.¢q; > 0, ¢, > 0, for this case the gas are unburnt

on the both sides. For this case, we hﬁel) = Ws(l) U
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W or)UW pr(l), W(r) = Ws(r) UW pr(r) UW pr(r).

. V_[}DT(’I”)

If the intersection point ofﬁ_/(l) and W/ r) is unique, the b
solution isDT + DT if p7] = p,7)), or DT + J + lﬁ if
mT, # pr7;. Otherwise, there are two possible subcases:
one is that there is an intersection point %fs(l) and

Ws(r), the_gther is that there is no intersection point of
Ws(l) and W (r).

u
Case 3.2

Fig. 2.17.W(7) intersectsWDT(r) only.
Subcase 3.2.1p;7; # p, 7).
From the condition(A), we discard the intersection point
— ) . .
of Wpr(l) and W pr(r). Denote the intersection point of
— . ; .
W pp(r) andW (1) by *S and denote the intersection point
of Wpr(+) andW pr(l) by *DF, respectively. We denote
" the temperature at the point, *DF on W pp(r) by Ts,
Case 3.1 Tpr, respectively (Fig. 2.18. and Fig. 2.19.).
Fig. 2.12. There is an intersection point o s (1) and W s (r). SinceTs > T; we haveTpr > T;, then 5(*S) = 2,
B(*DF) = 2. From the conditior(C), we pick out*DF, it
Case 3.1For the former subcase (Fig. 2.12.), we discuss fiollows that the combustion wave solution + DT.

in the following two subcases. Subcase 3.2.2p;7;" = p,7;). Similarly with Subcase 3.2.1.,
we obtain the unique Riemann solution is the combustion
Subcase 3.1.1p;7)" = p,7]. wave solutionDF + DT'. The only difference is that there

. . . . . exists the contact discontinuity in Subcase 3.2.1.
From the conditiom, we consider the intersection points v

1, 2, 3, 4. We should select the unique solution from the four T ! J
possible solutions (Fig. 2.13.-Fig. 2.16.). :
DF DT
t Tord f br Tord T Ter
or F 7 —T
T 5 or® T s =T :
<T; g B > T <T;
<T ~ <T =t :
<T; @ 4 X
- ‘ - X <‘T7' - - X combustion wave solution
intersection point 1 intersection point 2 Fig. 2.18. Riemann solutions in Subcase 3.2.1.
Fig. 2.13. Subcase 3.1.1. (i) Fig. 2.14. Subcase 3.1.1. (i)

intersection point 3 intersection point 4

Fig. 2.15. Subcase 3.1.1. (iii) Fig. 2.16. Subcase 3.1.1. (iv) ) combustion wave solution
Fig. 2.19. Riemann solutions in Subcase 3.2.1.

It is obvious thats = 0 for (i), and it holds that3 = 2
for (i), (i) and (iv). From the condition(B), we pick out Based on the above analysis, we have the following result.
the intersection point 1 and obtain the unique noncombustionTheorem 2.1 There exists uniquely solution of the Rie-
wave solution® or S + B or S. mann problem (1)(3) with the initial values (4) under the
given modified global entropy conditions.
Subcase 3.1.2p;7," # p,7;. Similarly, we obtain the unique

Riemapn solution is still the noncombustion wave solution Ill. SOLUTIONS OF THE GENERALIZEDRIEMANN
R or S +J+ R or S. The only difference is that here PROBLEM (1) AND (3)
the contact discontinuity appears. Now we investigate the solutions for the initial value

problem (1) and (3) with (6) in a neighborhood of the origin
Case 3.2.In the latter subcase, there are only two POSSfz >~ () on the (z,t) plane. From the results in [16], the

bilities: W(l) intersectsI?/DT(r) only or W(+) intersects ¢|assical solution(us, 71, pr, @) (@, 1) ((ur, 7 prs @) (2, 1))

pr(l) only. We just need to consider the former. If the:an be defined in a strip domaif;(D,.) for a local time.
intersection point is unique, the solution ﬁ + DT if  The right boundary ofD; has characteristi©OA : z = A_t,
p_1! =pyT],0r T+J+Jﬁ“ if p_77 # py7], otherwise, and the left boundary ab, has characteristiOB : x = At
there are at most three intersection points (Fig. 2.17.).  (Fig. 3.1).

Volume 29, Issue 2: June 2021



Engineering Letters, 29:2, EL._29 2 08

According to the different cases of the corresponding T
Riemann solutions of (1) and (3) with (4), we construct the
solutions under the modified entropy conditions case by case
for (1) and (3) with (6). For simplicity, we only consider
some interesting cases. Similar discussion can be carried out

for the other cases. For simplicity, we use the same symbols a perturbed combustion solution
after perturbatlon' Fig. 3.3. The perturbed solutions in Subcase 1.1.
t
A B Subcase 1.1.2;7; # p,7) andT, > T;, Tpp < T;, Ts <
T; (Fig. 2.5.).
D; D, After perturbation we obtaip;7; = p,7) or pi7;’ # p, 77,
T.>T;,, Tprp <Tyor Tpp >T;, Ts <T; or Ts > T; and
r construct the perturbed solution as follows.
(w5767, 4) @) O (Wdymh,pd )@ P
the region If pnﬂ = p,7,) and T, > T;, then we have combustion
Fig. 3.1. The discussed local region. wave solution containing @ F (Fig. 3.3. and there is no

contact discontinuity).
Case 1.Wheng; > 0, ¢. = 0, and we know that there are

y . .
three intersection points OT/(Z) and W/S(r) (Fig. 2.2). It piy’ # py7) @and T, > T;, @sTpr > T; then we have

combustion wave solution containingafr’ (Fig. 3.3.); as
Subcase 1.1The solution of the corresponding Riemand'pr < T;, we obtain a noncombustion wave solution (Fig.

problem is the noncombustion wave solution. 3.2).
Subcase 1.1.J7," = p,7; andT, < T; (Fig. 2.3.). Subcase 1.1.%;7, # p,7) andT, < T;, Ts < T; (Fig.
2.5).

After perturbation we obtaip;7; = p, 7} or pi7," # p,77,
T, <T;or T, > Ty, Tpp < T; or Tpp > Ty, Ts < T; o After perturbation we obtaip;7,” = p,7;) orpi7)’ # p, 77,
Ts > T; and construct the perturbed solution as follows. 1 < 1; or T, > 1;, Tpp < T; ofr Tpp > T;, Ts < T; or
Ts > T; and construct the perturbed solution as follows.
If pi7) = py7) and T, < T;, thenf(xs) =0, B(*pr) =
9, from the condition(B), we pick outxs and obtain the If m7' = p.7}, asT, < T;, then we have a noncom-
perturbed solution is the noncombustion wave solution (Figustion wave solution (Fig. 3.2.); &s. > T;, then we have

3.2. and there is no contact discontinuity). combustion wave solution containing/aF (Fig. 3.3.). And
notice that there is no contact discontinuity in the perturbed
If pir) = p,7) andT,. > T;, thenS(xs) = 1, B(*pr) = Riemann solutions.

1, from the condition(C), we pick outxpr and obtain the
combustion wave solution containing/aft’ (Fig. 3.3. and
there is no contact discontinuity).

If py7; # pr7) @andT,. > T;, asTpr > T; then we obtain
combustion wave solution containingaft' (Fig. 3.3.); as
Tpr < T; then we have a noncombustion wave solution

If pi7) # p,7 andT,. < T;, asTs < T; thenfB(xs) =0, (Fig. 3.2.).

B(xpr) = 2, from the condition(B), we pick outxg and
obtain the noncombustion wave solution (Fig. 3.2.)7gs>
T; then B(xg) = 2, B(xpr) = 2, from the condition(C),
we pick outxpp and obtain the combustion wave solutio
containing aDF' (Fig. 3.3.).

If pyr; # py7) andT, < T;, asTs < T; then we have

a noncombustion wave solution (Fig. 3.2.);’Bs > T; then
e obtain combustion wave solution containindd’ (Fig.
3.).

Subcase 1.2.The solution of the corresponding Riemann

2 Y f . — . . . .
It pimy| # pr7) and T, > T, asTpp > 1; then f(xs) problem is the combustion wave solution containingp&.

1, B(xpr) = 1, from the condition(C), we pick out«pr and
obtain the combustion wave solution containing@#' (Fig. Subcase 1.2.J;7," = p,7) andT, > T; (Fig. 2.4.).
3.3); asTpr < T; thenf(xs) = 1, B(xpr) = 3, from the
condition(B), we pick outxg and obtain the noncombustion
wave solution (Fig. 3.2.).

After perturbation we obtaip;7; = p,7) or pi7;’ # p,7),
T.>T;,, Tpr <T;orTpp >1T;, T <T;0orTs >1T; and
construct the perturbed solution as follows.

If py7) = p,7) andT, > T;, thenpB(xg) = 1, B(*pr) =
1, from the condition(C), we pick outxpr and obtain the

So combustion wave solution containing/aft’ (Fig. 3.5. and
there is no contact discontinuity).
7/ If pi7) # py7) and T, > T;, asTpr > T; then B(xg) =
T 1, B(xpr) = 1, from the conditio(C), we pick outxpr and
a perturbed noncombustion solution obtain the combustion wave solution containin@#’ (Fig.
Fig. 3.2. The perturbed solutions in Subcase 1.1. 3_5_); asTpr < T; then 6(*8) =1, 6(*DF) =3, from the

condition(B), we pick outxg and obtain the noncombustion
wave solution (Fig. 3.4.).
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If pﬂ'l7 = pTT,:Y, as’l, > 1T;, thenﬁ(*s) =1, 6(*DT) =1,
from the condition(C), we pick out*pr and obtain the
ST combustion wave solution containidgl’ (Fig. 3.6.);_ gsr,, <
T;, thenB(xs) = 0, B(xpr) = 2, from the condition(B),
we pick outxg and obtain the noncombustion wave solution
7/ (Fig. 3.7.). For this subcase, we can see that there are no
z contact discontinuity.

a perturbed noncombustion solution t
Fig. 3.4. The perturbed solutions in Subcase 1.2. T ﬁ or ?

combustion wavedT
Fig. 3.6. The perturbed solutions in Case 2. withdut

a perturbed combustion solution So®
Fig. 3.5. The perturbed solutions in Subcase 1.2.

Hos

Subcase 1.2.;7, = p,77) and T, > T;, Tpr > T; (Fig.
2.6.).

After perturbation we obtaip;7; = p, 7)) or pi7," # p,77),
T, >T;, Tpr > T;, Ts < T; or Tg > T; and construct the
perturbed solution as follows. If pi7 # p,77 andT, > Ty, asTpr > T; then B(xs) =

If pi7" = p, 7 and T, > T;, then we obtain combustion | 3(xpx) = 1, from the condition(C), we pick outspp
wave solution containing &F (Fig. 3.5. and there is no gnd get the combustion wave solution containing & (Fig.

noncombustion wave
Fig. 3.7. The perturbed solutions in Case 2. withdut

contact discontinuity). 3.9.); asTpr < T, thenB(xs) = 1, B(xpr) = 3, from the

If g’ # pe7) @and T, > T;, Tpr > T; then we obtain condition (B), we pick outxg and get the noncombustion
combustion wave solution containing/aF' (Fig. 3.5.). wave solution (Fig. 3.8.).
Subcase 1.2.%;7) = p,7) andT, < T;, Ts > T; (Fig. If i7" # pry) @andT, < T;, asTs > T; thenf(xg) = 2,
2.6.). B(xpr) = 2, from the condition(C), we pick outxpx and

After perturbation we obtaip,7," = p,7;) orpi7;" # p,7), have the combustion wave solution containindd& (Fig.
T, <TyorT,. >T;,Ts >T;, Tpr >T; and construct the 3.9.); asTy < T; then B(xs) = 0, B(xpr) = 2, from the
perturbed solution as follows. condition (B), we pick outxg and have the noncombustion

If py7) = pr7), asT, > T; then we obtain combustionwave solution (Fig. 3.8.).
wave solution containing @&F (Fig. 3.5.); asT,, < T; Subcase 217 # p,m) and T, > Ty, Ts < Ty, Tpr <
then we obtain a noncombustion wave solution (Fig. 3.43; (Fig. 2.10.).

Notice that there is no contact discontinuity in the perturbed aAfter perturbation we obtaip;7, = p, 7 orpr; # p,7),
solutions. T, >T;, Ts>T; orTs < Ty, Tpp > T; or Tpp < T; and

If pir) # pr) @andT, > T; or T, < T;, Ts > T;, Tpr > construct the perturbed solution as follows.

T; then we obtain combustion wave solution containing a |f w7, = p,7), T, > T; then we get combustion wave
DF (Fig. 3.5.). solution containing a)7" (Fig. 3.6.). Notice that there is no

Theorem 3.1 Although there is no combustion wave ofcontact discontinuity for this subcase.
the corresponding Riemann for this case, after perturbations mr) # per), Tr > Ty, asTpr > T; then we get
the combustion wave can appear. It follows that the Unbur(lfﬁmbustion wave solution ContaininglaF (F|g 39), as
gas is unstable. And we observe that the combustion wayg,. < T, then we obtain a noncombustion wave solution
solution may be extinguished under such local perturbatiqirig. 3.8.).

Case 2.Assume thatg; > 0, 2 = 0 and there are two sSybcase 2137 # pr) and T, < Ty, Ts < T; (Fig.
intersection points 0%/17(1) andWg(r) (Fig. 2.7). 2.10.).

After perturbation there are two possibilities: one is that After perturbation we obtaip;7,’ = p, 7 orpy7) # p,7Y,
there is only one intersection point ﬁ(—) andWg(+), T, >T,orT, <T;, Tg >T;,orTs <T;, Tpr > T; or
and we get the unique perturbed solution is combustion wa¥g » < T; and construct the perturbed solution as follows.
solution containing)T’; the other case is that there are three If p;7," = p,77, asT, > T, then we get combustion wave

intersection points OW(—) andWg(+). solution containing aDT (Fig. 3.6.); asT, < T; then we
Subcase 2.When the corresponding Riemann problem hawsbtain a noncombustion wave solution (Fig. 3.7.). Notice that
the noncombustion wave solution. there are no contact discontinuity here.

Subcase 2.1.J7," = p,7; andT, < T; (Fig. 2.9.). If pyr) # pory), T, > T;, asTpr > T; then we get

After perturbation we obtaip;7;’ = p,7;) or p;7;' # p,77, combustion wave solution containingaF (Fig. 3.9.); as
T.>T,orT. <T;, Ts > T; orTg < T;, Tpr > T; or Tpr < T; then we obtain a noncombustion wave solution
Tpr < T; and construct the perturbed solution as follows.(Fig. 3.8.).
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If g7 # pe7), T, < T;, asTs > T; then we get 3.9.).
combustion wave solution containing/aF (Fig. 3.9.); as  Theorem 3.2 For this case, the transition between the
Ts < T; then we obtain a noncombustion wave solutiodetonation wave and the deflagration wave may occur af-
(Fig. 3.8.). ter perturbation. The combustion wave solution (detonation
wave or deflagration wave) of the corresponding Riemann
may be extinguished. Although the corresponding Riemann
problem has no combustion wave, after perturbation the
combustion wave can appear, and it follows that the unburnt
gas is unstable.
Case 3.Assume thaty; > 0, G, > 0 and there are three
intersection points OW(I) andW (r) (Fig. 2.17). There is a
: combustion wave solutioFF + DT for the corresponding
, noncombustion wave Riemann problem, angy7,” # p,7,), Ts > T;, Tpr > T;.
Fig. 3.8. The perturbed solutions in Case 2. with After perturbation we obtaipﬂﬂ _ pﬂﬂ orpnﬂ 7& pﬂ_;y'
Ts > T;, Tpr > T;, the perturbed solution is given as

bF : follows.
_ Rors .
: If nT = p7~T7'.y, T.>T,orT,. <T;, Ts >T;, Tpr > T;

then we get combustion wave soluti + DT.

S
ST If o) # pe7), T > Ty or Ty, < Ty, Ts > T, Tpr > T;
<T\ : then we get still combustion wave solutignF + DT The
— = only difference is that there exists the contact discontinuity
combustion waveF for the latter subcase.
Fig. 3.9. The perturbed solutions in Case 2. with Theorem 3.3For this case, the combustion wave solution

of the corresponding Riemann is stable under such small
Subcase 2.2The solution of the corresponding Riemanperturbation.
problem is the combustion wave solution containin@@a.
For this subcase, we hayer) = p,77 and T, > T; (Fig. IV. CONCLUSION
2.8.). We generalize our main results as follows. The corre-
After perturbation we obtaip;7; = p,7) orp;7;’ # p,77, sponding Riemann solutions are stable for most of cases.
T.>T;,,Ts >T;0orTs <T;, Tpr >T; or Tprp < T; and However we find that after the small perturbation there are
construct the perturbed solution as follows. fundamental changes of the corresponding Riemann solu-
If pir) = pr7), T, > T; then we get combustion wavetions. The perturbation may transform a detonation wave into
solution containing aDT (Fig. 3.6.). Notice that there area deflagration wave or a deflagration wave into a detonation
no contact discontinuity here. wave in the neighborhood of the origin. Furthermore, the
If pyr) # pery), T, > T;, asTpr > T; then we get perturbation can extinguish the combustion wave. When the
combustion wave solution containing /aF' (Fig. 3.9.); as corresponding Riemann problem has no combustion wave
Tpr < T; then we obtain a noncombustion wave solutiosolution, the combustion wave appears after perturbation. It
(Fig. 3.8.). follows that the unburnt gas is unstable. Notice that there
Subcase 2.3The solution of the corresponding Riemanmre much more richer structure of the perturbed Riemann
problem is the combustion wave solution containin&. solutions of our combustible model (1) and (3) in magneto-
Subcase 2.3.J;7, # p,7) andT, > T;, Tpr > T; (Fig. gasdynamics than that of the conventional combustible gas

2.11)). dynamics model (2) and (3).

After perturbation we obtaip;7; = p,7) or p7," # p,77), Based on the above analysis, we have the following main
T, >T;, Tpr > T;, Ts > T; or Ts < T; and construct the result.
perturbed solution as follows. Theorem 4.1 Under the modified global entropy condi-

If pzTﬂ = pr7;l, T > T; then we get combustion wavetions, the generalized Riemann problem (1)(3) with the initial
solution containing aDT' (Fig. 3.6.). Notice that there aredata (6) has unique solution in a neighborhood of the origin

no contact discontinuity here. (t > 0) on the(z,t) plane.

It pir) # pe1), T, > Ti, Tpr > T; then we get  Our model is very important in many applications. Con-
combustion wave solution containingla#' (Fig. 3.9.). sidering the reaction rate of this model is infinite and it is an
Subcase 2.3.2;7] # p,7) andT, < T;, Ts > T;, Tpr > idealized hypothesis, we will study the initial value problem
7; (Fig. 2.11.). for the self-similar Zeldovich-von Neumann-Déring (ZND)

After perturbation we obtaip;7," = p,.7,) orpi7;" # p.7',  magnetogasdynamic combustion model with finite reaction
T.>TyorT, <T;,Ts >T;, Tpr >T; or Tpr <T; and rate in our coming works.
construct the perturbed solution as follows.
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