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Abstract – The propagation of malicious codes such as worms 

have been characterized using compartmental epidemic models 

which are mostly mathematical equations. Aside the challenge of 

identifying the type of virus or worm represented by these 

compartmental models, we noticed that the representation of 

internet protocol (IP) address space is absent. Therefore, this 

study evaluates the impact of the IPV4 address space using the 

following epidemic models; SAIR, SEIR, SEI-V, SEIQR and Q-

SEIR. By our modifications, the implication is that these models 

now characterize the scan-based worms that probe the address 

space in order to find and attack vulnerable computers. To the best 

of our knowledge, this is the first study that evaluates the impact 

of this IP addressing format on epidemic computer network 

models. Numerical simulations with the Runge-Kutta order 4 and 

5 method are used to illustrate several existent variations with the 

models without IPV4 address space. Results are time histories and 

3 dimensional phase plots of the models, and from them it was 

discovered that the standard incidence cancels the effect of adding 

the expression of IPV4 address scanning space for the worms. 

More so, characteristically temporal variations were also noted for 

the susceptible compartment of these models.  
 
Index Terms–Computer Network, Worms, IPV4, Epidemic Model, 

Differential Equations.  

 
I. INTRODUCTION  

In these days of connected systems and computers, malicious 

codes such as worms and their variants have become a perpetual 

source of harm and security risk to individuals and 

organizations that operate using the ubiquitous internet. These 

worms render information and communication technology 

(ICT) infrastructure momentarily unreachable, cause enormous 

losses, disrupt social activities and is regarded as a weapon of 

cyber warfare. As Wang, et al. [1] puts it, “a computer worm is 

a program that self-propagates across a network exploiting 

security or policy flaws in widely-used services”. Examples of 
sophisticated worms that has wrecked mayhem include Code 

Red worm, Blaster worm, Conficker worm, Stuxnet. The 

connected nature of the computers, most especially on the 

internet, implies that every system is potentially at risk of worm 

attack. To curb these catastrophes caused by worms, researches 

have invested huge finances into developing anti-malicious  

 

 

 

 

 
 

 

 

 

 

 

 

 
software that provide immunity for computer systems. 

However, with the continual appearances of worm variants, the 

immunity offered by anti-malware can only be ephemeral and 

short-lived. On worm categorization using target-search 

process, Wang, et al. [1] posited that worms are classified into 

scan-based worms and topology-based worms. Our interest in 

this study is the former. They also maintained that, “scan-based 

worms (scanning worms) propagates by probing the entire IPv4 

space or a set of IP addresses and directly compromises 

vulnerable target hosts without human interference” [1]. 

Scanning strategies include random and localized scanning.  
Aside containment and security approaches that involve anti-

malware and firewall [2], mathematical models are used to 

provide insights into complex epidemic problems in the 

network through simulation experiments that describe the 

dynamical behavior of agents in a networked environment. This 

approach has been widely applied in public health where the 

infectious outcomes of a disease-causing agent are assessed so 

as to gain understanding of spread patterns and other 

containment approaches. Due to the connective similarities 

between viruses in biological networks [3, 4] and malwares in 

telecommunication networks [5], researchers have applied 
compartment models to wireless sensor [6–13] and computer 

networks so as to achieve diverse ends. Additionally, network 

researchers have represented transfer of infections from servers 

to client nodes as well as other scenarios and phenomena that 

occur in a real world network. In recent times, mathematical 

models have addressed the following issues; malicious code 

spread [14, 15], isolation and treatment of virus/worm infection 

[16, 17], inoculation [18, 19], infection latency [20], fuzziness 

[21], effect of anti-malicious code software [22, 23] and e-

vaccine application on susceptible nodes [24, 25].  

The addressing requirements of a network is a phenomena 

that hasn’t been extensively studied using the epidemic models. 
Though, Song, et al [26] modelled address space, there is need 

to elicit its impact in an extensive study using other computer 

network models. The network layer of the Transmission 

Control Protocol/Internet Protocol (TCP/IP) suite houses the 

two popular types of address spaces, they include the IP version 

4 (IPV4) and IP version 6 (IPV6). The network layer solves the 

issue of internetworking by handling the responsibility of 

packet transmission from source to destination. IPV4 is a 32-bit 

addressing format that has 232 addresses i.e. 4.294.967.296 

addresses. On the other hand, IPV6 is 128-bit addressing format 

that has 2128 addresses i.e. 3.4*1038 addresses. Some notable 
differences exist between the two formats. These differences 

are in the following area; addressing and routing, security, 

network address translation, administrative workload, and 

support for mobile devices [27].   

The paper is structured as follows; Section II is the review of 

pertinent literature while Section III contains the methodology 
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used for the study.  Section IV presents the SIRMSMI model and 

the simulation for the impact of IPV4. This provided the 

rationale for modifying six computer network models contained 

in Section IV. Section V presents the conclusions and future 

directions.  

 
II. RELATED WORKS 

Here, we reviewed some computer network epidemic models 

that litter the extant literature on network epidemiology. It is 

noteworthy that even though these models represent worm 

attacks in a computer networks, none of them represented the 

internet protocol address space that are probed to discover 

vulnerabilities. The following are the reviewed models. 

Investigating the use of classical epidemiological models for 

studying computer virus propagation, Piqueira, et al. [28] 

modified the Susceptible-Infected-Removed (SIR) 

epidemiological models so as to introduce the anti-viral 

compartment (SIRA) and analysed the stability of the disease 
free equilibrium points.  

Mishra and Saini [29] formulated an epidemic transmission 

model (SEIRS) of malicious objects in the computer network. 

Therein they assumed that the death rate of computers other 

than attack of malicious object is constant. The model consists 

of a set of integro-differential equations. When a node is 

recovered from the infected class, it recovers temporarily, 

acquiring transient immunity with probability P (O≤P≤I) and 

dies from the attack of malicious object with probability (I - p). 

Mishra and Saini [30] developed four mathematical models on 

computer viruses infecting the system under different 
conditions. SIRS epidemic model was developed by Mishra and 

Jha [31] with a fixed period of temporary immunity, following 

temporary recovery from the infection of malicious objects in 

place of an exponentially distributed period of temporary 

immunity.  

Yuan and Chen [32] proposed a new network virus epidemic 

model which they called the e-SIER. This is unlike other 

existing computer virus propagation models because it takes 

into consideration three, important network environment 

factors which include (1) multi-state antivirus, (2) latent periods 

before the infected hosts become infectious and (3) point to 

group information propagation mode. Piqueira and Ceasar [33] 
developed a dynamic model for virus propagation. Here, 

classical epidemiological models for disease propagation are 

adapted to computer networks and, by using simple systems 

identification techniques a model called SAIC (Susceptible, 

Antidotal, Infectious, and Contaminated) was developed. Real 

data about computer viruses are used to validate the model i.e. 

Comparisons between model outputs and real data presented 

shows that the model can be considered adequate to describe 

the spreading evolution of a computer virus.  

In the work of Piqueira and Araujo [34], a modified version 

of the Susceptible-Infected-Removed (SIR) model was 
presented like Piqueira and Ceasar [33] and how its parameters 

are related to network characteristics were explained. The 

modification here is by allowing the inclusion of a block that 

represents the antidotal population, thereby generating a SAIR 

(Susceptible-Antidotal-Infected-Removed). Compared to the 

SIR model, the antidotal population therein represents some 

machines in the network equipped with anti-virus programs. 

Mishra and Nayak [35] proposed a Susceptible (S)–Infectious 

(I) epidemic model for active infectious nodes in computer sub-

networks where nodes continuously interact with each other. 

Here, the Infectious compartment is divided into active 

infectious and non-active infectious nodes.  

Saini [36] presented a different perspective to infection 
modeling by proposing and analysing a nonlinear mathematical 

model (PIM) to study the effect of malicious object on the 

immune response of the computer network. Mishra and Pandey 

[19] formulated an e-epidemic SEIRS model for the 

transmission of worms in computer network through vertical 

transmission. The stability of the result was stated in terms of 

modified reproductive number.  

Mishra and Kumar [37] formulated a Susceptible(S)-

Infectious (I) model for transmission of worms in Computer 

network. The SIS model for the infective periods of fixed length 

due to the attack of computer worms gave rise to the 

formulation of three different epidemic models. The effect of 
time delay on infected nodes was analysed which also includes 

worms transmission in vertical ways on the nodes of the 

computer network.  

The model in Mishra and Pandey [19] is similar to Mishra 

and Pandey [38] but differ in the sense that an attempt was made 

(in the latter) to mathematically formulate a compartmental 

Susceptible–Exposed–Infectious–Susceptible with Vaccination 

(SEIS–V) epidemic transmission model of worms in a 

computer network with natural death rate, which depends on the 

total number of nodes. Additionally, they analysed their 

contribution of vertical transmission to the modified 
reproductive number as well as the performance analysis of 

efficient antivirus software. Numerical methods were employed 

to solve and simulate the system of equations developed and 

interpretation of the model yielded interesting revelations. 

Kumara, et al. [39] developed a compartmental e-Epidemic 

Susceptible-Infectious-Highly Infectious-Recovered (SIJR) 

model of viruses in a computer network with natural death (that 

is, crashing of nodes due to the reason other than the attack of 

viruses). The infectious class here changes infectivity i.e. the 

progression from less infectious to highly infectious stage.  

 

III. METHODOLOGY 

To actualize the study, we modified some epidemic computer 

network models by adding the expression for IPV4 addressing 

configuration. The implication is that the resulting 

compartmental models now represents scan-based worms that 

search the IP address space for weaknesses. The differential 

equation models, posed like an initial value problem requires a 

numerical method in order to provide solutions [40], therefore, 

the Runge-Kutta order 4 and 5 (RK45) numerical method was 

used for this purpose [41]. Numerical simulations was done in 

order to generate time histories and three dimensional (3D) 

phase plots which are used to highlight the impact of IP 
addressing configurations in computer networks containing 

scan-based worms. During these simulation experiments, the 

parametric values of the original epidemic models were 

adapted.  
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III. IPV4 ADDRESS SPACE AND EPIDEMIC MODELS 

 

Of great importance is the model proposed by Song, et al [26] 

to address web scanning and removable external devices. This 

model comprises of five compartments namely; susceptible (S), 

infected (I), immunized (R), susceptible media (MS) and 
infected media (MI). The SIRMSMI model has the IPv4 address 

protocol, where 232 represents the size of the scanning space and 

the chance of discovering a vulnerable computer in one scan, 

denoted as S/232. Note that the assumptions of the original 

model is maintained here. The SIRMSMI is given as system (1) 

below:  

�̇� = b1 – 
𝛽1𝑆𝐼

232  – 
𝛽2𝑆𝑀1

𝑆 + 𝐼 + 𝑅
 – 𝜇1𝑆 

𝐼 ̇= 
𝛽1𝑆𝐼

232  – 
𝛽2𝑆𝑀1

𝑆 + 𝐼 +𝑅
 –𝛿1𝑆 – 𝜇1𝐼 

�̇� = 𝛿1𝐼 – 𝜇1𝑅   

�̇�S = b2 – 
𝛽2𝑀𝑆𝐼

𝑆+𝐼+𝑅
 + 𝛿2𝑀1 – 𝜇2𝑀𝑆 

�̇�I = 
𝛽2𝑀𝑆𝐼

𝑆+𝐼+𝑅
 – 𝛿2𝑀𝐼 – 𝜇2𝑀𝐼       

                       

Using the RK45 method, we performed the numerical 

simulation experiments to show the behaviour of the 

compartments. The experiments depicted the impact of the 
addition and removal of the expression for IPv4 scan space at 

rates; β1= 0.042 and β2 = 0.024, which are the infection rates of 

computers and infected media respectively. Other values used 

for the simulations include μ1, μ2 ((obsolescence rate of 

computers and the obsolescence rate of removable devices) = 

0.0027 and δ1 (recovery rates of infected computers) = 0.033, 

δ2 (recovery rates of infected media) = 0.0082. During the 

simulation, the initial values of the compartments were 200, 70, 

20, 10, 10 for S, I, R, MS and MI respectively. 

Taking a close look at the two results that constitute Fig. 1 

and Fig. 2, it is clear that they are different, thence, showing the 

impact of the IPv4 address space. The intersection of infectious 
and recovered compartments of the first result (Fig. 1) with 

IPv4 was at (13, 43) while the second result (Fig. 2) without 

IPv4 was at (19, 136) for (x, y) axes.  

Investigating the dynamics of the network, more variations 

were succinctly and subsequently shown using Fig. 3 and Fig. 

4, which is are 3D plots of the SIRMSMI model. During that 

simulation, the infectivity rates were increased in this manner; 

β1= 0.042, 0.046, 0.050 and β2 = 0.024, 0.028, 0.032. 

Specifically, Fig. 3 is the 3D plot of the SIRMSMI model with 

IPV4 representing the dynamics of Susceptible, Infected and 

Recovered compartments. While Fig. 4 is the 3D phase plot of 
the SIRMSMI model without IPV4 showing the dynamics of 

Susceptible, Infected and Recovered compartments. For the 

latter, one can see that responses overlap, while for the former 

responses are slightly separated.  

 

 
Fig. 1.  SIRMSMI model with IPv4 

 

 
Fig. 2.  SIRMSMI model without IPv4 

 

 

Fig. 3.  3D plot of the SIRMSMI model with IPV4 for S, I, R compartments 

(1) 
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Fig. 4.  3D plot of the SIRMSMI model without IPV4 for S, I, R compartments 

    To highlight the dynamics of the remaining compartments 

i.e. the Susceptible Media and Infected Media, we performed 

simulation experiments that gave rise to Fig. 5 and Fig. 6. These 

figures further showed the variations existent for the presence 
and absence of IPV4 addressing configuration in the SIRMSMI 

epidemic model.  

 

Fig. 5.  3D plot of the SIRMSMI model with IPV4 for S, MS, MI compartments 

 

Fig. 6. 3D plot of the SIRMSMI model without IPV4 for S, MS, MI compartment 

IV. EPIDEMIC MODELS: NUMERICAL SIMULATION 
 

The epidemic computer network models to be evaluated were 

culled from the extant literature on network epidemiology. 

However, our study here is absent analysis on removable 

devices also represented in the above model of Song, et al. [26]. 

The analyses involving some selected modified computer 

network models are listed in the following subsections. Note 

that numerical simulations following model descriptions are 

performed using the RK45 numerical method.  

A. The SAIR Model  

The SAIR model was originally designed by Piqueira and 

Araujo [34] for virus propagation, but it can be applied to worm 
spread in computer networks. The population of computers (T) 

are divided into four compartments namely; the non-infective 

and vulnerable computers (S), the antidotal computers (A) i.e. 

nodes equipped with anti-malicious software, the infective 

computers (I) and the removed computers (R) as a result of 

infection or otherwise. The assumptions of the model include 

N: addition of new computers to the network, μ: death rate due 

to worm infection, βSI⁄232: the effective infectious rate as a 

result of the worm probing the IPV4 address space in search of 

vulnerable nodes, α1: equipping the susceptible computers with 

anti-malicious software, α2: the conversion of infective 
computers to antidotal state, δ: the removal rate of unfixable 

computers, σ: the restoration and conversion of removed 

computer to the susceptible state. At N = 0 there is no addition 

of new computers and the four groups S+I+R+A equals the T. 

The SAIR is given as system (2) below: 

�̇� = N – 𝛼1 𝑆 – 
𝛽𝑆𝐼

232  – 𝜇𝑆 – 𝜎𝑅 

𝐼 ̇= 
𝛽𝑆𝐼

232  –   𝛼2𝐼 − 𝛿𝑆 – 𝜇𝐼                         

�̇� = 𝛿𝐼 – 𝜎𝑅 −  𝜇𝑅  

�̇� = 𝛼1 𝑆 + 𝛼2𝐼 – 𝜇𝐴 

 

(2) 
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Numerical simulations using the specified numerical method 

resulted in Fig. 7 and Fig. 8. The simulation experiments were 

done using the following values: N=100; α1 = 0.025; α2 = 0.25; 

β = 0.1; μ = 0.01; σ = 0.8; δ =20; while the initial values are S 

= 74; I = 25; R = 0, A = 1. The simulations shows that there is 

significant difference for the addition or otherwise of the 
expression of IPV4 address space. The four groups of S, A, I, R 

vary for addition of IPV4. The greatest difference is visible if 

one considers the R compartment; with address space 

representation (Fig. 7), R was persistently 0 alongside the 

infected compartment. Conversely, without IPV4 (Fig. 8) it was 

seen to rise to unimaginable points.  

Investigating the dynamics of this network, the differences 

were clearly shown using Fig. 9 and Fig. 10, which are the 3D 

plots of the SAIR model. During that simulation, the infectivity 

rates were increased in this manner; β = 0.1, 0.5, 1.0. 

Specifically, Fig. 9 is the 3D plot of the SAIR model with IPV4 

representing the dynamics of Susceptible, Infected and 
Recovered compartments. While Fig. 10 is the 3D plot of the 

SAIR model without IPV4 showing the dynamics of 

Susceptible, Infected and Recovered compartments. 

 

 
Fig. 7.  SAIR model with IPv4 

 

 
Fig. 8.  SAIR model without IPv4 

 

Fig 9.  3D plot of the SAIR model with IPV4 for S, I, R compartments 

 

Fig 10. 3D plot of the SAIR model without IPV4 for S, I, R compartments 

B. The SEIQRS Model  

The SEIQRS model was originally proposed by Mishra and 

Jha [42]. Therein, the population of computers were divided 

into subgroups of susceptible, exposed, infectious, quarantined, 

and recovered, represented as S(t), E(t), I(t), Q(t), R(t) 

respectively. The original assumptions of the model are retained 

alongside the expression of IPV4 address space. The parameters 

include; A: addition of new computers to the susceptible class, 

d: rate of death due to reasons other than the malicious code 

attack, μ: transition for exposed class to the infective class i.e. 

the computers become fully infectious, δ: rate at which 
infectious computers are isolated, α: the mortality rate as a 
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result of worm infection, ε: recovery rate for quarantined 

computers, γ: recovery rate for infected computers, and η: 

immunity loss. The SEIQRS is given as system (3) below: 

 

�̇� = 𝐴 – 
𝛽𝑆𝐼

232 – 𝑑𝑆 + 𝜂𝑅 

�̇� =
𝛽𝑆𝐼

232  – (𝑑 + 𝜇)𝐸 

𝐼 ̇= 𝜇𝐸 – (𝑑 + 𝛼 +  𝛾 +  𝛿)𝐼  

�̇� = 𝛿𝐼 – (𝑑 + 𝛼 +  𝜀)𝑄 

�̇� = 𝛾𝐼 + 𝜀𝑄 – (𝑑 +  𝜂)𝑅 

 

Numerical simulations of the SEIQRS model using the 

specified numerical method resulted in Fig. 5 and Fig. 6. The 

simulation experiments were done using the following values: 

A = 0.3, d = 0.1, μ = 0.3, β = 0.3, γ = 1.8, ε = 0.3, η = 0.2, α = 

0.2, δ = 3.8. The initial values were using 200, 100, 50, 0, 0 for 
S(t), E(t), I(t), Q(t), R(t) respectively. The Exposed 

compartment (which contains computers who have contacted 

the infection but are not fully infectious) was above 250 when 

the time history was plotted without IPV4 address space (Fig. 

11). Conversely, when IPV4 was involved in the simulation 

(Fig. 12), the E compartment was at 98 computers. Specifically, 

by analysing Fig. 12, it is obvious that the addition of IP 

addressing requirement to the SEIQRS model lowered the 

quarantine and recovery rates of computer nodes and changed 

the behaviour of the susceptible compartment. 

Studying the dynamics of this network, the differences were 
clearly shown using Fig. 13 and Fig. 14, which are the 3D plots 

of the SEIQRS model. During that simulation, the infectivity 

rates were increased in this manner; β = 0.3, 0.8, 1.3. While Fig. 

13 is the 3D plot of the SEIQRS model with IPV4 representing 

the dynamics of Susceptible, Exposed and Infected 

compartments. Fig. 14 is the 3D plot of the SEIQRS model 

without IPV4 showing the dynamics of Susceptible, Exposed 

and Infected compartments.  

Using the same values of varying infectiousness, we sought 

to elicit the internal dynamics of Quarantined and Recovered 

compartments alongside the Susceptible compartment, and this 

is depicted as Fig. 15 and Fig. 16.  
 

 

Fig. 11.  SEIQRS model without IPv4 

 
Fig. 12.  SEIQRS model with IPV4 

 

 

Fig. 13.  3D plot of the SEIQRS model with IPV4 for S, E, I compartments 

 

Fig. 14.  3D plot of the SEIQRS model without IPV4 for S, E, I compartments 

(3) 
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Fig. 15.  3D plot of the SEIQRS model with IPV4 for S, Q, R compartments 

 

Fig. 16. 3D plot of the SEIQRS model without IPV4 for S, Q, R compartments 

C. The SEIR-S Vertical Transmission 
 

Here, the proponents [19] of the original SEIR-S Model, 

added vertical transmission (VT) alongside the ubiquitous 

horizontal malware transfers treated by most compartmental 

models of network epidemiology. Described as the transition 

from the main server to any of the client computers, VT hasn’t 

been extensively addressed in epidemiology of computer 

networks. Alongside the following assumptions of the original 

model which was retained for this study, we add the expression 

for IPV4 address space for the scan-based worms as described. 

Note that with mass action as the chosen infection incidence, 

the effective infectious rate as a result of scan-based probes of 

the address space is given as λSI⁄232.  
The total population of computers N, are divided into S(t), 

E(t), I(t) and R(t) representing the susceptible, exposed 

(infected but not yet infectious), infectious and recovered, 

respectively. Other assumptions of the model include; b: the 

addition of new susceptible nodes to the network, d: death rate 

as a result of hardware failure or other reasons expect worm 

infection, ε: the transition from the E compartment to the I 

compartment, η: death rate as a result of worm infection, γ: 

transition between infectious compartment to the recovered 

compartment, ζ is the rate of re-infection after loss of immunity. 
On vertical transmission, it is assumed in the model that a 

portion p and a portion q of the new computers are added to the 

exposed compartment E. Therefore, the expression for this birth 

flux into compartment E is described as pbE + qbI while that of 

susceptible compartment is described as b – pbE – qbI. In the 

light of the above, the SEIR-S model is given as system (4) 

below:  

�̇� = b –  
𝜆𝑆𝐼

232 – 𝑝𝑏𝐸 − 𝑞𝑏𝐼 − 𝛿𝑆 + 𝜁𝑅 

�̇� = 
𝜆𝑆𝐼

232  + 𝑝𝑏𝐸 + 𝑞𝑏𝐼 − 𝜀𝐸 − 𝑑𝐸 

𝐼 ̇= 𝜀𝐸 – 𝛾𝐼 − 𝑑𝐼 −  𝜂𝐼 

�̇�  = 𝛾𝐼 + 𝜁𝑅 − 𝑑𝑅 

 

Numerical simulations of the SEIRS model using the 

specified numerical method resulted in Fig. 17 and Fig. 18. The 

simulation experiments were done using the following values: 

b = 1.2, p = 0.1, q = 0.15, η = 0.3, d = 0.2, λ = 1.3, ε = 0.4, γ 

= 0.6, ζ = 0.8. The initial values were 70, 30, 10, 0 for S(t), E(t), 

I (t), R(t) respectively. It is clear that there is a difference 

between the results. The Susceptible compartment started from 
the initial value and gradually attempts to reach 0 on the x axis 

for the inclusion of IPV4 (Fig. 17). On the hand, the Susceptible 

compartment dipped to 0 at once, for the absence of the IPV4 

expression (Fig. 18). The Exposed and Infected compartments 

also shows variations.  

Examining the dynamics of this model, the differences were 

clearly shown using Fig. 19 and Fig. 20, which are the 3D plots 

of the SEIR-S model. During this simulation, the infectious 

rates were varied in this manner; λ = 1.3, 1.8, 2.3. While Fig. 19 

is the 3D plot of the SEIR-S model with IPV4 representing the 

dynamics of Susceptible, Exposed and Infected compartments. 
Fig. 20 is the 3D plot of the SEIR-S model without IPV4 

showing the dynamics of Susceptible, Exposed and Infected 

compartments. The Recovered compartment was not included 

in the 3D simulations because its behavior were not so different 

if one considers Fig. 17 and Fig. 18.  

 

  
Fig. 17.  SEIR model with IPV4 

(4) 
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Fig. 18.  SEIR model without IPV4 

 

 
 

Fig. 19.  3D plot of the SEIR-S model with IPV4 for S, E, I compartments 

 

Fig. 20.  3D plot of the SEIR-S model without IPV4 for S, E, I compartments 

D. The SEIR–V Model 
 

Mishra and Pandey [38] originally proposed the SEIS-V 

model, however, it was modified to include the expression of 

IPV4 address space. Therein, they divided the population of 

computers (N) into subgroups of fully Susceptible nodes (S), 

Exposed nodes (E), Susceptible nodes with anti-malicious 

software (V), Infectious nodes (I). The assumptions for the 

SEIS-V model include; b: birth rate, δ: is the uniform natural 
death rate as result of hardware failure. Additionally, we 

assumed the IPV4 address space for the scan-based worm 

which results to an effective contact rate of βSI/N at standard 

incidence. The original model assumed a certain infection 

incidence (σβVI/N) as a result of the inefficacy of the anti-

malicious software existing on the vaccinated computers. 

However, if the worm probes address space of the vaccinated 

computers due to the inefficaciousness of the installed anti-

malicious software, the infection incidence is equivalent to 

σβVI/ N*232. Other assumptions include; ρ: the anti-malicious 

software rate, η: the transition from exposed to the infected 

compartment, α: mortality rate as a result of worm attack, γ: the 
transition from infectious to the susceptible compartment, ε: the 

transition from the vaccinated compartment to the susceptible 

compartment. The model also represents the possibility of 

vertical transmission through the increased rate (θ) of worm 

attack introduced at the I compartment. The SEIV-S is given as 

system (5) below:  

�̇� = 𝑏𝑁 – 
𝛽𝑆𝐼

𝑁∗232 – 𝛿𝑆 – 𝜌𝑆 + 𝛾𝐼 + 𝜀𝑉 

�̇� = 
𝛽𝑆𝐼

𝑁∗232 – (𝛿 + 𝜂)𝐸 

𝐼 ̇= 𝜂𝐸 – (𝛿 + 𝛼 +  𝛾)𝐼 + 
𝜎𝛽𝑉𝐼

𝑁∗232 + 𝜃𝑏 

�̇� = 𝜌𝑆 – 
𝜎𝛽𝑉𝐼

𝑁∗232 – (𝜀 + 𝛿)𝑉 

 

It is noteworthy to mention that we first simulated the model 
using the standard incidence as was originally proposed by 

Mishra and Pandey [38]. The resulting behaviour showed that 

both the presence and absence of IPV4 were not different; the 

implication is that standard incidence cancels the effect of 

adding the expression of IPV4 address scanning space. 

Consequently, we used the mass action incidence for the 

numerical simulation of the SEIRS model and it resulted in Fig. 

21 and Fig. 22. The figures showed some difference. The 

simulation experiments were done using the following values: 

β = 0.01, ρ = 0.01, b = 0.01, α = 0.09, η = 0.03, θ = 0.05, ε = 

0.02, σ = 0.03, γ = 0.03. The initial values were 100, 30, 20, 50 
for S, E, I and V respectively. For the vaccinated computers, the 

responses for the presence (Fig. 21) and absence (Fig. 22) of 

IPV4 basically originate from 50, but while the former shows 

the higher tendency to approach equilibrium, the latter shows 

otherwise. Interestingly, other compartments showed 

remarkable difference.  

 In the light of SEIV-S model assumptions, differences were 

clearly shown using Fig. 23 and Fig. 24, which are the 3D plots 

of the SEIV-S model. During this simulation, the infectious 

rates were varied in this manner; β = 0.01, 0.04, 0.08. 

Specifically, Fig. 23 is the 3D plot of the SEIV-S model with 

IPV4 representing the dynamics of Susceptible, Exposed and 
Vaccinated compartments. While Fig. 24 shows the 3D plot of 

(5) 
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the SEIV-S model without IPV4 for Susceptible, Exposed and 

Vaccinated compartments.  

 

 
Fig. 21.  SEIV-S model with IPV4 

 
Fig. 22.  SEIV-S model without IPv4 

 

Fig. 23.  3D plot of the SEIV-S model with IPV4 for S, E, V compartments 

 

 

Fig. 24.  3D plot of the SEIV-S model without IPV4 for S, E, V compartments 

 

E. The SEIR Model 

The e-epidemic SEIR model was originally developed by 

Mishra and Prajapati [43], therein the population of computers 

are divided into groups of susceptible, exposed, infected and 

recovered classes denoted as S(t), E(t), I(t), R(t) respectively. 

The assumptions of the model include; r: the rate of adding new 

nodes to the computer network, μ: the crashing rate of 

computers due to worm attack, δ: the crashing of the computers 

on the network for other reasons, β: infectivity contact rate, k: 
the carrying capacity, is the recovery of infected nodes and τ: 

the infection rate in exposed compartment. We added the IPV4 

address space resulting to βSI⁄232. The e-epidemic SEIR model 

is given as system (6) below: 

�̇� = 𝑟𝑆 – (1 –
𝑆

𝐾
) – 

𝛽𝑆𝐼

232 – 𝛿𝑆 

�̇� = 
𝛽𝑆𝐼

232 – (𝜏 + 𝛿)𝐸 

𝐼 ̇= 𝜏𝐸– (𝜇 + 𝛿)𝐼 – 𝜌𝐼 

�̇� = 𝜌𝐼 – 𝛿𝑅 

 

Numerical simulations of the SEIRS model using the 

specified numerical method gave to Fig. 25 and Fig. 26. The 

simulation experiments were done using the following values: 

β = 0.05, δ = 002, τ = 0.04, r = 0.2, k = 100, ρ = 0.03, μ = 0.01. 

The initial values were 70, 30, 0, 0 for S, E, I and R respectively. 

It is clearly evident that the two results that comprise Fig. 25 

and Fig. 26 are very different. The susceptible compartment 
came down from the initial value (IV) of 70 approaching 0, 

while for the inclusion of IPV4 it went above the IV. The 

intersection of the exposed and infectious compartment are 

different too; while it is at ((20, 50) on (x, y) axes) for the 

absence of IPV4 (Fig. 25), conversely it was (17, 12 on (x, y) 

axes) for the presence (Fig. 26) of the address space. The 

recovered compartments of both results are also clearly 

different. A close examination using 3D plots of the SEIV-S 

(6) 
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model displayed internal dynamics with certain differences. 

These are depicted as Fig. 27 and Fig. 28. During this 

simulation, the infectious rates were varied in this manner; β = 

0.05, 0.09, 0.13. Fig. 27 is the 3D plot of the SEIR model with 

IPV4 representing the dynamics of Susceptible, Exposed and 

Infected compartments. While Fig. 28 shows the 3D plot of the 
SEIR model without IPV4 for Susceptible, Exposed and 

Infected compartments.  

 

 

 

Fig. 25.  SEIR model without IPV4 

 

 

Fig. 26.  SEIR model with IPV4 

 

Fig. 27.  3D plot of the SEIR model with IPV4 for S, E I compartments 

 

Fig. 28. 3D plot of the SEIR model without IPV4 for S, E, I compartments 

F. The Q-SEIR Model 

The pre-quarantine concept was conceived by Nwokoye, et 

al. [7] for Wireless Sensor Networks. Subsequently, the concept 

was established as network access control (NAC) and applied 

in Nwokoye, et al. [9]. Therein, NAC for traditional computer 
systems can be used to achieve the following; “prevent network 

breaches, eliminates unauthorized network connections and 

identify, quarantine and remediate non-compliant/vulnerable 

devices in the network” [9]. The assumptions of the model 

include; 𝜆 is the inclusion rate of nodes into the network 

population, β is the infectivity contact rate, d is the mortality or 

the death rate of nodes due to hardware or software failure, 𝜂 is 
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the death rate of infected immigrant nodes, 𝛿 is the crashing rate 

due to attack of malicious objects, ϕ is the rate of transmission 

from Infectious to Recovered class, ε is the rate of transmission 

from Recovered to Susceptible class, 𝜌 is the rate of 

transmission from Quarantined to Susceptible class, γ is the rate 
of transmission from Exposed to Infectious class, ω is the rate 

of transmission from Quarantine class to Recovered class. With 

the addition of the IPV4 address space i.e. βSI⁄232, the Q-SEIR 

model is given as system (7) below:  

 

�̇� = 𝜌𝑄 + 𝜀𝑅– 
𝛽𝑆𝐼

232 – 𝑑𝑆 

�̇� = 
𝛽𝑆𝐼

232 – 𝐸(𝛾 + 𝑑) 

𝐼 ̇= 𝛾𝐸– 𝐼(𝜙 + 𝑑 + 𝛿) 

�̇� = 𝜔𝑄 +  𝜙𝐼 − 𝑅 (𝜀 + 𝑑) 

 

     Numerical simulations of the Q-SEIR model using the 

specified numerical method gave rise to Fig. 29 and Fig. 30. 

The simulation experiments were done using the following 

values: 𝜆 = 0.33, ρ = 0.3, 𝜔 = 0.01, ε = 0.3, β = 0.1, γ = 0.25, 

𝜙 = 0.4, d = 0.003, and 𝛿 = 0.07. The initial values are 100, 3, 

1, 0 for S, E, I and R respectively. Looking at the susceptible 

compartments of both results, it is clear that Fig. 29 (presence 

of IPV4) and Fig. 30 (absence of IPV4) are grossly different. 

More so, a keen investigation of the 3D plots (Fig. 31 and Fig. 

32) of the Q-SEIR model showed similar variations. During this 
simulation, the infectious rates were varied in this manner; β = 

0.1, 0.4, 0.8. Fig. 31 is the 3D plot of the Q-SEIR model with 

IPV4 representing the dynamics of Susceptible, Exposed and 

Infected compartments. While Fig. 32 shows the 3D plot of the 

SEIR model without IPV4 for Susceptible, Exposed and 

Infected compartments. 

 

 
 

Fig. 29. Q-SEIR model with IPV4 

 

Fig. 30. Q-SEIR model without IPV4 

 

Fig. 31. 3D plot for Q-SEIR model with IPV4 for S, E, I compartments 

 

Fig. 32. 3D plot for Q-SEIR model without IPV4 for S, E, I compartments 
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In the above models, it is noteworthy that the difference 

between SEIR-S and SEIR is that the former considered re-

infection, while the latter does not. For the SEIS–V, instead of 

recovery, the model considered both vaccination and 

reinfection. Also, note that in all the 3D simulation 

experiments, the different rates (β) of san-based worm 
infectiousness were used. The rationale behind using this 

parameter is because during homogenous mixing inherent in the 

above compartmental models, effective transmission basically 

involves the Susceptible and Infected compartments as well as 

the infectious rates β. The β parameter for rate of infectiousness 

was called λ in the SEIR-S model by the original authors, 

therefore, we retained it in our study herein.  

V. CONCLUSION AND FUTURE DIRECTIONS 

In this study, we evaluated the impact of the IPV4 address 

space on computer network epidemic models using time 

histories obtained through solving the systems of differential 

equations with the RK45 numerical method. The analyses was 
done by x-raying the behaviour of the compartments and the 

time it take to reach equilibrium. However, for all the models 

evaluated, the behaviour of the susceptible computers are 

different in the two cases (presence and absence of IP address 

space). This difference was also observed for the exposed 

computers. Other noteworthy differences are as a result of the 

phenomena addressed in the original models. Firstly, we noted 

a remarkable difference for the SIRMSMI model developed by 

Song, et al. [26] and these motivated the study. For models [19, 

38, 42 and 43] that involve the exposed compartment, it was 

observed that it starts off at its initial value then it approaches 
equilibrium when the IPV4 address was considered. 

Conversely, when IPV4 was not considered, the exposed 

compartment first, increases sharply then approaches 

equilibrium slowly. However, for all the models, the susceptible 

(S) computer compartments are characteristically different for 

the presence and absence of IPV4 i.e. it takes quite some time 

to reach equilibrium. Recall that the S compartment represent 

the vulnerable nodes of the computer network. This study is 

necessary because most models that litter the literature did not 

clearly specify the worm type, hence, presenting misleading 

results for computer network models. In future studies we 

would evaluate the impact of these scan type of malicious codes 
for models of denial of service (DOS), distributed denial of 

service (DDOS) attacks. Perhaps, the use machine learning [44] 

or deep learning methods such as Long Short-term Memory 

Recurrent Neural Networks (LSTM RNN) [45] would be 

applied for computer network epidemic predictions. More so, 

the evaluation using numerical simulation experiments would 

also be extended to capture the impact of address space on 

multi-group infections models of a computer networks.  

REFERENCES 

[1] Y. Wang, S. Wen, Y. Xiang, and W. Zhou, “Modeling the Propagation of 

Worms in Networks: A Survey,” IEEE Communications Surveys & 

Tutorials, vol. 16, no. 2, pp. 942 – 960, June 2014. 

[2]  Keigo Taga, Junjun Zheng, Koichi Mouri, Shoichi Saito, and Eiji 

Takimoto, “Firewall Traversal Method by Inserting PseudoTCP Header 

into QUIC,” Proceedings of the International MultiConference of 

Engineers and Computer Scientists (IMECS), Hong Kong, pp. 216-221, 

2019.  

[3]  Hui Miao and Chengjun Kang, “Stability and Hopf Bifurcation Analysis 

of an HIV Infection Model with Saturation Incidence and Two Time 

Delays,” Engineering Letters, vol. 27, no. 1, pp. 9–17, 2019.  

[4]  Afeez Abidemi, Mohd Ismail A. Aziz, and R. Ahmad, “The Impact of 

Vaccination, Individual Protection, Treatment and Vector Controls on 

Dengue,” Engineering Letters, vol. 27, no. 3, pp. 613–622, 2019. 

[5]  Jian Ding, Tao Zhao, Zhigang Liu, and Qiong Guo, “Stability and 

Bifurcation Analysis of a Delayed Worm Propagation Model in Mobile 

Internet,” IAENG International Journal of Computer Science, vol. 47, no. 

3, pp. 533–539, 2020 

[6]  C. H. Nwokoye, V. E. Ejiofor, R. Orji, N. N. Mbeledogu and I. Umeh 

Investigating the Effect of Uniform Random Distribution of Nodes in 

Wireless Sensor Networks using an epidemic worm model. Computing 

Research and Innovation, 2016.   

[7]  C. H. Nwokoye, V. E. Ejiofor and C. G. Ozoegwu, “Pre-Quarantine 

Approach for Defence against Propagation of Malicious Objects in 

Networks”, I. J. Computer Network and Information Security, vol. 9, no. 

2, pp. 43 – 52, 2017. 

[8]  C. H. Nwokoye, N. N. Mbeledogu and I. A. Ejimofor, “The Impact of 

Sensor Area Types on Worm Propagation using SEIR and SEIR-V 

Models: A Preliminary Investigation”, I. J. Wireless and Microwave 

Technologies, vol. 7, no. 6, pp. 33–45, 2017. 

[9]  C. H. Nwokoye, N. N. Mbeledogu, I. Umeh and I. A. Ejimofor, “Modeling 

the Effect of Network Access Control and Sensor Random Distribution 

on Worm Propagation”, I. J. Modern Education and Computer Science, 

vol. 9, no. 11, pp. 49-57, 2017. 

[10]  C. H. Nwokoye, V. E. Ejiofor, M. Onyesolu and B. Ekechukwu, 

“Towards Modeling Malicious Agents in Decentralized Wireless Sensor 

Networks: A Case of Vertical Worm Transmissions and Containment”, I. 

J. of Computer Networks and Information Security, vol. 9, no. 9, pp. 12–

21, 2017.  

[11]  C. H. Nwokoye and I. Umeh, “The SEIQR–V model: On a More Accurate 

Analytical Characterization of Malicious Threat Defense. I. J. 

Information Technology and Computer Science, vol. 9, no. 12, pp.28-37, 

2017.  

[12]  C. H. Nwokoye and I. Umeh, “Analytic-Agent Cyber Dynamical Systems 

Analysis and Design Methodology for Modeling Temporal/Spatial 

Factors of Malware Propagation in Wireless Sensor Networks,” Elsevier 

MethodsX, no. 5, pp. 1373–1398, 2018.  

[13]  C. H. Nwokoye, I. Umeh.  and O. Ositanwosu, “Characterization of 

Heterogeneous Malware Contagions in Wireless Sensor Networks: A 

Case of Uniform Random Distribution”, Lecture Notes in Networks and 

Systems: ICT Analysis and Applications, vol. 2, 2021.  

[14]  E. Gelenbe, “Dealing with software viruses: A Biological Paradigm”, 

Inform. Sec. Tech. Rep, vol. 12, no. 4, pp. 242–250, 2007. 

[15] E. Gelenbe, “Keeping Viruses under Control”, 20th International 

Symposium Computer and Information Sciences – ISCIS 2005, Vol. 3733, 

pp. 304–311, 2005.  

[16]  C. C. Zou, W. Gong and D. Towsley, “Malicious Codes Propagation 

Modeling and Analysis under Dynamic Quarantine Defense”, Proceeding 

of the ACM CCS Workshop on Rapid Malcode, pp. 51–60, 2003.  

[17]  D. Moore, C. Shannon, G. M. Voelker and S. Savage, “Internet 

quarantine: requirements for containing self-propagating code”, 

Proceeding of IEEE INFOCOM2003, pp. 85–91, 2003. 

[18]  B. K. Mishra and D. K. Saini, “Mathematical Models on Computer 

Viruses,” Appl. Math. Comput., vol. 187, no. 2, pp. 929–936, 2007. 

[19]  B. K. Mishra and S.K. Pandey, “Dynamic Model of Worms with Vertical 

Transmission in Computer Network,” Applied Mathematics and 

Computation, vol. 217, no. 21, pp. 8438–8446, 2011.  

[20]  B. K. Mishra and D. K. Saini, “SEIRS Epidemic Model with Delay for 

Transmission of Malicious Objects in Computer Network,” Appl. Math. 

Comput., vol. 188, no. 2, pp. 1476–1482, 2007. 

[21] B. K. Mishra and S.K. Pandey, “Fuzzy Epidemic Model for the 

Transmission of Worms in Computer Network,” Nonlinear Anal.: Real 

world Appl., no. 11 pp. 4335–4341, 2010. 

[22]  B. K. Mishra and N. Jha, “Fixed Period of Temporary Immunity after Run 

of Anti-Malicious Software on Computer Nodes,” Applied Mathematics. 

Comput., vol. 190, no. 2, pp. 1207–1212, 2007. 

[23]  B. K. Mishra and S.K. Pandey, “Effect of Antivirus Software on 

Infectious Nodes in Computer Network: A Mathematical Model,” Phys. 

Lett. A, No. 376 pp. 2389– 2393, 2012.  

[24]  S. Datta and H. Wang, “The Effectiveness of Vaccinations on the Spread 

of Email-Borne Computer Virus,” IEEE CCECE/CCGEL, pp. 219–223, 

2005 

Engineering Letters, 29:2, EL_29_2_29

Volume 29, Issue 2: June 2021

 
______________________________________________________________________________________ 



[25] M. E. Alexander, S. M. Moghadas, P. Rohani and A.R. Summers, 

“Modeling the Effect of a Booster Vaccination on Disease 

Epidemiology,” J. Math. Biol, no. 52, pp. 290–306, 2006.  

[26]  L. Song, Z. Jin, G. Sun, J. Zhang and X. Han, “Influence of Removable 

Devices on Computer Worms: Dynamic Analysis and Control Strategies,”  

Computers and Mathematics with Applications, vol. 61, pp. 1823–1829, 

2011.  

[27]  A. N. Ali, “Comparison study between IPV4 & IPV6,” International 

Journal of Computer Science Issues, vol. 9, no 1, pp. 314 – 317, 2012.  

[28]  J. R. Piqueira, B. F. Navarro and L. H. Monteiro, “Epidemiological 

Models Applied to Virus in Computer Network,” Journal of Computer 

Science, vol. 1, no. 1, pp. 31–34, 2005. 

[29]  B. K. Mishra and D. K. Saini, “SEIRS Epidemic Model with Delay for 

Transmission of Malicious Objects in Computer Network,” Applied 

Mathematics and Computation, vol. 188, No. 2, pp. 1476–1482. 2007. 

[30] B. K. Mishra and D. K. Saini, “Mathematical Models on Computer 

Viruses,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 926-

936, 2007.  

[31]  B. K. Mishra and N. Jha, “Fixed Period of Temporary Immunity after Run 

of Anti-Malicious Software on Computer Nodes,” Applied Mathematics 

and Computation, vol. 190, no. 2, pp. 1207-1212, 2007.  

[32]  H. Yuan and G. Chen, “Network Virus Epidemic Model with Point-To-

Group Information Propagation,” Applied Mathematics and Computation, 

vol. 206, no. 3, pp. 357 – 367, 2008. 

[33]  J. R. Piqueira and F. B. Cesar, “Dynamic Models for Computer Virus 

Propagation,” Mathematics Prob. Engineering, vol. 940, no. 526, pp. 1 – 

11, 2008.  

[34]  Piqueira, J. C. and V. O.  Araujo, “A Modified Epidemiological Model 

for Computer Viruses,” Applied Mathematics and Computation, vol. 213, 

no. 2, pp. 355–360, 2009.  

[35]  B. K. Mishra and P. K. Nayak, “Epidemic Model for Active Infectious 

Nodes in Computer Sub-Networks,” International Journal of Signal 

Control and Engineering Applications, vol. 2, no. 8, pp. 56-60, 2009. 

[36]  D. K. Saini, “A Mathematical Model for the Effect of Malicious Object 

on Computer Network Immune System”, Applied Mathematical 

Modelling, vol. 35, no. 8, pp. 3777–3787, 2011. 

[37]  B. K. Mishra, U. Kumar and G. Sahoo, “Fixed Length of Infective Period 

for Attacking Worms in Computer Network,” International Journal of 

Applied Engineering Research and Development, vol. 2, no. 2, 19-31, 

2012. 

[38]  B. K. Mishra and S. K. Pandey, “Dynamic Model of Worm Propagation 

in Computer Network,” Applied Mathematical. Modelling, vol. 38, no. 7-

8, pp. 2173-2179, 2013.  

[39]  M. Kumara, B. K. Mishra and N. Anwar, “E-epidemic Model on Highly 

Infectious Nodes in the Computer Network,” International Journal of 

Computer Science & Engineering Technology, vol. 4, no. 9, pp. 1216-

1223, 2013. 

[40]  R. Vigneswaran and S. Kajanthan, “Analysis of the Convergence of More 

General Linear Iteration Scheme on the Implementation of Implicit 

Runge-Kutta Methods to Stiff Differential Equations,” IAENG 

International Journal of Applied Mathematics, vol. 50, no. 3, pp. 468–

473, 2020.  

[41]  Jianke Zhang, Xucong Tian, Chang Zhou, and Xiaobao Yang, “A 

Numerical Method for the Fractional Variational Problems Based on 

Chebyshev Cardinal Functions,” Engineering Letters, vol. 28, no. 3, pp. 

751 –755, 2020.  

[42]  B. K. Mishra and N. Jha, “SEIQRS Model for the Transmission of 

Malicious Objects in Computer Network,” Applied Mathematical 

Modelling, vol. 34, no. 1, pp. 710–715, 2010.  

[43] B. K. Mishra and A. Prajapati, “Cyber Warfare: Worms’ Transmission 

Model,” International Journal of Advanced Science and Technology, no. 

63, pp. 83-94, 2014.  

[44]  Li Wuke, Yin Guangluan, and Chen Xiaoxiao, “Application of Deep 

Extreme Learning Machine in Network Intrusion Detection Systems,” 

IAENG International Journal of Computer Science, vol. 47, no. 2, pp. 

136–143, 2020.  

[45] Xu Jiawei, and Tomohiro Murata, “Stock Market Trend Prediction with 

Sentiment Analysis based on LSTM Neural Networks,” Proceedings of 

the International MultiConference of Engineers and Computer Scientists, 

Hong Kong, pp. 475–479, 2019.  

 

Engineering Letters, 29:2, EL_29_2_29

Volume 29, Issue 2: June 2021

 
______________________________________________________________________________________ 




