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LOS rate filtering estimation algorithm with uncertainty, and 

the adjustment factor is obtained by the lemma in this paper. 

All the above filtering methods need inertial measurement 

unit (IMU) to measure the angular rate of missile body. The 

application of inertial measurement unit will bring about a 

substantial increase in cost, and has the problems of low anti 

overload ability and accuracy affected by the environment. In 

order to reduce the cost of guided ammunition, a robust 

cubature Kalman filter (RCKF) LOS angular rate estimation 

algorithm based on the reference trajectory is proposed for its 

trajectory with small disturbance motion around the reference 

trajectory and attacking the fixed target. It is based on the 

relative motion model of missile and target and the 

measurement model of seeker. The trajectory parameters are 

regarded as uncertain model parameters. 

II. COMMON COORDINATE SYSTEM AND ANGLE DEFINITION 

 (1) 
b b bO x y z is the ground coordinate system. The origin 

O  of the coordinate system is set on the instantaneous mass 

center of the projectile. The 
bOx  axis points to the firing 

direction along the horizontal line. The 
bOy  axis is straight up. 

bOz  is perpendicular to the other two axes and forms a 

right-handed coordinate system. 

(2)
2 2 2O x y z  is the ballistic coordinate system. The 

coordinate origin O  is set on the instantaneous mass center of 

the missile body. The 2Ox  axis coincides with the velocity 

vector of ammunition. 2Oy  is located in the vertical plane 

containing the velocity vector and perpendicular to the 2Ox  

axis. The 2Oz  axis is perpendicular to the other two axes and 

forms a right-handed coordinate system. 

(3) 
q q qO x y z  is the LOS coordinate system. The origin 

O  of the coordinate system is set on the instantaneous mass 

center of the missile body. The 
qOx  axis and the 

missile-target connecting line coincide and point to the target. 

The 
qOz  axis lies in the 

b bOx z  plane of the datum system and 

it is perpendicular to the 
qOx  axis. The 

qOy  axis is 

perpendicular to the other two axes and forms a right-handed 

coordinate system. 

(4) 1 1 1O x y z  is the missile body coordinate system. The 

origin O  of the coordinate system is set on the instantaneous 

mass center of the missile body. The 1Ox  axis coincides with 

the longitudinal axis of the missile body and points to the head 

positively. The 1Oy  axis is located in the longitudinal 

symmetry plane of the missile body and perpendicular to the 

1Ox  axis. 1Oz  is perpendicular to the plane 1 1Ox y , and its 

direction is determined by the right-hand rectangular 

coordinate system. 

(5) l l lO x y z  is the body line of sight (BLOS) coordinate 

system. The origin O  of the coordinate system is set on the 

instantaneous mass center of the missile body. The lOx  axis 

coincides with the LOS of the missile and the target and points 

to the target. The lOz  axis is located in the 1 1Ox z  plane of the 

missile body coordinate system and is perpendicular to the 

lOx  axis. 
lOy  is perpendicular to the other two axes and 

forms a right-handed coordinate system. 
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(a) Definitions of the reference coordinate, ballistic coordinate and LOS 

coordinate 
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(b) Definitions of the body coordinate and BLOS coordinate 

Fig. 1.  Definition of coordinate 

TABLE I 

DEFINITION OF BASIC ANGLE 

Symbol Name Definition 

  Pitch angle 
Angle between 

1Ox  axis and horizontal 

plane 

  Yaw angle 

Angle between projection of longitudinal 

axis of projectile in horizontal plane and 

axis 
bOx  

  Roll angle 

Angle between 
1Oy  axis and plumb 

plane containing longitudinal axis of 

projectile 

  
Trajectory 

inclination 

Angle between 
2Ox  axis and horizontal 

plane 

V  
Ballistic 

deflection 

angle 

Angle between the projection of axis 

2Ox  in horizontal plane and axis 
bOx  

q  
Line of sight 

inclination 

Angle between axis qOx  and horizontal 

plane 

q  
Line of sight 

deviation 

Angle between the projection of axis 

qOx  in horizontal plane and axis 
bOx  

q  
Body line of 

sight 

inclination 

Angle between axis 
lOx  and plane 

1 1Ox z  of projectile system 

q  

Body line of 

sight 

deflection 

angle 

Angle between projection of axis 
lOx  in 

plane 1 1Ox z  of projectile system and 

lOx  

cq  
Line of sight 

transformation 

angle 

Angle between axis qOy  and axis 
lOy  

 

The transformation matrix between coordinate systems is 

shown in Fig. 2. The transformation matrix between each 

coordinate system is represented by ()L . 
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Fig. 2. Relationships of coordinate systems 

 

III. MODELING OF PROJECTILE MOTION MODEL 

A. Dynamic equation of projectile centroid motion 

The dynamic equation of projectile centroid motion is 

established in the ballistic coordinate system, as shown 

below[15][16]: 
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 Where, m ——refers to projectile mass; 

v ——refers to projectile velocity; 

t ——refers to time; 

 ——refers to trajectory inclination angle; 

v ——refers to ballistic deflection angle; 

2 2 2
, ,x y zG G G ——refer to the components of gravity in the 

ballistic coordinate system respectively; 

2 2 2
, ,x y zR R R ——refer to the components of aerodynamic 

force in the ballistic coordinate system respectively. 

B. Dynamic equation of projectile rotating around the 

center of mass 

The kinetic equation of projectile rotating around the 

center of mass is established in the quasi projectile coordinate 

system, as shown below[15][16]: 
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                 (2) 

Where, 
4 4 4
, ,x y zJ J J ——refer to the moment of inertia of 

the projectile to each axis of the quasi projectile coordinate 

system respectively; 

4 4 4
, ,x y z   —— refer to the components of rotational 

angular velocity   on each axis of quasi projectile 

coordinate system respectively; 

4 4 4
, ,x y zM M M —— refer to the components of 

aerodynamic moment in the quasi projectile coordinate 

system respectively. 

C. Kinematic equation of projectile centroid motion 
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 Where , ,x y z ——refer to three axis coordinates of 

projectile in the inertial system respectively[15][16]. 

D. Kinematic equation of projectile rotating around the 

center of mass 
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 Where,  ——refers to pitch angle; 

 ——refers to yaw angle; 

 ——refers to roll angle[15][16][17]. 

E. Geometric relation equation 
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Where,  ——refers to angle of attack; 

 ——refers to sideslip angle; 

v ——refers to velocity tilt angle[15][16]. 

IV. LINE OF SIGHT DECOUPLING ALGORITHM FOR 

STRAPDOWN SEEKER 

A. Relative motion model of missile and target 

The relative motion model of missile and target is 

established, as shown in Fig. 3. Among them, M  is the 

position of the missile body, T  is the position of the target 

point, v  is the velocity of the missile body, Oxyz  is the 

ground coordinate system, , ,x y zv v v  is the projection of the 

projectile velocity v  on the three coordinate axes of the LOS 

coordinate system, and the target motion vector is t
v . 

qy

qz

qx

v

xv

yv

M

zv

q

q x

y

z
T

O

 
Fig. 3. Relative motion between projectile and target 
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The change rule of r  can be expressed as 

                                         
t

r v v                                        (6) 

Since terminal guidance ammunition usually strikes fixed 

targets, 0
t

v . 

In order to analyze the change rule of LOS angle, r  is 

expressed in polar coordinates:  r q q r . In the LOS 

coordinate system, the instantaneous motion of missile body 

can be decomposed into two circular motions around target 

point T  in q qOx y  plane and q qOx z  plane with relative 

distance r  as radius. According to the relationship between 

angular velocity of circular motion and linear velocity, the 

expression of relative velocity of projectile and target is 

obtained: 
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                          (7) 

It is known that the coordinates of projectile velocity in the 

ballistic coordinate system is  ,0,0v . Based on the coordinate 

transformation relations among the ballistic coordinate system, 

LOS coordinate system and ground coordinate system, the 

projection of projectile velocity vector in the LOS coordinate 

system can be obtained: 
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                      (8) 

The velocity component of missile body in the LOS 

coordinate system obtained from formula (8) is introduced into 

equation (7). Finally, the relative motion model of missile and 

target is obtained: 
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      (9) 

Where 1w , 2w  and 3w  represent state model noise 

respectively. 

B. Measurement model of seeker 

The coordinates of the LOS between the ammunition and the 

target in the ground coordinate system are 

(cos cos ,sin , cos sin )γ λ γ γ λq q q q q r . Its coordinates in the 

missile body system are 

a (cos cos ,sin , cos sin )α β α α βq q q q q r . According to the 

transformation relationship ( , , )L    between the missile 

body coordinate system and ground coordinate system, it can 

be concluded that: 
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Finally, the measurement model of all strapdown laser seeker 

is simplified: 
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Where ijR  is the element in the transformation matrix from 

the ground coordinate system to the missile body coordinate 

system, and 1v  and 2v  are the measurement noise of seeker. 

V. DESIGN ROBUST CUBATURE KALMAN FILTER 

A. Linearization of filtering model 

A discrete nonlinear system with uncertain parameters is 

established as follows: 

                      1
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Where n

k Rx  is the state variable matrix of the system and 

m

k Ry  is the observation matrix of the system. 
ku  is the 

input matrix of the system, ( )f   and ( )h   are the nonlinear 

state equation and measurement equation of the system 

respectively. l

k RA  is the parameter matrix of the state 

model with uncertainty, and s

k RB  is the parameter matrix 

of the measurement model with uncertainty. n

k Rw  and 

m

k Rv  are mutually uncorrelated white Gaussian noise 

matrices with zero mean values. The covariance at any time 

satisfies the following conditions: 
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The state equation and measurement equation of nonlinear 

system are expanded at the filter state estimation point by 

Taylor formula. The linear system is obtained: 
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Where x̂  is the estimated value of the system state by the 

filter, and x  is the state estimation error value. 2( )O x  is the 

higher order term in Taylor series. 

B. Linearization of the coefficients of the first order term of 

the filtering model 

The first-order coefficients are nonlinear functions. Taylor 

expansion is carried out with parameters as independent 

variables: 

       2( )
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Where, A  is the determined value of the nonlinear system 

parameters. 
kA  is the uncertainty of the parameter. Since the 

range of 
kA  is generally very small, the high-order small term 

2( )kO A  can be ignored. It is known that the coefficient matrix 

consists of definite and uncertain terms. In order to facilitate the 

derivation of the algorithm, the linearized first-order 

coefficients of the state equation can be expressed as follows: 

     
1 1, 1, 1, 1,
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x
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Where 1,kF  is the coefficient determinate term of the 

linearized system at k time, and 1, 1, 1,k k kM Γ N  is the coefficient 

uncertainty term. 1,kM  and 1,kN  are matrices with 

corresponding dimensions, expressing accurately the 

uncertainty boundary of system parameters. 1,kΓ  is an 

unknown bounded time-varying matrix, that is, T

1, 1,k k Γ Γ I . 

From formula (15) and (16), the corresponding relationship of 

two forms can be easily obtained: 
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It can be concluded from the above formula that the 

coefficient uncertainty of the first order term of the state 

equation is completely determined by the parameter uncertainty 

kA  in the nonlinear system. If the maximum uncertainty of the 

model parameter is known, it can be set as follows: 
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Where abs  is the absolute value of each element in the 

matrix. 

Similarly, the first order uncertainty coefficient of the 

measurement equation can be set as follows: 
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The definitions of 
2Γ  and 

2N  are the same as those of 
1Γ  

and 
1N  above. 

2H  and 
2M  can be obtained from the 

maximum uncertainty of measuring model parameters: 

   
  

1 1

2, 1 2 1

2, 1 2 1 1 1

( )

( ) / max abs
k k

k k

k k k k

g

g
 

 

   

 


     B B

H B

M B B B
    (20) 

According to formula (14)~(20), the expression of linearized 

system with uncertain parameters is obtained: 
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C. Error Covariance Matrix 

Prediction error 1k



x , state estimation error 1k



x , output 

prediction error 1ky , one-step state prediction error 

covariance 
1k



P , output prediction error covariance , 1y kP  and 

state estimation error covariance 
1k



P  are defined as: 
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The one-step prediction estimation of the model state 

obtained by the cubature Kalman filter algorithm is as follows: 
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The linear expression of state variables in equation (21) and 

equation (23) are introduced into the prediction error 

expression, and the expansion term above the third order is 

ignored. 
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Furthermore, the covariance of state prediction error was 

obtained 
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In the same way, the estimated values of system observation 

were as follows: 
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By introducing equation (21) and equation (26) into equation 

(22), it is obtained that: 
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The output prediction error covariance is obtained: 
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H M Γ N R
             (28) 

D. Robust cubature Kalman filter design 

Lemma 1[17]: There are matrices A , B , C  and D  with 

appropriate dimensions, satisfying T CC I . If a real positive 

definite matrix and a normal number κ  are given, and 

κ T  0I DUD  is satisfied, the following inequality holds 

true: 

                    
T

1 1 T 1 T T

( ) ( )
1

( κ ) κ  

 


 

A BCD U A BCD

A U D D A BB
                (29) 

Lemma 2[18]: Suppose there is a real symmetric matrix 
T  0U U . There are functions T T( ) ( ) Rl l

k ke e  U U  and 

T T( ) ( ) Rl l

k kg g  U U , where 0 k l  . If there is a real 

symmetric matrix T V V U , the following conditions are 

satisfied: 

                                  
( ) ( )

( ) ( )

k k

k k

e e

g g





V U

V U
                                (30) 

Then there are solutions kX  and kY  of the following 

equation satisfying k kX Y : 

                  1 1 0 0( ), ( ),k k k k k ke g   X X Y Y X Y              (31) 

According to lemma 1 and formulas (25) and (28), the upper 

bounds 
1k



Σ  and , 1y kΣ  of prediction error covariance with 

uncertain parameters and output prediction error covariance 

were obtained: 

             
1 1 T 1 T

1 1, 1 1, 1, 1,

T

1 1, 1, 1

(( ) κ )

κ

k k k k k k

k k k k

    







 

  

P F Σ N N F

M M Q Σ
               (32) 
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1 1 T 1 T

, 1 2, 1 1 2 2, 1 2, 1 2, 1

T

2 2, 1 2, 1 1 , 1

(( ) κ )

κ

y k k k k k k

k k k y k

   

     

   

 

  

P H Σ N N H

M M R Σ
      (33) 

According to the conclusion of lemma 2, formula (25) is 

taken as the function e, and formula (28) as the function g. It is 

easy to prove that if the one-step prediction covariance satisfies 

1 1k k

 

 P Σ , the state error covariance satisfies 
1 1k k

 

 P Σ . 

Therefore, the trace of the upper bound of the error covariance 

matrix can be minimized by selecting the appropriate gain 

matrix. Namely if P  is replaced by Σ , the minimum upper 

bound of error covariance for state estimation of systems with 

parameter uncertainty can be obtained. 

It can be seen from formulas (17) and (20) that 
1,kF  and 

2, 1kH  are the first-order error coefficients of the state equation 

and the measurement equation respectively. Therefore, in order 

to improve the accuracy of error covariance estimation, 

cubature transform can be used to calculate the error covariance 

matrix of uncertain parameter system, instead of 
1 T 1

1, 1 1, 1, 1,( κ )k k k k k

  F Σ N N F  and 

1 T 1

2, 1 1| 2 2, 1 2, 1 2, 1( κ )k k k k k k

 

    H Σ N N H  terms in the upper bound 

of covariance. When calculating the cubature point, the upper 

bound of the covariance of the prior distribution of the state 

variables is replaced by formulas (34) and (35) respectively. 

                      1 1 T 1

1 1 1
ˆ (( ) κ )k k k k

     Σ Σ N N                         (34) 

               1 1 T 1

1 1 2 2, 1 2, 1
ˆ (( ) κ )k k k k

    

    Σ Σ N N               (35) 

Finally, the upper bound of the error covariance is obtained 

by calculating the cubature point with the spherical radial 

criterion, as shown in formula (36) (37) (38). 

                

2
T

1 , 1 1 , 1 1

1

T

1 1, 1,

1
ˆ ˆ( )( )

2

κ

n

k i k k i k k

i

k k k

n

    

    



  

 

Σ X x X x

M M Q

       (36) 

               

2
T

, 1 , 1 1 , 1 1

1

T

2 2, 1 2, 1 1

1
ˆ ˆ( )( )

2

κ

n

y k i k k i k k

i

k k k

n
    



  

  

 

Σ Y y Y y

M M R

         (37) 

           
2

T
, 1 , 1 1 , 1 1

1

1
ˆ ˆ( )( )

2

n

xy k i k k i k k

in

 
    



  Σ X x Y y           (38) 

In lemma 1, the upper bound of the state error covariance 

matrix of the system with parameter uncertainty is expressed 

by the covariance matrix with parameter uncertainty κ . 

In robust cubature Kalman filter algorithm, the lower limit 

of κ  is restricted by condition 
1 1 T 1

| | 1 1 1
ˆ ( κ )k k k k k k

   Σ Σ N N  

and 
1 1 T 1

1| 1| 2 2 2
ˆ ( κ )k k k k k k

  

  Σ Σ N N , and κ  must be greater 

than the maximum eigenvalue of matrix 
1 T 1( ) 

N Σ N . In 

general, the matrix N  is the identity matrix. Therefore: 

                                 
κ max(eig( )) Σ

                          
 (39) 

 (a) When κ max(eig( ))Σ , the conditions in the 

algorithm are satisfied. In that case, 
1 1 T 1( κ )  Σ N N  is 

approximately unchanged, but TκMM  tends to be infinite. 

The system error covariance matrix has no limitation on the 

uncertainty of the system, so the algorithm fails. 

 (b) When κ max(eig( ))  Σ , where   is an arbitrary 

small quantity, 
1 1 T 1max((eig( κ ) ))  Σ N N  is much larger 

than 
1 1max(eig( ) ) 

Σ . With the increase of iteration steps, 

the error covariance matrix tends to diverge, and the 

divergence rate increases with the decrease of   value. 

 (c) When the covariance matrix of N state variables in the 

system has a large order of magnitude difference, κ  needs to 

satisfy the condition κ max(eig( )) Σ . According to 

inequality (32), the larger κ  is, the larger upper bound for 

the covariance of the state variables with smaller order of 

magnitude it defines, which makes the algorithm more 

conservative for the estimated values of the state variables 

with smaller covariance, resulting in some elements of higher 

accuracy than others in the filtering results. 

VI. UNCERTAINTY SETTING OF FILTER ESTIMATION 

A. Uncertainty of projectile motion parameters 

In general, the impact point of guided ammunition obeys 

normal distribution  2,N   . In the case of confidence level 

 1  , the confidence interval of variance 
2  is as follows: 

                            
 

 

 

 

2 2

2 2

1
2 2

1 1
,

1 1

n S n S

n n  


 
  

 
  

 

                       (40) 

Take the confidence interval as  ˆ ˆ0.9 ,1.15  . Check the 

distribution table 2 , when 1000N  , the confidence level is 

greater than 99%. 

The six degree of freedom motion model of missile body in 

Fig. 4 was constructed by MATLAB. The initial velocity of the 

projectile was set at 270m/s, the firing angle was 78.91 , the 

standard meteorological conditions of artillery were adopted, 

and the target point was set as (2000,0,0)  in the ground 

coordinate system. The standard deviation of all actual ballistic 

parameters relative to ideal ballistic parameters was calculated 

as the uncertainty of system parameters. Finally, the standard 

deviation curve of each parameter is shown in Fig. 5. 

Six degree of 

freedom motion 

model of 

missile body

Seeker 

model

Filter 

estimation 

model

Target 

model

Relative motion 

model of 

missile and 

target

, ,   ,q q 

,q q 

 , ,t t tx y z

,q q 

v

,q q 

 
Fig. 4. Simulation verification model 
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(a) Standard deviation curve of error of partial angle parameter  
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(b) Standard deviation curve of error of roll angle and distance parameters 

Fig. 5. Error standard deviation curve of projectile motion parameters 

 

In Fig. 5, at the end of the trajectory, the standard deviation 

of pitch angle  , yaw angle  , velocity v  and inclination 

angle   of the missile body is small, and so is the influence of 

uncertainty. The measurement error of distance r  for guided 

mortar projectile is very small compared with the distance 

between missile and target, and the distance measurement can 

be conducted by low-cost components, so the influence of 

uncertainty is small. The standard deviation of roll angle   and 

ballistic deflection angle 
V  is large, which has great influence 

on filtering. 

B. Robust design of LOS angular rate estimation 

According to equations (9) and (11), the Jacobian matrix of 

the state equation of the filtering model and the measurement 

equation for the state variables can be obtained, namely the 

first-order coefficient matrix: 

                 ,

q q q q

q q q q

q q q q

q q q q

   

   

   

   

      
      
    
      
   
         

F H                  (41) 

Then, the Jacobian matrix of the first-order coefficient 

matrix for the uncertain parameters (i.e. projectile motion 

parameters) can be obtained: 

              

11 1211 12

21 22 21 22

,F H

h hf f

f f h h

     
     
   
     
        

η ηξ ξ
J J

ξ ξ η η

              (42) 

Where 
11 22~f f  are elements in the coefficient matrix F  

of the linearized equation of state. 
11 22~h h  are elements in the 

coefficient matrix H  of the linearized measurement equation. 

[ ]vv  ξ  is the uncertain parameter of the equation of 

state. [ ] η  is the uncertain parameter of the 

measurement equation. 

According to formulas (17)(20), the uncertainty of filtering 

system can be obtained: 
T

1 1 1

T

2 2 2

diag(max(abs( )) max(abs( )))

diag(max(abs( )) max(abs( )))

    


   

U

V

M Γ N J ξ ξ

M Γ N J η η
 

(43) 

Where ξ  and η  are the deviation values between the 

actual ballistic parameters and the ideal ballistic parameters. 

The operator "diag" represents a diagonal matrix. When 

designing the filter, max(abs( ))ξ  and max(abs( ))η  take 

the standard deviation of the error between the actual 

trajectory and the ideal trajectory calculated by Monte Carlo 

simulation method at the corresponding time. 

VII. SIMULATION VERIFICATION AND ANALYSIS 

In order to verify the performance of the algorithm, the 

filtering algorithm is simulated as shown in Fig 4. The detection 

range of seeker is 3000m, and the filtering estimation models 

are CKF and RCKF designed in this paper. Set 

κ 19.2max(eig( )) Σ . 

The interference of ballistic parameters includes projectile 

mass, moment of inertia, aerodynamic parameters, angle 

deviation, initial velocity deviation, wind and so on. Due to the 

small error of mass and moment of inertia, its influence is 

ignored. The list of interference items is shown in Table II. The 

CKF algorithm and the designed RCKF algorithm were used to 

filter and estimate the LOS angle and angular rate of the missile 

and target under the interference condition. 
TABLE II  

THE LIST OF INTERFERENCE ITEMS 

Interference term 
Decimal 

value (3σ) 

Large value 

(3σ) 

Deviation of axial force 

coefficient /% 
1.2 4 

Deviation of normal 

force coefficient /% 
0.8 2 

Deviation of lateral force 

coefficient /% 
0.8 2 

Deviation of pitching 

moment coefficient /% 
1 5 

Deviation of yaw 

moment coefficient /% 
1 5 

Deviation of rolling 

moment coefficient /% 
1 5 

Angle deviation/° 0.1 1.0 

Initial velocity 

deviation/(m/s) 
0.2 5.0 

wind speed/(m/s) 0.3 1.0 

wind direction/° 0 90 
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As shown in Fig. 6, Fig. 7, Fig. 8 and Fig. 9, the difference 

between the estimation results of the CKF and the RCKF 

designed in this paper is not particularly large, and they can 

basically be estimated around the the true value of line of sight 

angle or angular rate.  

The maximum deviation and standard deviation of line of 

sight angle and angular rate estimated by filtering under the 

condition of large and small interference were calculated and 

listed in Table III and Table IV. It can be concluded from Fig. 6, 

Fig. 7 and Table III that the filtering accuracy of RCKF is 

slightly better than that of CKF, and the results of CKF are also 

in the acceptable range, which also proves the effectiveness of 

RCKF algorithm. Although the accuracy of angle and angular 

rate are improved to a certain extent, there is little difference 

between them. The main reason is that under the condition of 

small disturbance, the disturbance is small, the change of 

ballistic motion parameters is small, the system uncertainty is 

small, and the impact on CKF is small. 
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(a) Estimation of inclination angle of LOS 
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(b) Estimation of deviation angle of LOS 

Fig. 6. Estimation of LOS angle under small interference 
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(a) Inclination angular rate of LOS 
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(b) Deviation angular rate of LOS 

Fig. 7. Estimation of LOS angular rate under small interference 

TABLE III 

ERROR AND STANDARD DEVIATION UNDER SMALL DISTURBANCE 

Parameter 

Maximum 

error of 

CKF / (o) 

Maximum 

error of 

RCKF / (o) 

Standard 

deviation of 

CKF / (o) 

Standard 

deviation of 

RCKF / (o) 

q  0.034 0.024 0.0091 0.0065 

q  0.036 0.022 0.0087 0.0061 

q  0.298 0.297 0.0507 0.0419 

q  0.275 0.262 0.0513 0.0426 

 

It can be concluded from Fig. 8, Fig. 9 and Table IV that 

under the condition of large disturbance, the filtering accuracy 

of RCKF is significantly higher than that of CKF, and the error 

of CKF result is large, which is unacceptable. RCKF shows 

obvious robustness when the uncertainty of missile parameters 

is large. For the estimation of line of sight inclination angle, the 

maximum error is reduced by 55.56%, and the standard 

deviation is reduced by 55.53%. For the estimation of line of 

sight deflection angle, the maximum error is reduced by 56.5%, 

and the standard deviation is reduced by 55.51%. For the 

estimation of line of sight inclination angular rate, the 

maximum error decreases by 53.92%, and the standard 

deviation decreases by 55.96%. For the estimation of line of 

sight deflection angular rate, the maximum error decreases by 

55.57%, and the standard deviation decreases by 55.41%. 
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(a) Estimation of inclination angle of LOS 
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(b) Estimation of deviation angle of LOS 

Fig. 8. Estimation of LOS angle under big interference 
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(a) Inclination angular rate of LOS 
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(b) Deviation angular rate of LOS 

Fig. 9. Estimation of LOS angular rate under big interference 

TABLE IV  

ERROR AND STANDARD DEVIATION UNDER BIG DISTURBANCE 

Parameter 

Maximum 

error of 

CKF / (o) 

Maximum 

error of 

RCKF / (o) 

Standard 

deviation of 

CKF / (o) 

Standard 

deviation of 

RCKF / (o) 

q  0.3407 0.1514 0.0918 0.0408 

q  0.3208 0.1394 0.0895 0.0398 

q  2.2026 1.0137 0.6011 0.2651 

q  2.0525 0.9122 0.5719 0.2544 

 

To sum up, by comparing the filtering results of large and 

small disturbances, it can be concluded that the RCKF 

algorithm has robustness in the case of large model parameter 

uncertainty and improves the filtering accuracy of the 

algorithm. 

VIII. CONCLUSION 

In order to reduce the cost of guided ammunition, the 

missile target motion model and seeker model were used to 

estimate the LOS angle and angular rate, and trajectory 

parameters were used to replace the IMU. Based on the 

uncertainty of filtering model parameters, a RCKF filtering 

method for uncertain parameter model was proposed. The 

problem of filter estimation for uncertain parameter model 

was transformed into the problem of minimum upper bound 

of error covariance matrix with parameter κ  to overcome the 

influence of parameter uncertainty on filter estimation 

accuracy. The effectiveness and robustness of the algorithm 

were proved by digital simulation, which provided a reference 

for the low cost of guided ammunition. 
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