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Abstract—We consider the generalized Riemann problem for
the simplified combustible model in magnetogasdynamics in
a neighborhood of the origin (t > 0) in the (x, t) plane.
In the light of the different Riemann solutions situations, we
obtain the unique solutions after perturbation. We observe that
there are essential differences between the above two cases. We
obtain that the transition between the detonation wave and
the deflagration wave occurs. Although the combustion wave
does not appear in the corresponding Riemann problem, the
perturbed combustion wave may appear, which shows that the
unburnt gas is unstable.

Index Terms—Generalized Riemann problem, Hyperbolic
conservation laws, Detonation wave, Deflagration wave, Mag-
netogasdynamics.

I. I NTRODUCTION

M AGNETOGASDYNAMICS is very important in
studying engineering physics ([1], [2], [3], [4], [5]).

It is difficult to investigate the governing equations of
Magnetogasdynamics flows, the corresponding results are
less than the conventional gas dynamics. When the velocity
field and the magnetic field are everywhere orthogonal, the
magnetogasdynamics flow is still important.

In [2], Helliwell discussed the non-conducting inviscid gas
at rest, the author found that the stucture of the combustion
wave is similar with the known conventional gas dynamics
model.

In [3], Hu and Sheng constructed the unique Riemann
solution of the one-dimensional inviscid flow



















τt − ux = 0,

ut + (p+ B2

2µ )x = 0,

(E + B2τ
2µ )t + (pu+ B2u

2µ )x = 0,

(1)

under the assumptionB = kρ, where τ > 0, p ≥ 0,
u, B ≥ 0 and µ are respectively the specific volume,
pressure, velocity, transverse magnetic field and magnetic
permeability. The specific total energy isE = e + u2

2 . and
e is the specific internal energy. Many authors ([6], [7], [8],
[9], [10], etc.) studied the Riemann problem with combustion
for the conventional gas dynamics models. Zhang and Zheng
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[7] studied the Riemann problem of the conventional gas
dynamics flow of combustible ideal gases







ut + px = 0,
τt − ux = 0,
Et + (up)x = 0,

(2)

with an infinite rate of reaction which is described by

q(x, t) =

{

0, if sup
0≤y≤t

T (x, y) > Ti;

q(x, 0), otherwise.
(3)

Under the proposed global entropy conditions, they con-
structed uniquely the Riemann solutions by the characteristic
analysis.

In [10], we obtained uniquely the Riemann solutions for
the Chapman-Jouguet (CJ) combustion model (1) and (3)
with the following initial data

(τ, p, u, q)(x, 0) = (τ±, p±, u±, q±), ± x > 0, (4)

whereτ± > 0, p±, u± are arbitrary constants,

q± =

{

0, if T± > Ti,

0 or q0, if T± ≤ Ti,

andq0 > 0 is a constant. The specific total energy is given by
E = e+ u2

2 +q, andq is the chemical binding energy.T is the
temperature which satisfies the Boyle and Gay-Lussac’s law:
pτ = RT . Ti is the ignition temperature. For the polytropic
gases, it follows thate = e(T ) andE = u2

2 + pτ
γ−1 + q, here

γ > 1 is the adiabatic exponent. For simplicity, it is assumed
that during the reactionR andγ remain unchanged. It is also
assumed that the combustion process is exothermic [6].

Many works ([8], [11], [12], [13], [14], [15], [16], [17],
[18]) have been done for the hyperbolic system for conser-
vation laws.

In [8], we considered the generalized Riemann problem
for the conventional gas dynamics (2) with combustion and
obtained the unique perturbed Riemann solution. It was
found that after perturbation the strong detonation wave can
be transformed into the weak deflagration wave coalescing
with the pre-compression shock wave.

In [17] and [18], the authors studied the generalized
Riemann problem for the scalar convex and nonconvex
Chapman-Jouguet combustion model respectively











(u + q)t + f(u)x = 0,

q(x, t) =

{

q(x, 0), sup
0≤y≤t

u(x, y) ≤ ui,

0, otherwise,

(5)

whereu andui is respectively the lumped quality represent-
ing density and the ignition temperature. Under the pointwise
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and global entropy conditions, they obtained constructively
the perturbed Riemann solution. They especially found that
the perturbation can transform the Chapman-Jouguet deto-
nation wave into the strong detonation wave and the strong
detonation wave into the weak deflagration wave followed
by the shock wave.

In the present paper, we mainly consider the generalized
Riemann problem of the CJ model (1) and (3) with the initial
data

(τ, p, u, q)(x, 0) = (τ±0 , p±0 , u
±
0 , q

±
0 )(x), ± x > 0, (6)

whereq±0 (x) = q±, andτ±0 (x), p±0 (x), u
±
0 (x) are arbitrary

smooth functions satisfying

lim
x→0±

(τ±0 , p±0 , u
±
0 )(x) = (τ±, p±, u±).

We regard the problem (1)(3) and (6) as a small perturbation
for our corresponding Riemann problem (1)(3) and (4). We
want to know that whether the solutions of (1)(3) and (6)
are similar with the corresponding Riemann solutions of
(1)(3) with (4) in the neighborhood of the origin. We find
the structures of the Riemann solutions keep their forms
after perturbation for most of the cases, but for some cases,
the structure of the Riemann solutions change essentially. It
follows that the perturbation can make the combustion wave
extinguished. The transition between the detonation wave and
the deflagration wave can be found after perturbation. It is
also found that although there is no combustion wave, the
combustion wave may appear after perturbation which shows
the instability of the unburnt gas.

This paper is arranged as follows. We give briefly the
results of the Riemann problem for the CJ model (1)(3) with
the initial values (4) in Section II. In Section III, according to
the different cases of the corresponding Riemann solutions,
the perturbed Riemann solutions are constructed under the
modified global entropy conditions. Our main conclusion is
given in Section IV.

II. PRELIMINARIES

As a preparation, we study the Riemann problem for the
CJ model (1), (3) with the initial data (4) and we refer the
detailed discussions to [3], [10].

There are three eigenvalues of (1) which areσ1 =

−(
p−ep

BBτ
µ

+eτ

ep
)

1
2 , σ2 = 0 and σ3 = (

p−ep
BBτ

µ
+eτ

ep
)

1
2 . If

ep > 0 and eτ + p > 0, (1) is strictly hyperbolic. The
characteristic fieldsσ1,3 are genuinely nonlinear, andσ2 is
linearly degenerate.

Considering the self-similar solution(τ, p, u)(ζ)(ζ = x
t
),

for any smooth solution we have


















ζdτ = −du,

ζdu = d(p+ B2u
2µ ),

ζd(E + B2u
2µ τ) = d(up+ B2u

2µ u).

(7)

The forward or backward rarefaction waves
−→←−
R passing

through the point(τ0, p0, u0) are










pτγ = p0τ
γ
0 ,

u = u0 ±
∫ p

p0

√

γpτ+B2τ
µ

γp
dp.

(8)

The Rankine-Hugoniot jump conditions atζ = σ are as
follows



















σ[τ ] = −[u],

σ[u] = [p+ B2u
2µ ],

σ[E + B2u
2µ τ ] = [up+ B2u

2µ u],

(9)

where[τ ] = τr − τl, etc.
The contact discontinuityJ is given by

[u] = [p+
B2

2µ
] = 0. (10)

It follows thatJ is a curve in the space(τ, p, u), the projec-
tion of it on the plane(p, u) is a straight line which is parallel

with the p axis. DenoteJ by
<

J whenpl < pr, τl < τr, and
>

J whenpl > pr, τl > τr.
If [q] = 0 in (9), we get the forward or backward shock

waves
−→←−
S passing through the point(τ0, p0, u0)































(p+ θ2p0 + θ2(3B
2

2µ
+

B2

0

2µ
))τ

= (p0 + θ2p+ θ2(
3B2

0

2µ
+ B2

2µ
))τ0,

u = u0 ± (p+ B2

2µ
− p0 −

B2

0

2µ
)
√

− τ−τ0

p+B2

2µ
−p0−

B2
0

2µ

,

(11)
whereθ2 = γ−1

γ+1 andB0 = k
τ0

.
If [q] 6= 0 in (9), we obtain the combustion wave curve in

the (τ, p) plane

Du(0) : (τ − θ2τ0)(p+ θ2(p0 +
B2

0

2µ + 3B2

2µ ))

= (1− θ4)τ0p0 +
θ2τ0
µ

[B2
0(3 − θ2) +B2(1 − 3θ2)] + 2θ2q0.

(12)

In the (τ, p)-plane we have

Ru(l) : pτγ = p−τ
γ
−, (0 < p < pl),

Su(l) : (τ − θ2τl)(p+ θ2(pl +
B2

l

2µ + 3B2

2µ ))

= (1− θ4)τlpl +
θ2τl
µ

[B2
l (3− θ2) +B2(1− 3θ2)],

(p > pl),

(13)

SDT (l) : (τ − θ2τl)(p+ θ2(pl +
B2

l

2µ + 3B2

2µ ))

= (1− θ4)τlpl +
θ2τl
µ

[B2
l (3− θ2) +B2(1− 3θ2)] + 2θ2q0,

(p > pA),
(14)

WDF (i) : (τ − θ2τi)(p+ θ2(pi +
B2

i

2µ + 3B2

2µ ))

= (1− θ4)τipi +
θ2τi
µ

[B2
i (3− θ2) +B2(1− 3θ2)] + 2θ2q0,

((pD)i < p < pi),
(15)

R(CJDT (l)) : pτγ = pAτ
γ
C , (p < pA),

R(CJDF (l)) : pτγ = (pB)i(τB)
γ
i , (p < (pB)i).
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The combustion wave curves in the(u, p) plane is as
follows (Fig. 2.1.)

←−
Dτ (0) : u = u0 −

√

(p+ B2

2µ − p0 −
B2

0

2µ )

·

√

(1−θ2)τ0(p−p0)+
θ2τ0

µ
(B2−B2

0
)−2θ2q0

p+θ2(p0+
B2

0
2µ

+ 3B2

2µ
)

.
(16)

Now denote the backwardDF and DT wave curve by
←−
WDF (l) and

←−
WDT (l), respectively, where

←−
WDF (l) :=

←−−−−
WDF (is) ∪

←−−−−
CJDF (is) ∪

←−
R (
←−−−−
CJDF (is)),

←−
WDT (l) :=

←−−−
SDT (l) ∪

←−−−−
CJDT (l) ∪

←−
R (
←−−−−
CJDT (l)).

-

6

u

p

(0)

SDT

CJDT

WDT

WDF

CJDF
SDF

combustion wave curve
Fig. 2.1. The combustion wave curve in the plane(u, p).

Denote the backward combustion wave curve
←−
W (l) which

can be linked to the state(l) = (τl, pl, ul, ql), we have
←−
W (l) :=

←−
WS(l) ∪

←−
WD(l),

where
←−
WS(l) := (

←−
WS(l), ql = 0) or (

←−
WS(l), ql > 0),

←−
WD(l) :=

←−
WDF (l) ∪

←−
WDT (l).

Similarly, we can construct the forward wave curve
−→
W (r)

which can be linked to(r) = (τr, pr, ur, qr).
Since the image of J in(τ, p, u) is a straight line which

parallels with theτ axis and the projection on the plane
(u, p) is a point, it follows that J is a plane curve in the
space(τ, p, u), and it’s projection in(u, p) is a straight line
which parallels with thep axis. Thus the Riemann prblem for
(1) is much more complicated than that of the conventional
gas dynamics.

If ql = qr = 0, the gas on both sides are burnt, no
combustion wave occurs.

If ql andqr are not both zero, there may exist more than
one intersection points of

←−
W (l) and

−→
W (r). Each intersection

point corresponds to a unique Riemann solution. When the
intersection point is unique, the solution is also unique; oth-
erwise, for the unique solution we put forward the following
modified global entropy conditions [8]:

we pick out the unique solution from nine (at the most)
intersection points of

←−
W (l) and

−→
W (r) in the following given

order:
(A). the propagating speed of the combustion wave solu-

tion is as low as possible;
(B). the solution with the parameterβ as small as possible,

whereβ is defined as oscillation frequency ofT (ξ) between
the set{ξ ∈ R1 : T (ξ) ≤ Ti} and the set{ξ ∈ R1 : T (ξ) >
Ti};

(C). the solution containing as many combustion wave as
possible.
Case 1.ql > 0, qr = 0. The gas is unburnt on the left side
for this case, while the gas is burnt on the right side, thus we
know that

←−
W (l) =

←−
WS(l) ∪

←−
WDF (l) ∪

←−
WDT (l),

−→
W (r) =

−→
WS(r). If there exists only one intersection point of

←−
W (l)

and
−→
W (r), we obtain the unique solution is a detonation wave

solution
←−−
DT+

−→
R or

−→
S if plτ

γ
l = prτ

γ
r , or

←−−
DT+J+

−→
R or

−→
S

if plτ
γ
l 6= prτ

γ
r .

-

6

u

(l)

Case 1ql > 0, qr = 0

Fig. 2.2. There are there interactions.

p

(r)

∗S

∗DF

←−
W (l)

−→
WS(r)

If there are three intersection points of
←−
W (l) and

−→
WS(r)

(Fig. 2.2.), from the modified global entropy condition(A),
we discard the intersection point of

−→
WS(r) and

←−
WDT (l).

Denote the intersection point of
−→
WS(r) and

←−
WS(l) by ∗S

and the intersection point of
−→
WS(r) and

←−
WDF (l) by ∗DF .

Denote the temperature at the point∗S , ∗DF on
−→
WS(r) by

TS , TDF , respectively. The temperature at∗DF on
←−
WDF (l)

is greater thanTi since the combustion process is exothermic.
Subcase 1.1.plτ

γ
l = prτ

γ
r .

If Tr ≤ Ti, then β(∗S) = 0, β(∗DF ) = 2, from the
condition(B), we pick out∗S , and we get the noncombustion
wave solution

←−
R or

←−
S +

−→
R or

−→
S (Fig. 2.3.).

If Tr > Ti, then β(∗S) = 1, β(∗DF ) = 1, from the
condition(C), we pick out∗DF , and we get the combustion
wave solution

←−−
DF +

−→
R or

−→
S (Fig. 2.4.).

- x
< Ti

←−
R or

←−
S

−→
R or

−→
S

Tr

noncombustion wave
Fig. 2.3. Riemann solutions in Subcase 1.1.

< Ti

6
t

- x
< Ti

= Ti

> Ti

−→
R or

←−
S

←−−
DF

combustion waveDF
Fig. 2.4. Riemann solutions in Subcase 1.1.

S

Tr

6
t

Subcase 1.2.plτ
γ
l 6= prτ

γ
r .

From the condition(A), the possible detonationDT wave
solution is discarded, and it is found that the possible
Riemann solution is

←−
R or

←−
S + J +

−→
R or

−→
S or

←−−
DF +

J +
−→
R or

−→
S . From the modified global entropy conditions,

the unique Riemann solution is constructed as follows.
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- x
< Ti

←−
R or

←−
S −→

S or
−→
RTS

Tr

noncombustion wave
Fig. 2.5. Riemann solutions in Subcase 1.2.

< Ti

6 J
t

- x
< Ti

= Ti

> Ti TDF

−→
S or

−→
R

←−−
DF

combustion waveDF

Fig. 2.6. Riemann solutions in Subcase 1.2.

S

Tr

6
Jt

a) If Tr > Ti, TDF ≤ Ti(⇒ TS ≤ Ti), thenβ(∗S) = 1,
β(∗DF ) = 3, from the condition(B), we pick out∗S and
obtain a noncombustion wave solution (Fig. 2.5.).

b) If Tr > Ti, TDF > Ti, thenβ(∗S) = 1, β(∗DF ) =
1, from the condition(C), we pick out∗DF and obtain a
combustion wave solution containing aDF (Fig. 2.6.).

c) If Tr ≤ Ti, TS ≤ Ti, then β(∗S) = 0, β(∗DF ) =
2, from the condition(B), we pick out∗S and obtain the
noncombustion wave solution (Fig. 2.5.).

d) If Tr ≤ Ti, TS > Ti(⇒ TDF > Ti), thenβ(∗S) = 2,
β(∗DF ) = 2, from the condition(C), we select∗DF and
obtain the combustion wave solution containing aDF (Fig.
2.6.).

Case 2.ql > 0, qr = 0 and there are two intersection points
of
←−
W (l) and

−→
WS(r) (Fig. 2.7.).

Subcase 2.1.plτ
γ
l = prτ

γ
r .

In this case, we select the point∗S or ∗DT and obtain the
possible solutions

←−
S +

−→
R or

−→
S or

←−−
DT +

−→
R or

−→
S . Now

we select the unique Riemann solution as follows.

-

6

u

p

Fig. 2.7. There are two interactions.

Case 2ql > 0, qr = 0

p

p

p

p

p

(r)

(l)

∗S = ∗DF = (i)

−→
WS(r) ←−

WDF (l)

←−
WDT (l)

←−
WS(l)

∗DT

If Tr > Ti, then β(∗S) = 1, β(∗DT ) = 1, from the
condition (C), we pick out∗DT and obtain the combustion
wave solution

←−−
DT +

−→
R or

−→
S (Fig. 2.8.).

If Tr ≤ Ti, then β(∗S) = 0, β(∗DT ) = 2, from the
condition(B), we pick out∗S and obtain the noncombustion
wave solution

←−
S +

−→
R or

−→
S (Fig. 2.9.).

- x
< Ti

> Ti

−→
R or

−→
S

combustion waveDT

Fig. 2.8. Riemann solutions in Subcase 2.1.

←−−
DT

Tr

6
t

- x
< Ti

←−
S or

←−
R −→

R or
−→
S

< Ti

Tr

noncombustion wave

6
t

Fig. 2.9. Riemann solutions in Subcase 2.1.

Subcase 2.2.plτ
γ
l 6= prτ

γ
r .

We know that one possibility is that there is uniquely
intersection point of

←−
W (l) and

−→
W (r), it follows that the

unique Riemann solution is
←−−
DT +

>

J +
−→
R or

−→
S . The other

possibility is that there are three possible solutions which are
the noncombution wave solution

←−
S or

←−
R + J +

−→
R or

−→
S ,

or theDF combustion wave solution
←−−
DF + J +

−→
R or

−→
S ,

or theDT combustion wave solution
←−−
DT +

<

J +
−→
R or

−→
S .

From the global entropy condition(A), we discard theDT

combustion wave solution.
a) If Tr > Ti, TDF ≤ Ti(⇒ TS ≤ Ti), thenβ(∗S) = 1,

β(∗DF ) = 3, from the condition(B), we pick out∗S and
obtain the noncombustion wave solution (Fig. 2.10.).

b) If Tr > Ti, TDF > Ti, thenβ(∗S) = 1, β(∗DF ) = 1,
from the condition(C), we pick out ∗DF and obtain the
combustion wave solution containing aDF (Fig. 2.11.).

c) If Tr ≤ Ti, TS ≤ Ti, then β(∗S) = 0, β(∗DF ) =
2, from the condition(B), we pick out∗S and obtain the
noncombustion wave solution (Fig. 2.10.).

d) If Tr ≤ Ti, TS > Ti(⇒ TDF > Ti), thenβ(∗S) = 2,
β(∗DF ) = 2, from the condition(C), we pick out∗DF and
obtain the combustion wave solution containing aDF (Fig.
2.11.).

- x
< Ti

←−
S or

←−
R

−→
R or

−→
S

TS

Tr

noncombustion wave

Fig. 2.10. Riemann solutions in Subcase 2.2.

< Ti

6 J
t

- x
< Ti

= Ti

> Ti TDF

−→
R or

−→
S

←−−
DF

combustion waveDF

Fig. 2.11. Riemann solutions in Subcase 2.2.

S

Tr

6
Jt

Case 3.ql > 0, qr > 0, for this case the gas are unburnt
on the both sides. For this case, we have

←−
W (l) =

←−
WS(l) ∪
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←−
WDF (l)∪

←−
WDT (l),

−→
W (r) =

−→
WS(r)∪

−→
WDF (r)∪

−→
WDT (r).

If the intersection point of
←−
W (l) and

−→
W (r) is unique, the

solution is
←−−
DT +

−−→
DT if plτ

γ
l = prτ

γ
r , or

←−−
DT + J +

−−→
DT if

plτ
γ
l 6= prτ

γ
r . Otherwise, there are two possible subcases:

one is that there is an intersection point of
←−
WS(l) and

−→
WS(r), the other is that there is no intersection point of
←−
WS(l) and

−→
WS(r).

-

6
p

u

−→
W (r)←−

W (l)

Case 3.1

Fig. 2.12. There is an intersection point of
←−
WS(l) and

−→
WS(r).

1
23

4⊖
⊕

Case 3.1.For the former subcase (Fig. 2.12.), we discuss it
in the following two subcases.

Subcase 3.1.1.plτ
γ
l = prτ

γ
r .

From the conditionA, we consider the intersection points
1, 2, 3, 4. We should select the unique solution from the four
possible solutions (Fig. 2.13.-Fig. 2.16.).

-

-

←−
S or←−R

−→
S or −→R

←−−
DF

S

−→
S or −→R

←−
S or←−R

−−→
DF

S
S

←−−
DF

−−→
DF

S

< Ti

< Ti

< Ti < Ti

= Ti

> Ti

< Ti

< Ti

> Ti = Ti

< Ti
< Ti

= Ti

> Ti
= Ti

< Ti

Fig. 2.13. Subcase 3.1.1. (i) Fig. 2.14. Subcase 3.1.1. (ii)

Fig. 2.15. Subcase 3.1.1. (iii) Fig. 2.16. Subcase 3.1.1. (iv)

intersection point 1 intersection point 2

intersection point 3 intersection point 4

x x

x x

6

6

t t

t t

6

6

-

-

It is obvious thatβ = 0 for (i), and it holds thatβ = 2
for (ii), (iii) and (iv). From the condition(B), we pick out
the intersection point 1 and obtain the unique noncombustion
wave solution

←−
R or

←−
S +

−→
R or

−→
S .

Subcase 3.1.2.plτ
γ
l 6= prτ

γ
r . Similarly, we obtain the unique

Riemann solution is still the noncombustion wave solution
←−
R or

←−
S + J +

−→
R or

−→
S . The only difference is that here

the contact discontinuity appears.

Case 3.2.In the latter subcase, there are only two possi-
bilities:

←−
W (l) intersects

−→
WDT (r) only or

−→
W (+) intersects

←−
WDT (l) only. We just need to consider the former. If the
intersection point is unique, the solution is

←−−
DT +

−−→
DT if

p−τ
γ
− = p+τ

γ
+, or

←−−
DT+J+

−−→
DT if p−τ

γ
− 6= p+τ

γ
+, otherwise,

there are at most three intersection points (Fig. 2.17.).

6
p

u

(l)

Case 3.2

Fig. 2.17.
←−
W (−) intersects

−→
WDT (r) only.

-
←−
WDF (l)

←−
WDT (l)

←−
WS(l)

(r)

−→
WDT (r)

∗S
∗DF

Subcase 3.2.1.plτ
γ
l 6= prτ

γ
r .

From the condition(A), we discard the intersection point
of
←−
WDT (l) and

−→
WDT (r). Denote the intersection point of

−→
WDT (r) and

←−
WS(l) by ∗S and denote the intersection point

of
−→
WDT (+) and

←−
WDF (l) by ∗DF , respectively. We denote

the temperature at the point∗S, ∗DF on
−→
WDT (r) by TS ,

TDF , respectively (Fig. 2.18. and Fig. 2.19.).
Since TS > Ti we haveTDF > Ti, then β(∗S) = 2,

β(∗DF ) = 2. From the condition(C), we pick out∗DF , it
follows that the combustion wave solution is

←−−
DF +

−−→
DT .

Subcase 3.2.2.plτ
γ
l = prτ

γ
r . Similarly with Subcase 3.2.1.,

we obtain the unique Riemann solution is the combustion
wave solution

←−−
DF +

−−→
DT . The only difference is that there

exists the contact discontinuity in Subcase 3.2.1.

-

J

x
< Ti

= Ti

> Ti TDF

< Ti

Fig. 2.18. Riemann solutions in Subcase 3.2.1.
combustion wave solution

←−−
DF

−−→
DT

S

6
t

-

J

x

< Ti

< Ti TS

< Ti

←−
S or ←−R

−−→
DT

combustion wave solution

6
t

Fig. 2.19. Riemann solutions in Subcase 3.2.1.

Based on the above analysis, we have the following result.
Theorem 2.1 There exists uniquely solution of the Rie-

mann problem (1)(3) with the initial values (4) under the
given modified global entropy conditions.

III. SOLUTIONS OF THE GENERALIZEDRIEMANN

PROBLEM (1) AND (3)

Now we investigate the solutions for the initial value
problem (1) and (3) with (6) in a neighborhood of the origin
(t > 0) on the (x, t) plane. From the results in [16], the
classical solution(ul, τl, pl, ql)(x, t) ((ur, τr, pr, qr)(x, t))
can be defined in a strip domainDl(Dr) for a local time.
The right boundary ofDl has characteristicOA : x = λ−t,
and the left boundary ofDr has characteristicOB : x = λ+t

(Fig. 3.1).
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According to the different cases of the corresponding
Riemann solutions of (1) and (3) with (4), we construct the
solutions under the modified entropy conditions case by case
for (1) and (3) with (6). For simplicity, we only consider
some interesting cases. Similar discussion can be carried out
for the other cases. For simplicity, we use the same symbols
after perturbation.

6

- x

t

A B

O(u−

0
, τ

−

0
, p

−

0
, q

−

0
)(x) (u+

0
, τ

+

0
, p

+

0
, q

+

0
)(x)

Dl Dr

the region

Fig. 3.1. The discussed local region.

Case 1.When ql > 0, qr = 0, and we know that there are
three intersection points of

←−
W (l) and

−→
WS(r) (Fig. 2.2).

Subcase 1.1.The solution of the corresponding Riemann
problem is the noncombustion wave solution.

Subcase 1.1.1plτ
γ
l = prτ

γ
r andTr ≤ Ti (Fig. 2.3.).

After perturbation we obtainplτ
γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

Tr ≤ Ti or Tr > Ti, TDF ≤ Ti or TDF > Ti, TS ≤ Ti or
TS > Ti and construct the perturbed solution as follows.

If plτ
γ
l = prτ

γ
r andTr ≤ Ti, thenβ(∗S) = 0, β(∗DF ) =

2, from the condition(B), we pick out∗S and obtain the
perturbed solution is the noncombustion wave solution (Fig.
3.2. and there is no contact discontinuity).

If plτ
γ
l = prτ

γ
r andTr > Ti, thenβ(∗S) = 1, β(∗DF ) =

1, from the condition(C), we pick out∗DF and obtain the
combustion wave solution containing aDF (Fig. 3.3. and
there is no contact discontinuity).

If plτ
γ
l 6= prτ

γ
r andTr ≤ Ti, asTS ≤ Ti thenβ(∗S) = 0,

β(∗DF ) = 2, from the condition(B), we pick out∗S and
obtain the noncombustion wave solution (Fig. 3.2.); asTS >

Ti then β(∗S) = 2, β(∗DF ) = 2, from the condition(C),
we pick out∗DF and obtain the combustion wave solution
containing aDF (Fig. 3.3.).

If plτ
γ
l 6= prτ

γ
r andTr > Ti, asTDF > Ti thenβ(∗S) =

1, β(∗DF ) = 1, from the condition(C), we pick out∗DF and
obtain the combustion wave solution containing aDF (Fig.
3.3.); asTDF ≤ Ti thenβ(∗S) = 1, β(∗DF ) = 3, from the
condition(B), we pick out∗S and obtain the noncombustion
wave solution (Fig. 3.2.).

- x
< Ti

←−
S or

←−
R

−→
S or

−→
RTS

T+

a perturbed noncombustion solution

Fig. 3.2. The perturbed solutions in Subcase 1.1.
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Fig. 3.3. The perturbed solutions in Subcase 1.1.

S

T+

6
Jt

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

pp pp

p p p

pp

p

pp

p

p

p

p

p

p p

p

p

pp

p

Subcase 1.1.2plτ
γ
l 6= prτ

γ
r andTr > Ti, TDF ≤ Ti, TS ≤

Ti (Fig. 2.5.).

After perturbation we obtainplτ
γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

Tr > Ti, TDF ≤ Ti or TDF > Ti, TS ≤ Ti or TS > Ti and
construct the perturbed solution as follows.

If plτ
γ
l = prτ

γ
r and Tr > Ti, then we have combustion

wave solution containing aDF (Fig. 3.3. and there is no
contact discontinuity).

If plτ
γ
l 6= prτ

γ
r andTr > Ti, asTDF > Ti then we have

combustion wave solution containing aDF (Fig. 3.3.); as
TDF ≤ Ti, we obtain a noncombustion wave solution (Fig.
3.2.).

Subcase 1.1.3plτ
γ
l 6= prτ

γ
r and Tr ≤ Ti, TS ≤ Ti (Fig.

2.5.).

After perturbation we obtainplτ
γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

Tr ≤ Ti or Tr > Ti, TDF ≤ Ti or TDF > Ti, TS ≤ Ti or
TS > Ti and construct the perturbed solution as follows.

If plτ
γ
l = prτ

γ
r , as Tr ≤ Ti, then we have a noncom-

bustion wave solution (Fig. 3.2.); asTr > Ti, then we have
combustion wave solution containing aDF (Fig. 3.3.). And
notice that there is no contact discontinuity in the perturbed
Riemann solutions.

If plτ
γ
l 6= prτ

γ
r andTr > Ti, asTDF > Ti then we obtain

combustion wave solution containing aDF (Fig. 3.3.); as
TDF ≤ Ti then we have a noncombustion wave solution
(Fig. 3.2.).

If plτ
γ
l 6= prτ

γ
r andTr ≤ Ti, asTS ≤ Ti then we have

a noncombustion wave solution (Fig. 3.2.); asTS > Ti then
we obtain combustion wave solution containing aDF (Fig.
3.3.).

Subcase 1.2.The solution of the corresponding Riemann
problem is the combustion wave solution containing aDF .

Subcase 1.2.1plτ
γ
l = prτ

γ
r andTr > Ti (Fig. 2.4.).

After perturbation we obtainplτ
γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

Tr > Ti, TDF ≤ Ti or TDF > Ti, TS ≤ Ti or TS > Ti and
construct the perturbed solution as follows.

If plτ
γ
l = prτ

γ
r andTr > Ti, thenβ(∗S) = 1, β(∗DF ) =

1, from the condition(C), we pick out∗DF and obtain the
combustion wave solution containing aDF (Fig. 3.5. and
there is no contact discontinuity).

If plτ
γ
l 6= prτ

γ
r andTr > Ti, asTDF > Ti thenβ(∗S) =

1, β(∗DF ) = 1, from the condition(C), we pick out∗DF and
obtain the combustion wave solution containing aDF (Fig.
3.5.); asTDF ≤ Ti thenβ(∗S) = 1, β(∗DF ) = 3, from the
condition(B), we pick out∗S and obtain the noncombustion
wave solution (Fig. 3.4.).
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a perturbed noncombustion solution

Fig. 3.4. The perturbed solutions in Subcase 1.2.
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Fig. 3.5. The perturbed solutions in Subcase 1.2.
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Subcase 1.2.2plτ
γ
l = prτ

γ
r andTr > Ti, TDF > Ti (Fig.

2.6.).
After perturbation we obtainplτ

γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

Tr > Ti, TDF > Ti, TS ≤ Ti or TS > Ti and construct the
perturbed solution as follows.

If plτ
γ
l = prτ

γ
r andTr > Ti, then we obtain combustion

wave solution containing aDF (Fig. 3.5. and there is no
contact discontinuity).

If plτ
γ
l 6= prτ

γ
r andTr > Ti, TDF > Ti then we obtain

combustion wave solution containing aDF (Fig. 3.5.).
Subcase 1.2.3plτ

γ
l = prτ

γ
r and Tr ≤ Ti, TS > Ti (Fig.

2.6.).
After perturbation we obtainplτ

γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

Tr ≤ Ti or Tr > Ti, TS > Ti, TDF > Ti and construct the
perturbed solution as follows.

If plτ
γ
l = prτ

γ
r , asTr > Ti then we obtain combustion

wave solution containing aDF (Fig. 3.5.); asTr ≤ Ti

then we obtain a noncombustion wave solution (Fig. 3.4.).
Notice that there is no contact discontinuity in the perturbed
solutions.

If plτ
γ
l 6= prτ

γ
r andTr > Ti or Tr ≤ Ti, TS > Ti, TDF >

Ti then we obtain combustion wave solution containing a
DF (Fig. 3.5.).

Theorem 3.1 Although there is no combustion wave of
the corresponding Riemann for this case, after perturbation
the combustion wave can appear. It follows that the unburnt
gas is unstable. And we observe that the combustion wave
solution may be extinguished under such local perturbation.
Case 2.Assume thatql > 0, qr = 0 and there are two
intersection points of

←−
W (l) and

−→
WS(r) (Fig. 2.7).

After perturbation there are two possibilities: one is that
there is only one intersection point of

←−
W (−) and

−→
WS(+),

and we get the unique perturbed solution is combustion wave
solution containingDT ; the other case is that there are three
intersection points of

←−
W (−) and

−→
WS(+).

Subcase 2.1When the corresponding Riemann problem have
the noncombustion wave solution.
Subcase 2.1.1plτ

γ
l = prτ

γ
r andTr ≤ Ti (Fig. 2.9.).

After perturbation we obtainplτ
γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

Tr > Ti or Tr ≤ Ti, TS > Ti or TS ≤ Ti, TDF > Ti or
TDF ≤ Ti and construct the perturbed solution as follows.

If plτ
γ
l = prτ

γ
r , asTr > Ti, thenβ(∗S) = 1, β(∗DT ) = 1,

from the condition(C), we pick out ∗DT and obtain the
combustion wave solution containingDT (Fig. 3.6.); asTr ≤
Ti, thenβ(∗S) = 0, β(∗DT ) = 2, from the condition(B),
we pick out∗S and obtain the noncombustion wave solution
(Fig. 3.7.). For this subcase, we can see that there are no
contact discontinuity.
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Fig. 3.6. The perturbed solutions in Case 2. withoutJ
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Fig. 3.7. The perturbed solutions in Case 2. withoutJ

If plτ
γ
l 6= prτ

γ
r andTr > Ti, asTDF > Ti thenβ(∗S) =

1, β(∗DF ) = 1, from the condition(C), we pick out∗DF

and get the combustion wave solution containing aDF (Fig.
3.9.); asTDF ≤ Ti thenβ(∗S) = 1, β(∗DF ) = 3, from the
condition (B), we pick out∗S and get the noncombustion
wave solution (Fig. 3.8.).

If plτ
γ
l 6= prτ

γ
r andTr ≤ Ti, asTS > Ti thenβ(∗S) = 2,

β(∗DF ) = 2, from the condition(C), we pick out∗DF and
have the combustion wave solution containing aDF (Fig.
3.9.); asTS ≤ Ti thenβ(∗S) = 0, β(∗DF ) = 2, from the
condition (B), we pick out∗S and have the noncombustion
wave solution (Fig. 3.8.).
Subcase 2.1.2plτ

γ
l 6= prτ

γ
r andTr > Ti, TS ≤ Ti, TDF ≤

Ti (Fig. 2.10.).
After perturbation we obtainplτ

γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

Tr > Ti, TS > Ti or TS ≤ Ti, TDF > Ti or TDF ≤ Ti and
construct the perturbed solution as follows.

If plτ
γ
l = prτ

γ
r , Tr > Ti then we get combustion wave

solution containing aDT (Fig. 3.6.). Notice that there is no
contact discontinuity for this subcase.

If plτ
γ
l 6= prτ

γ
r , Tr > Ti, as TDF > Ti then we get

combustion wave solution containing aDF (Fig. 3.9.); as
TDF ≤ Ti then we obtain a noncombustion wave solution
(Fig. 3.8.).
Subcase 2.1.3plτ

γ
l 6= prτ

γ
r and Tr ≤ Ti, TS ≤ Ti (Fig.

2.10.).
After perturbation we obtainplτ

γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

Tr > Ti or Tr ≤ Ti, TS > Ti or TS ≤ Ti, TDF > Ti or
TDF ≤ Ti and construct the perturbed solution as follows.

If plτ
γ
l = prτ

γ
r , asTr > Ti then we get combustion wave

solution containing aDT (Fig. 3.6.); asTr ≤ Ti then we
obtain a noncombustion wave solution (Fig. 3.7.). Notice that
there are no contact discontinuity here.

If plτ
γ
l 6= prτ

γ
r , Tr > Ti, as TDF > Ti then we get

combustion wave solution containing aDF (Fig. 3.9.); as
TDF ≤ Ti then we obtain a noncombustion wave solution
(Fig. 3.8.).
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If plτ
γ
l 6= prτ

γ
r , Tr < Ti, as TS > Ti then we get

combustion wave solution containing aDF (Fig. 3.9.); as
TS ≤ Ti then we obtain a noncombustion wave solution
(Fig. 3.8.).
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Fig. 3.8. The perturbed solutions in Case 2. withJ
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Fig. 3.9. The perturbed solutions in Case 2. withJ
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Subcase 2.2The solution of the corresponding Riemann
problem is the combustion wave solution containing aDT .
For this subcase, we haveplτ

γ
l = prτ

γ
r andTr > Ti (Fig.

2.8.).
After perturbation we obtainplτ

γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

Tr > Ti, TS > Ti or TS ≤ Ti, TDF > Ti or TDF ≤ Ti and
construct the perturbed solution as follows.

If plτ
γ
l = prτ

γ
r , Tr > Ti then we get combustion wave

solution containing aDT (Fig. 3.6.). Notice that there are
no contact discontinuity here.

If plτ
γ
l 6= prτ

γ
r , Tr > Ti, as TDF > Ti then we get

combustion wave solution containing aDF (Fig. 3.9.); as
TDF ≤ Ti then we obtain a noncombustion wave solution
(Fig. 3.8.).
Subcase 2.3The solution of the corresponding Riemann
problem is the combustion wave solution containing aDF .
Subcase 2.3.1plτ

γ
l 6= prτ

γ
r andTr > Ti, TDF > Ti (Fig.

2.11.).
After perturbation we obtainplτ

γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

Tr > Ti, TDF > Ti, TS > Ti or TS ≤ Ti and construct the
perturbed solution as follows.

If plτ
γ
l = prτ

γ
r , Tr > Ti then we get combustion wave

solution containing aDT (Fig. 3.6.). Notice that there are
no contact discontinuity here.

If plτ
γ
l 6= prτ

γ
r , Tr > Ti, TDF > Ti then we get

combustion wave solution containing aDF (Fig. 3.9.).
Subcase 2.3.2plτ

γ
l 6= prτ

γ
r andTr ≤ Ti, TS > Ti, TDF >

Ti (Fig. 2.11.).
After perturbation we obtainplτ

γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

Tr > Ti or Tr ≤ Ti, TS > Ti, TDF > Ti or TDF ≤ Ti and
construct the perturbed solution as follows.

If plτ
γ
l = prτ

γ
r , asTr > Ti, then we get combustion wave

solution containing aDT (Fig. 3.6.); asTr ≤ Ti, then we
obtain a noncombustion wave solution (Fig. 3.7.). Notice that
there are no contact discontinuity here.

If plτ
γ
l 6= prτ

γ
r , Tr > Ti or Tr ≤ Ti, TS > Ti, TDF > Ti

then we get combustion wave solution containing aDF (Fig.

3.9.).
Theorem 3.2 For this case, the transition between the

detonation wave and the deflagration wave may occur af-
ter perturbation. The combustion wave solution (detonation
wave or deflagration wave) of the corresponding Riemann
may be extinguished. Although the corresponding Riemann
problem has no combustion wave, after perturbation the
combustion wave can appear, and it follows that the unburnt
gas is unstable.
Case 3.Assume thatql > 0, qr > 0 and there are three
intersection points of

←−
W (l) and

−→
W (r) (Fig. 2.17). There is a

combustion wave solution
←−−
DF +

−−→
DT for the corresponding

Riemann problem, andplτ
γ
l 6= prτ

γ
r , TS > Ti, TDF > Ti.

After perturbation we obtainplτ
γ
l = prτ

γ
r or plτ

γ
l 6= prτ

γ
r ,

TS > Ti, TDF > Ti, the perturbed solution is given as
follows.

If plτ
γ
l = prτ

γ
r , Tr > Ti or Tr ≤ Ti, TS > Ti, TDF > Ti

then we get combustion wave solution
←−−
DF +

−−→
DT .

If plτ
γ
l 6= prτ

γ
r , Tr > Ti or Tr ≤ Ti, TS > Ti, TDF > Ti

then we get still combustion wave solution
←−−
DF +

−−→
DT . The

only difference is that there exists the contact discontinuity
for the latter subcase.

Theorem 3.3For this case, the combustion wave solution
of the corresponding Riemann is stable under such small
perturbation.

IV. CONCLUSION

We generalize our main results as follows. The corre-
sponding Riemann solutions are stable for most of cases.
However we find that after the small perturbation there are
fundamental changes of the corresponding Riemann solu-
tions. The perturbation may transform a detonation wave into
a deflagration wave or a deflagration wave into a detonation
wave in the neighborhood of the origin. Furthermore, the
perturbation can extinguish the combustion wave. When the
corresponding Riemann problem has no combustion wave
solution, the combustion wave appears after perturbation. It
follows that the unburnt gas is unstable. Notice that there
are much more richer structure of the perturbed Riemann
solutions of our combustible model (1) and (3) in magneto-
gasdynamics than that of the conventional combustible gas
dynamics model (2) and (3).

Based on the above analysis, we have the following main
result.

Theorem 4.1 Under the modified global entropy condi-
tions, the generalized Riemann problem (1)(3) with the initial
data (6) has unique solution in a neighborhood of the origin
(t > 0) on the(x, t) plane.

Our model is very important in many applications. Con-
sidering the reaction rate of this model is infinite and it is an
idealized hypothesis, we will study the initial value problem
for the self-similar Zeldovich-von Neumann-Döring (ZND)
magnetogasdynamic combustion model with finite reaction
rate in our coming works.
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