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Abstract—In this work, we introduce a variable-coefficient
sub-equation method for solving fractional partial differential
equations with the fractional derivative defined by the con-
formable fractional derivative. By use of a nonlinear transfor-
mation and the properties of conformable fractional calculus,
the fractional derivative can be converted into integer order
derivative with respect to a new variable. With general solutions
of two certain sub-equations, a series of exact solutions with
variable coefficient function forms can be obtained subsequently
with the aid of mathematical software. For illustrating the
validity of this method, we apply it to the conformable frac-
tional Bogoyavlenskii equations and the conformable fractional
Jimbo-Miwa equation. As a result, some exact solutions of new
forms are successfully obtained for them.

Index Terms—variable-coefficient sub-equation method; con-
formable fractional derivative; exact solutions; fractional differ-
ential equations; fractional Bogoyavlenskii equations; fractional
Jimbo-Miwa equation

I. INTRODUCTION

Recently, Fractional differential equations have been the
focus of many studies due to their frequent appearance in
various applications in physics, biology, engineering, signal
processing, systems identification, control theory, finance and
fractional dynamics [1-3]. In particular, fractional derivative
is very useful in describing the memory and hereditary prop-
erties of materials and processes. One of its most important
applications is to model the process of subdiffusion and
superdiffusion of particles in physics, where the fractional
diffusion equation is usually used for modeling this move-
ment. To illustrate better the physical phenomena denoted
by fractional differential equations, it is necessary to obtain
analytical or numerical solutions for fractional differential
equations. Many efficient methods have been proposed so far
to obtain numerical solutions and exact solutions of fractional
differential equations. For example, these methods include
the coupled fractional reduced differential transform method
[4], the Bernstein polynomials method [5], the residual power
series method [6], the Jacobi elliptic function method [7],
the finite difference method [8-10], the finite difference
method [11,12], the (G

′

G ) method [13-16], the variational
iterative method [17-20], the fractional Nikiforov-Uvarov
method [21], the modified Kudryashov method [22-25], the
exp method [26,27], the first integral method [28-30], the
sub-equation method [31-34] and so on.
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We notice that most of the existing methods have been
constructed to obtain exact solutions for fractional differen-
tial equations with constant coefficients, and almost none of
the existing methods have been used to obtain exact solu-
tions with variable coefficient function forms for fractional
differential equations.

Motivated by the analysis above, in this paper, by use of
two certain sub-equations, we develop a variable-coefficient
sub-equation method for solving fractional partial differential
equations, where the fractional derivative is defined in the
sense of the conformable fractional derivative. Then we apply
this method to seek exact solutions with variable coefficient
function forms for some certain fractional partial differential
equations.

The conformable fractional derivative is defined as below
[35]

Dαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)
ε .

We list some important properties for the conformable
fractional derivative as follows:

(i). Dα
t [af(t) + bg(t)] = aDαf(t) + bDαg(t).

(ii). Dα
t (t

γ) = γtγ−α.

(iii). Dα
t [f(t)g(t)] = f(t)Dαg(t) + g(t)Dαf(t).

(iv). Dα
t C = 0, where C is a constant.

(v). Dα
t f [g(t)] = f ′

g[g(t)]D
α
t g(t).

(vi). Dα
t (

f
g )(t) =

g(t)Dαf(t)− f(t)Dαg(t)
g2(t)

.

(vii). Dα
t f(t) = t1−αf ′(t).

Note that the properties above can be easily proved due
to the definition of the conformable fractional derivative. So
under a given transformation T = ctα

α , by use of (ii) one can
obtain Dα

t T = c. Furthermore, by use of (v) one can deduce
that Dα

t u = ∂u
∂T

Dα
t T = c ∂u

∂T
. So the fractional derivative

can be converted into integer order case with respect to one
new variable.

The next of this paper is organized as follows. In Section
2, we give the description of the variable-coefficient sub-
equation method. Then in Section 3, we apply the method to
solve the conformable fractional Bogoyavlenskii equations
and the fractional Jimbo-Miwa equation. Some conclusions
are presented at the end of the paper.
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II. DESCRIPTION OF THE VARIABLE-COEFFICIENT
SUB-EQUATION METHOD

In this section, we give the description of the variable-
coefficient sub-equation method for solving fractional partial
differential equations.

Suppose that a fractional partial differential equation in
the independent variables t, x1, x2, ..., xn is given by

P (u, Dα
t u, ux1

..., Dβ
xi
u, ...) = 0, (1)

where u is an unknown function, the orders of the fractional
derivatives such as α, β ∈ (0, 1], P is a polynomial in
u and its various partial derivatives including fractional
derivatives. Without loss of generality, next we may assume
the fractional partial derivatives are related to the variables
t, xi, while the other variables are related to integer order
derivatives.

Step 1. For those variables involving fractional deriva-
tives, fulfil corresponding nonlinear transformations so that
the fractional partial derivatives can be converted into integer
order partial derivatives with respect to new variables.

Take the expressions Dα
t u and Dβ

xi
u for example, one can

use two nonlinear transformations T = c t
α

α and Xi = k
xβ
i
β

,
and denote u(t, x1, ..., xi, ..., xn) = ũ(T, x1, ..., Xi, ..., xn).
Then due to the properties (ii) and (v) one can obtain that Dα

t u = ∂ũ
∂T

Dα
t T = ∂ũ

∂T
c = cũT ,

Dβ
xi
u = ∂ũ

∂Xi
Dβ

xi
Xi =

∂ũ
∂Xi

k = kũXi .

So the original fractional partial differential equation can be
converted into another partial differential equation of integer
order as follows

P̃ (ũ, ũT , ũx1 , ..., ũXi , ...) = 0. (2)

Step 2. Suppose that

ũ(T, x1, ..., Xi, ..., xn) = U(ξ), ξ = ξ(T, x1, ..., Xi, ..., xn).

Then Eq. (2) can be turned into the following form˜̃
P (U, U ′, U ′′, ...) = 0, (3)

where ξ will be determined later. And in Eq. (3), the highest
order derivatives and nonlinear terms for U as well as
various derivatives for ξ are involved.

Step 3. Suppose that the solution of (3) can be expressed

by a polynomial in (
ϕ′

ϕ
) as follows:

U(ξ) =
m∑
i=0

ai(T, x1, ..., Xi, ..., xn)(
ϕ′

ϕ
)i, (4)

where am(T, x1, ..., Xi, ..., xn), am−1(T, x1, ..., Xi, ..., xn),
..., a0(T, x1, ..., Xi, ..., xn) are all unknown functions to be
determined later with am(T, x1, ..., Xi, ..., xn) ̸= 0, and ϕ =
ϕ(ξ) satisfies some certain sub-equation with the following
form

F (ϕ, ϕ′, ϕ′′, ...) = 0 (5)

whose solutions are known. The positive integer m can
be determined by considering the homogeneous balance
between the highest order derivatives and nonlinear terms
appearing in (3).

Step 4. Substituting (4) into (2)-(3) and using the
relation between ϕ′(ξ) and ϕ(ξ) deduced by (5), collecting
all terms with the same order of ϕ(ξ) together, the
left-hand side of (3) is converted to another polynomial
in ϕ(ξ). Equating each coefficient of this polynomial
to zero, yields a set of partial differential equations for
am(T, x1, ..., Xi, ..., xn), am−1(T, x1, ..., Xi, ..., xn)...,

a0(T, x1, ..., Xi, ..., xn), ξ(T, x1, ..., Xi, ..., xn).

Step 5. Solving the equations yielded in Step 4, and by
using the solutions of Eq. (5), together with the nonlinear
transformations introduced in Step 1, one can obtain exact
solutions for Eq. (1).

Remark 1. The most prominent characters of the
present method different from other methods in [3-24]
lies in two aspects. One is the transformation of ξ is
under-determined, and the other is the coefficients in Eq.
(4) are variable coefficient functions, which may help to
seek exact solutions with more general forms.

Remark 2. If we take Eq. (5) for some different
forms such as the Riccati equation, Bernoulli equation,
Jacobi elliptic equation and so on, then different exact
solutions for Eq. (1) can be obtained.

Remark 3. As the partial differential equations yielded in
Step 4 are usually over-determined, we may choose some
special forms of am, am−1, ..., a0 as did in the following.

III. APPLICATION OF THE VARIABLE-COEFFICIENT
SUB-EQUATION METHOD TO SOME FRACTIONAL PARTIAL

DIFFERENTIAL EQUATIONS

A. Conformable fractional Bogoyavlenskii equations

First we consider the conformable time fractional Bogoy-
avlenskii equations with the following forms:{

4Dα
t u+ uxxy − 4u2uy − 4uxv = 0, 0 < α ≤ 1.

vx + uuy = 0,
(6)

The fractional Bogoyavlenskii equations were derived in
[36] as a member of a (2+1) Schwarzian breaking soliton
hierarchy. In [29], Eslami etc. solved Eqs. (6) by use of the
first integral method, and obtained a series of exact solutions
for the equations.

Now we use the method introduced in Section 2 to
solve them. To this end, let T = c t

α

α and u(x, y, t) =
ũ(x, y, T ), v(x, y, t) = ṽ(x, y, T ). Then Dα

t u = cũT , and
Eqs. (6) are converted into the following forms{

4cũT + ũxxy − 4ũ2ũy − 4ũxṽ = 0,
ṽx + ũũy = 0.

(7)

Assume that ũ(x, y, T ) = U(ξ), ṽ(x, y, T ) = V (ξ), where
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ξ = ξ(x, y, T ). Then Eqs. (7) are converted into 4cξTU
′ + (ξ2xξyU

′′′ + 2ξxξxyU
′′ + ξxxξyU

′′

+ξxxyU
′)− 4ξyU

2U ′ − 4ξxU
′V = 0,

ξxV
′ + ξyUU ′ = 0.

(8)

Suppose that the solutions of Eqs. (8) can be expressed by

a polynomial in (
ϕ′

ϕ
) as follows:

U(ξ) =
m∑
i=0

ai(y, T )(
ϕ′

ϕ
)i, V (ξ) =

n∑
i=0

bi(y, T )(
ϕ′

ϕ
)i, (9)

where ai(y, T ), bi(y, T ) are under-determined functions, and
ϕ = ϕ(ξ) satisfies Eq. (5). Balancing the order of U ′′′ and
U ′V , V ′ and UU ′ in Eqs. (8), we can obtain m + 3 =
m+ 1+ n, n+ 1 = m+m+ 1 ⇒ m = 1, n = 2. So one
has

U(ξ) = a1(y, T )(
ϕ′

ϕ
) + a0(y, T ),

V (ξ) = b2(y, T )(
ϕ′

ϕ
)2 + b1(y, T )(

ϕ′

ϕ
) + b0(y, T ).

(10)

Next we will discuss the process of finding exact solutions
in two cases, in which ϕ satisfies two certain sub-equations.

Case 1: ϕ = ϕ(ξ) satisfies the following Bernoulli
equation

ϕ′ + λϕ = µϕ3. (11)

Substituting (10) into (7)-(8), using Eq. (11) and
collecting all the terms with the same power of ϕ
together, equating each coefficient to zero, yields a
set of under-determined partial differential equations for
a0(y, T ), a1(y, T ), b0(y, T ), b1(y, T ), b2(y, T ) and
ξ(x, y, T ). Solving these equations, yields that

b2(y, T ) =
2C1

λ
F ′
y(y, T ), b1(y, T ) = 2C1F

′
y(y, T ),

b0(y, T ) =
cλ

C1
F ′
T (y, T ),

a1(y, T ) =
2C1

λ
, a0(y, T ) = C1,

ξ(x, y, T ) =
C1

λ
x+ F (y, T ) =

C1

λ
x+ F (y, c

tα

α
),

where C1 is an arbitrary nonzero constant, and F (y, T ) is
an arbitrary function with respect to the variables y and T .

On the general solutions of Eq. (11), one has
ϕ(ξ) = ± 1√

µ

λ
+Ae2λξ

,

ϕ′

ϕ
= − Aλe2λξ

µ

λ
+Ae2λξ

,
(12)

where λ, µ, A are arbitrary constants with λ ̸= 0, and
µ2 +A2 ̸= 0.

Substituting the result above into Eqs. (10), and combining
with (12), one can obtain the following exact solutions for
the fractional Bogoyavlenskii equations



u1(x, y, t) = C1 +
2C1
λ

(− Aλe2λξ
µ

λ
+Ae2λξ

),

v1(x, y, t) =
cλ
C1

F ′
T (y, c

tα
α ) + 2C1F

′
y(y, c

tα
α )

(− Aλe2λξ
µ

λ
+Ae2λξ

) + 2C1
λ

F ′
y(y, c

tα
α )(− Aλe2λξ

µ

λ
+Ae2λξ

)2,

(13)

where ξ = C1
λ
x+ F (y, c t

α

α ).
Especially, if we set µ = λA in Eq. (13), then we obtain

the following solitary wave solutions:


u2(x, y, t) = −C1 tanh(λξ),

v2(x, y, t) =
cλ
C1

F ′
T (y, c

tα
α )− C1λF

′
y(y, c

tα
α )

[(1 + tanh(λξ))] + C1λ
2 [1 + tanh(λξ)]2.

If we take F (y, T ) = y+T , then the solutions u2, v2 are
demonstrated in Figs. 1-2.
Case 2: ϕ = ϕ(ξ) satisfies the following Riccati equation

ϕ′(ξ) = a+ ϕ2(ξ). (14)
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Substituting (10) into (7)-(8), using Eq. (14) and collecting
all the terms with the same power of ϕ together, equating
each coefficient to zero, yields a set of under-determined
partial differential equations. Solving these equations, yields
that

b2(y, T ) =
C1

2
F ′
y(y, T ), b1(y, T ) = 0,

b0(y, T ) =
1

C1
(C2

1σF
′
y(y, T )− cF ′

T (y, T )),

a1(y, T ) = C1, a0(y, T ) = 0,

ξ(x, y, T ) = C1x+ F (y, T ) = C1x+ F (y, c
tα

α
),

where C1 is an arbitrary nonzero constant, and F (y, T ) is
an arbitrary function.

On the other hand, for Eq. (14), the following solutions
are known to us.



ϕ1(ξ) = −
√
−σ tanh(

√
−σξ + c0), σ < 0,

ϕ2(ξ) = −
√
−σ coth(

√
−σξ + c0), σ < 0,

ϕ3(ξ) =
√
σ tan(

√
σξ + c0), σ > 0,

ϕ4(ξ) = −
√
σ cot(

√
σξ + c0), σ > 0,

ϕ5, 6(ξ) =
√
σ[tan(2

√
σξ + c0)± sec(2

√
σξ + c0)], σ > 0,

ϕ7(ξ) = − 1
ξ + c0

, σ = 0,

(15)

where c0 is a constant.
By a combination of the result above and (15), together

with the expression of ξ, one can obtain the following exact
solutions for the fractional Bogoyavlenskii equations.

When σ < 0:



u3(x, y, t) =
√
−σC1

{
sech2[

√
−σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

tanh[
√
−σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

},

v3(x, y, t) = −C1σ
2 F ′

y(y, c
tα
α )

{
sech2[

√
−σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

tanh[
√
−σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

}2

+ 1
C1

(C2
1σF

′
y(y, c

tα
α )− cF ′

T (y, c
tα
α )).

(16)



u4(x, y, t) = −
√
−σC1

{
csch2[

√
−σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

coth[
√
−σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

},

v4(x, y, t) = −C1σ
2 F ′

y(y, c
tα
α )

{
csch2[

√
−σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

coth[
√
−σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

}2

+ 1
C1

(C2
1σF

′
y(y, c

tα
α )− cF ′

T (y, c
tα
α )).

(17)

When σ > 0:

u5(x, y, t) =
√
σC1

{
sec2[

√
σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

tan[
√
σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

},

v5(x, y, t) =
C1σ
2 F ′

y(y, c
tα
α )

{
sec2[

√
σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

tan[
√
σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

}2

+ 1
C1

(C2
1σF

′
y(y, c

tα
α )− cF ′

T (y, c
tα
α )).

(18)



u6(x, y, t) = −
√
σC1

{
csc2[

√
σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

cot[
√
σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

},

v6(x, y, t) =
C1σ
2 F ′

y(y, c
tα
α )

{
csc2[

√
σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

cot[
√
σ(

C1

λ
x+ F (y, c

tα

α
)) + c0]

}2

+ 1
C1

(C2
1σF

′
y(y, c

tα
α )− cF ′

T (y, c
tα
α )).

(19)



u7,8(x, y, t) = 2
√
σC1

{ sec
2[2

√
σξ + c0]± sec(2

√
σξ + c0) tan(2

√
σξ + c0)

tan(2
√
σξ + c0)± sec(2

√
σξ + c0)

},

v7,8(x, y, t) = 2σ2C1F
′
y(y, c

tα
α )

{ sec
2[2

√
σξ + c0]± sec(2

√
σξ + c0) tan(2

√
σξ + c0)

tan(2
√
σξ + c0)± sec(2

√
σξ + c0)

}2

+ 1
C1

(C2
1σF

′
y(y, c

tα
α )− cF ′

T (y, c
tα
α )),

(20)

where ξ = C1
λ
x+ F (y, c t

α

α ).

When σ = 0:

u9(x, y, t) = − C1
C1

λ
x+ F (y, c

tα

α
) + c0

,

v9(x, y, t) =
C1F

′
y(y, c

tα

α
)

2[
C1

λ
x+ F (y, c

tα

α
) + c0]

2

+ 1
C1

(C2
1σF

′
y(y, c

tα
α )− cF ′

T (y, c
tα
α )),

(21)

Remark 4. If we take F (y, T ) for linear functions such as
F (y, T ) = k1y + T , then the transformation denoted by ξ

becomes ξ(x, y, T ) = C1
λ
x+ k1y+ T = C1

λ
x+ k1y+ c t

α

α ,
which has been used by many authors in the existing papers.
So the solutions obtained here are of more general forms
than most of the existing results, and are different from the
solutions in [29].

B. Conformable fractional Jimbo-Miwa equation

We consider the conformable time fractional Jimbo-Miwa
(JM) equation [22,37] of the form:

uxxxy+puyuxx+quxuxy+rDα
t uy−suxz = 0, 0 < α ≤ 1,

(22)
where p, q, r, s are arbitrary nonzero constants.
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The integer ordered form of the JM equation is a member
of the KP-hierarchy and is not capable of passing the
integrability tests. In [22,37], the authors obtained some
exact solutions for the fractional JM equation by use of the
Kudryashov method. Now we solve this equation by use of
the method mentioned above.

Let T = c t
α

α and u(x, y, z, t) = ũ(x, y, z, T ). Then
Dα

t u = cũT , and Eq. (22) is converted into the following
form

ũxxxy + pũyũxx + qũxũxy + rcũyT − sũxz = 0. (23)

Assume that ũ(x, y, z, T ) = U(ξ), where ξ = ξ(x, y, z, T ).
Then Eq. (23) is converted into

ξ3xξyU
′′′′ + (3ξ2xξxy + 3ξxξxxξy)U

′′′

+[3ξxxξxy + 3ξxξxxy + ξyξxxx − sξxξz + rcξyξT ]U
′′

+ξxxxyU
′+(p+q)ξyξ

2
xU

′U ′′+(pξyξxx+qξxξxy)(U
′)2 = 0.

(24)
Suppose that the solutions of Eq. (24) can be expressed by

a polynomial in (
ϕ′

ϕ
) as follows:

U(ξ) =

m∑
i=0

ai(y, z, T )(
ϕ′

ϕ
)i, (25)

where ai(y, z, T ) are under-determined functions, and ϕ =
ϕ(ξ) satisfies Eq. (5). By balancing the order of U ′′′′ and
U ′U ′′ in Eq. (24) one can obtain m = 1. So one has

U(ξ) = a1(y, z, T )(
ϕ′

ϕ
) + a0(y, z, T ). (26)

Similar to above, next we will process the computation
in two cases.

Case 1: If ϕ = ϕ(ξ) satisfies the Bernoulli equation
denoted by Eq. (11), then substituting (26) into (23)-(24),
using Eq. (11) and collecting all the terms with the
same power of ϕ together, equating each coefficient to zero,
yields a set of under-determined partial differential equations
for a0(y, z, T ), a1(y, z, T ), ξ(x, y, z, T ). Solving these
equations, yields several families of results as follows, where
C1, C2 are arbitrary constants, and Fi, i = 1, 2, ..., 5 are
arbitrary functions with respect to their variables respectively.

Family 1.

a0(y, z, T ) =

∫
−24s(F1(y, z))z

pC1(p+ q)
dy + F2(z, T ),

a1(y, z, T ) = C1,

ξ(x, y, z, T ) = − 1

24
C1(p+q)x+

C3
1λ

2(p+ q)3

3456rc
T+F1(y, z).

Family 2.

a0(y, z, T ) = −12F ′′
1 (z)y

2s

(p+ q)C1p
+

[
C1pλ

2F ′
1(z)

6(p+ q)
+
C1λ

2F ′
1(z)q

2

6(p+ q)p
+
C1λ

2F ′
1(z)q

3(p+ q)
− 24F ′

2(z)s

(p+ q)C1p
]y

+F3(z, T ),

a1(y, z, T ) = C1,

ξ(x, y, z, T ) =
−24rcF1(z) + C1s(p+ q)T

C1s(p+ q)
+ F ′

1(z)y

+F2(z)−
p+ q

24
C1x.

Family 3.

a0(y, z, T ) =

∫
1

6C2
1p(p+ q)2

[(C3
1λ

2p3 + 3C3
1λ

2qp2

+3C3
1λ

2q2p+ C3
1λ

2q3 − 3456C2cr)(F1(y, z))y

−144C1s(p+ q)(F1(y, z))z]dy + F2(z, T ),

a1(y, z, T ) = C1,

ξ(x, y, z, T ) = F1(y, z) + (
1

24
(−p− q))xC1 + C2T.

Family 4.

a0(y, z, T ) =

∫
1

6(pF1(y, z)(p+ q))
[(p2λ2+2pλ2q+λ2q2)

(F2(y, z))y(F1(y, z))
2(3λp2 + 3λqp)F1(y, z)(F1(y, z))y

−144s(F2(y, z))z]dy + F3(z, T ),

a1(y, z, T ) = F1(y, z), ξ(x, y, z, T ) = F2(y, z).

Family 5.

a0(y, z, T ) =

∫
1

6(pC1(p+ q))
[(p2λ2C2

1 + 2λ2qC2
1p

+C2
1λ

2q2)(F1(y, z))y − 144s(F1(y, z))z]dy + F2(z, T ),

a1(y, z, T ) = C1, ξ(x, y, z, T ) = F1(y, z)−
p+ q

24
C1x.

Family 6.

a0(y, z, T ) = F4(y, z) + F3(z, T ),

a1(y, z, T ) = F1(y, z), ξ(x, y, z, T ) = F2(y, z).

Family 7.

a0(y, z, T ) = F5(y, z) + F4(z, T ),

a1(y, z, T ) = F2(y, z) + F1(z, T ), ξ(x, y, z, T ) = F3(z).

Family 8.

a0(y, z, T ) = F4(y, z) + F3(z, T ),

a1(y, z, T ) = F1(z, T ), ξ(x, y, z, T ) = F2(z, T ).

Family 9.

a0(y, z, T ) = F4(z)y + F3(z, T ),

a1(y, z, T ) = F1(z, T ), ξ(x, y, z, T ) = F2(z, T ).

Family 10.

a0(y, z, T ) = F3(z, T ),

a1(y, z, T ) = F1(z, T ), ξ(x, y, z, T ) = F2(T ).

Family 11.

a0(y, z, T ) = F3(z, T ),

a1(y, z, T ) = F1(z, T ), ξ(x, y, z, T ) = F2(z, T ).

Family 12.

a0(y, z, T ) = F3(z, T ),
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a1(y, z, T ) = F1(T ), ξ(x, y, z, T ) = F2(x, T ).

Substituting the results above into Eq. (26), and combining
with (12), one can obtain a series of exact solutions for the
fractional JM equation. Take Families 1 and 5 for example,
one has the following solutions.

u1(x, y, z, t) =

∫
−24s(F1(y, z))z

pC1(p+ q)
dy

+F2(z, c
tα

α
) + C1(−

Aλe2λξ

µ

λ
+Ae2λξ

), (27)

where ξ = − 1
24C1(p+ q)x+

C3
1λ

2(p+ q)3

3456rα tα + F1(y, z).

u2(x, y, z, t) =

∫
1

6(pC1(p+ q))

[(p2λ2C2
1 + 2λ2qC2

1p+ C2
1λ

2q2)(F1(y, z))y

−144s(F1(y, z))z]dy

+F2(z, T ) + C1(−
Aλe2λξ

µ

λ
+Ae2λξ

), (28)

where ξ = F1(y, z)− p+ q
24 C1x.

Especially, if we set µ = λA in Eq. (27), then we obtain
the following solitary wave solution:

u3(x, y, z, t) =

∫
−24s(F1(y, z))z

pC1(p+ q)
dy

+F2(z, c
tα

α
)− C1λ

2
[(1 + tanh(λξ))].

Case 2: If ϕ = ϕ(ξ) satisfies the Riccati equation denoted
by Eq. (14), then substituting (26) into (23)-(24), using Eq.
(14) and collecting all the terms with the same power of
ϕ together, equating each coefficient to zero, yields a set
of under-determined partial differential equations. Solving
these equations, yields several families of results as follows,
where Fi, i = 1, 2, ..., 5 are arbitrary functions with respect
to their variables respectively.

Family 1.

a0(y, z, T ) = F3(z, T ), a1(y, z, T ) = F2(z, T ),

ξ(x, y, z, T ) = F1(z, T ).

Family 2.

a0(y, z, T ) = F3(z, T ), a1(y, z, T ) = F2(T ),

ξ(x, y, z, T ) = F1(x, T ).

Family 3.

a0(y, z, T ) = F5(z) ∗ y + F4(z, T ), a1(y, z, T ) = F2(z, T ),

ξ(x, y, z, T ) = F1(z, T ).

Family 4.

a0(y, z, T ) = F4(y, z) + F3(z, T ), a1(y, z, T ) = F2(z, T ),

ξ(x, y, z, T ) = F1(z, T ).

Family 5.

a0(y, z, T ) = F5(y, z) + F4(z, T ),

a1(y, z, T ) = F3(y, z) + F2(z, T ), ξ(x, y, z, T ) = F1(z).

Family 6.

a0(y, z, T ) = F4(y, z) + F3(z, T ), a1(y, z, T ) = F2(y, z),

ξ(x, y, z, T ) = F1(y, z).

By a combination of the results above and (15), one
can obtain abundant exact solutions for the fractional JM
equation. Take Family 1 for example, one has the following
solutions.

When σ < 0:

u4(x, y, z, t) = F3(z, c
tα

α
)

+F2(z, c
tα

α
)
√
−σ{

sech2[
√
−σF1(z, c

tα

α
) + c0]

tanh[
√
−σF1(z, c

tα

α
) + c0]

}. (29)

u5(x, y, z, t) = F3(z, c
tα

α
)

−F2(z, c
tα

α
)
√
−σ{

csch2[
√
−σF1(z, c

tα

α
) + c0]

coth[
√
−σF1(z, c

tα

α
) + c0]

}. (30)

When σ > 0:

u6(x, y, z, t) = F3(z, c
tα

α
)

+F2(z, c
tα

α
)
√
σ{

sec2[
√
σF1(z, c

tα

α
) + c0]

tan[
√
σF1(z, c

tα

α
) + c0]

}. (31)

u7(x, y, z, t) = F3(z, c
tα

α
)

−F2(z, c
tα

α
)
√
σ{

csc2[
√
σF1(z, c

tα

α
) + c0]

cot[
√
σF1(z, c

tα

α
) + c0]

}. (32)

u8,9(x, y, z, t) = F3(z, c
tα

α
) + 2

√
σF2(z, c

tα

α
)

{ sec
2[2

√
σξ + c0]± sec(2

√
σξ + c0) tan(2

√
σξ + c0)

tan(2
√
σξ + c0)± sec(2

√
σξ + c0)

},

(33)

where ξ = F1(z, T ) = F1(z, c
tα
α ).

When σ = 0:

u10(x, y, z, t) = F3(z, c
tα

α
)−

F2(z, c
tα

α
)

C1

λ
x+ F (y, c

tα

α
) + c0

.

(34)

Remark 5. The established solutions above for the frac-
tional JM equation are new exact solutions to our best
knowledge.
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IV. CONCLUSIONS

We have proposed a variable-coefficient sub-equation
method for solving fractional partial differential equations,
and applied it to find exact solutions for the fractional
Bogoyavlenskii equations and the fractional JM equation.
Some exact solutions with new forms and variable coefficient
functions for them have been successfully found, which may
provide some references for the research in related physical
phenomena. This method can be supposed to be applied to
solve other types of fractional partial differential equations,
which is expected to further research.
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