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Abstract—Traffic accidents have a significant impact on daily
life, causing head injuries like skull fractures, brain damage,
and so on. Many people fail to follow the safety regulations,
such as riding a motorcycle without a helmet. The use of
machine learning in brain haemorrhage research is extremely
challenging since it involves the collection of patient data from
computed tomography (CT) scan images. This study proposes
a novel region-based segmentation approach for improving the
accuracy and efficiency of CT automated 3D image processing
in the analysis of brain injuries. It is quite challenging to create
a highly efficient superpixel method which maintains a strategic
distance from the segmentation and limited clusters of the pixels
in respect to the intensity boundaries. The approach reduces
computational costs, and the model achieves 97.79% accuracy in
segmenting brain haemorrhage images. This study also guides
the direction of future research in this domain.

Index Terms—SLIC algorithm; hybrid method; thresholding;
region merging; segmentation.

I. INTRODUCTION

SEVERAL techniques are utilised for image segmen-
tation in computer vision, from simple thresholding

to sophisticated deep learning approaches with optimised
algorithms. The adoption of a suitable technology depends
on the aims and goals of the segmentation. In clinical
application, the adoption of appropriate image segmentation
techniques for medical image processing depends on factors
such as the disease, complexity, bias field, etc [1]. Feature
extractions and investigations in medical image processing
have always been challenging, especially when employing
pixel-based approaches. The most significant disadvantage
of region-based techniques and histogram methods is their
lack of adherence to flexibility, compactness, and boundaries.
Therefore, during segmentation, the boundaries of the region
under study become very blurry [2]. Since they are low
in memory efficiency with high computational cost. Hence,
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the superpixel-based approach of segmentation using simple
linear iterative clustering (SLIC) has recently been adopted
and tested by various researchers and proven to be effi-
cient and superior to the classical pixel-based-approaches
in boundary preservation. To the best of the researcher’s
knowledge, the SLIC algorithm does not segment the 3D
images of brain haemorrhages. Hence, this research is novel
in its approach to the use of the SLIC algorithm to segment
brain haemorrhages [3]. People who drive motorcycles do
not always follow the rule of wearing a helmet for head
protection and are involved in accidents on a daily basis. This
research focuses on helping the doctor to make decisions
concerning the patient in the early stages of diagnosis. A
novel technique for brain injury CT image segmentation is
proposed in this study based on superpixels, applying the
following eight-step approach: 1. Input image Converting
Digital Imaging and Communications in Medicine (DICOM)
images into jpeg format; 2. Skull removal to clean the noise
from the CT scan; 3. Pre-processing linear transformation
and windowing of the images; 4. Regional merging to
eliminate false boundaries; 5. Image processing using the
simple linear iterative clustering (SLIC) algorithm to create
superpixels; 6. Thresholding; 7. A hybrid method, combining
region merging with SLIC; 8. Datasets containing 30,000
brain haemorrhage images obtained from Maharaj Nakorn
Chiang Mai Hospital, Thailand.

II. RELATED WORK

Researchers and practitioners have widely adopted SLIC
superpixels, first introduced by [4] for pre-processing image
segmentation, and their suitability for medical image pro-
cessing extensively assessed. The SLIC algorithm in medical
image processing [5] shows better robustness and accuracy
in fuzzy boundary and segmentation [6]. Superpixel brain
segmentation for tumour detection was used by [7] and the
SLIC algorithm was found to improve accuracy and reduce
computation time. The existing literature is replete with
SLIC superpixel approaches for 2D image processing, but
there is limited research on 3D image processing using the
SLIC superpixels approach. [8] medical image processing
is facing various challenges region’s growing processing for
selection automates seeds for the step of histogram threshold.
Region merging is iterative since it compares all unallocated
neighbouring pixels to the seeds. The difference between
the regions and pixel intensity values indicates similarities
with achieving high accuracy. A super-voxel technique was
used by [9] for image processing in 3D space, earning
a high boundary recall on 2D images, while proposed a
four-stage SP generation algorithm with convexity as the
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metric. Automated super-voxel segmentation was proclaimed
by [10] for the extraction and reporting of geometric and
statistical features. Whereas [11] developed a 3D Region
of Interest based volumetric medical image retrieval using
a superpixel algorithm, visualised through a web-interface.
From the above works, it is clear that researchers have widely
adopted the SLIC approach to 3D image processing due to
its flexibility in applying multiple dimensions [12] .

III. INPUT DATA

A dataset consisting of 3D computed tomography (CT)
patient brain scans, involving more than 30000 labelled slices
(IPH, EDH, SDH, MLS, IVH). The dataset was obtained
from specialist doctors at the Maharaj Nakorn Chiang Mai
Hospital, Thailand. Standard Digital Imaging and Commu-
nications in Medicine (DICOM) axial slices were converted
into JPEG images. In this study, the proposed method for
treating brain haemorrhages was evaluated using different
classifier images consisting of more than 5000 slices. Slice
thickness was constant in most of the 300 patient datasets
with slices varying in thickness between male and female
patients aged between 24 and 53 years. The chosen slice
thickness is 1.5 mm for each case of the 100-150 slices. Il-
lustration 2D shows the selected slices composed in a 3D CT
brain scan sample. The first greyscale is so compressed that
a small variation in intensity could be visualised inside the
human skull, which is unsatisfactory. A CT scan image can
ordinarily overcome this difficulty by providing a modified
greyscale.

IV. PROPOSED METHOD

Eight-steps method with a novel region-based segmenta-
tion approach for improving the accuracy and efficiency of
Automated 3D image processing of Computed Tomography
(CT) in analyzing brain injuries is depicted in Fig. 1.

Fig. 1. Illustration of the proposed method.

A. Input Image

In the first step of the input image, more than 30,000
3D DICOM format brain images were converted into 2D

JPEG format with a spatial resolution of 512 × 512, slice
thickness of 1.5 mm, and a distance between each slice of
0.5 mm. An illustrative sample CT scan of brain slices after
pre-processing and converting 3D to 2D is presented in Fig.
2. To visualise the CT scan images, the Hounsfield Units
(HU) to greyscale conversion is used with a window width
equal to 150 and a window level of 30 as recommended
by the doctor. The slices shown in the image are linearly
transformed after intensity windowing.

Fig. 2. Samples of CT brain slices (after pre-processing step from 3D to
2D)

B. Skull Removal

This research aims to improve the automatic skull removal
method of noisy CT brain images. The skull region is
removed by cropping the brain with the largest component
[13]. In addition, the intensity skull and headrest are also
removed to reduce computational complexity by increasing
the weight of the image to improve efficiency. This illustrates
the potential of clean skull removal without influencing the
brain, in a significant number of CT brain images from
different sources. After removal, the majority contain brain
matter and lower the intensity of information the brain as
shown in Fig. 3. The edge detection is applied for removing
the noise of edge in the pre-processing step. The edge of
brain after skull removal is drawn as Fig. 4.a.

a) (b)

Fig. 3. Skulls remove for the shape of the brain. a) Before removing the
skull, b) After removing the skull.
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C. Pre-processing

Pre-processing is the most significant step in the proposed
method. The input image intensity was linearly transformed
using windowing and contrast adjustment techniques. The
input image modulates the window to contrast the values
depending on the ROI. The desired window intensity was
adopted from the DICOM header information already pro-
vided. Equation 1 describes the linear transformation of
images [14].

HU = (PV ∗Rs) +Ri (1)

where, HU , PV , Rs, and Ri,stand for Houndsfield unit,
raw pixel value, rescale gradient, and rescale intercept,
respectively. The tissue of interest in CT scans for brain
haemorrhages is based on HU values [15]. The skull, cal-
cified regions, soft tissues, cerebral spinal fluid (CSF), and
haemorrhaging blood will have different HU values. Within
the ROI, the haemorrhage blood has greater HU values than
the soft tissues and CSF. The original HU scale of skull
removal images were used as the input in this step. The
hounsfield values between 60 to 85 were therefore selected
to coincide with those of the brain haemorrhage, white
matter and grey matter. The Hounsfield units scale image
was converted into greyscale by setting the window width
to 151 and the window level to 114. The HU to greyscale
conversion can be calculated as Equation 2.

Sw(a, b) =


0, S(a, b) ≤ L− W

2
S(a,b)−(L−W

2 )
W

Imax, L− W
2

< S(a, b) ≤ L+ W
2

Imax, S(a, b) > L+ W
2

(2)
Where (W) is window width and (L) is the window level
for Imax = 255; in principle, the process draws the unique
intensity scale between (L− W

2 , L+ W
2 ) to the highest scale

of the exhibited tool. The white matter and grey inside the
brain are clearly visible. The output image of HU to greyscale
conversion is presented in Fig. 4.b. The noise of the output
image is eliminated by the edge of skull removal brain as
shown in Fig. 4.c.

(a) (b) (c)

Fig. 4. Skulls remove for the shape of the brain. a) Before removing the
skull, b) After removing the skull, c) Reduce the noise from the shape .

D. Region merging

The fourth step in the proposed approach is to merge
the regions [16]. The automated seed point technique in
region merging operates until no more pixels can be added
to eliminate spurious regions and false boundaries while
merging the haemorrhage sections. Furthermore, 3-D flood-
based watershed transformation is applied to analyse brain
haemorrhage intensity. The shapes with noise before use filter

step are shown in Fig. 5.a, then follow the region merging
results in Fig. 5.b, with the size of haemorrhage region then
expanded using a 9×9 kernel matrix of dilation as shown in
Fig. 5.c.

(a) (b) (c)

Fig. 5. three steps for region merging, a) Image with noise, b) Region
growing, c) Thresholding result.

E. SLIC

The SLIC technique, proven to be more efficient in terms
of computational power and memory usage, was used for
superpixel creation and image partition [17]. If a and b
are considered as pixel location coordinates with the user-
specified grid size (s), the greyspace distance (dc), and the
Euclidean distance(ds) between the jth pixel and ith pixel
are calculated

ds =
√
(ai − aj)2 + (bj − bi)2 (3)

With normalized intensity values (N) of the jth(Nj) and
ith(Ni) pixels, the intensity distance (dc) between the jth

and ith pixels will be calculated as;

dc =

√
(Nj −Ni)

2 (4)

S is Parameter of local clustering M , The Images Numbers,
and K Superpixels Number is calculated by

S =
√

M/K (5)

If compactness coefficient is p and initial super-pixel grid
size is S,p balance between ds and dc then the overall
distance D is calculated as;

D =

√
d2s +

(
ds
S

)
p2 (6)

While application, to confirm that both the space distances
and intensity are within the same range and to obtain an
optimum compactness coefficient, the CT image intensities
used in equation 6, are normalized to the values of [0, 1]. A
sample pre-processed JPG image of a CT Scan with grade
II haemorrhage in Fig. 6 shows a sample pre-processed JPG
image of a CT scan with a grade II haemorrhage and super-
pixelised image with a compactness factor p of 0.1 and
a grid size (S) of 10. A higher value of the compactness
coefficient was found to create more flexible boundaries,
while a smaller value results in more compact segments Fig.
6.a. After achieving the SLIC image, the greyscale image is
provided using the SLIC algorithm shown in Fig. 6.b. The
results of the SLIC are shown in Fig. 6.c. The results of
segmentation on a particular brain image with the initialised
parameters were provided using the superpixel method. The
function without the initialising requirement to create the
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(a) (b) (c)

Fig. 6. CT image: a) The superpixels, b) RAG grayscale output, c) Result
of SLIC Algorithm.

number of superpixels is convenient for each iterate type
process, since it saves the computational cost of distributing
memory for all structures of the procedure.

F. Thresholding

The region adjacency graph (RAG) was applied to merge
the thresholding technique with pixel numbers > 160 to
detect the haemorrhage. Fig. 7.a presents samples of one
haemorrhage feature, while and two haemorrhage features
are illustrated in Fig. 7.b. The choice of an ideal threshold

(a) (b)

Fig. 7. The process of thresholding image, a) One feature haemorrhage,
b) Two feature haemorrhage.

value provides a more outstanding image threshold operation.
The mean and variance are used to measure the described
images. When the final threshold is reached, each pixel
of image g(i, j) is related to T . Pixels higher than T are
measured as edge pixels which be white shape otherwise, it
is presented as black region(0). The clustering image

∫
(i, j),

can be estimated.∫
(i, j)

{
1 g(i, j) ≥ T
0 otherwise

}
(7)

Pixel at (i, j) takes possession of g(i, j) smaller than T,
which is a background pixel; otherwise, it is an edge pixel.
The Clustering with value as (1) which use for white shape
and pixels clustering with value as (0) is non-pixels showing
the background [18].

G. Hybrid Method

In this section, a more challenging hybrid technique is
presented to improve the analysis results by providing bitwise
operation between two outputs to correlate the region of
haemorrhage between the SLIC algorithm and the region
merging method following equation 8.

C = A⊗B (8)

Algorithm 1 Thresholding Algorithm
1: Require: Original image a is Initialize, The mean of a

(M ) is the number , The variance of a (V ) is the number
2: Initialization Step
3: InjuryCode for Threshold()
4: if (1.9 ≤ M

V ≤ 1.8‖1.5 ≤ M
V ≤ 1.7) then

5: Set threshold T = 160
6: else
7: Set threshold T = 170
8: end if
9: if value means of the pixel intensity of region < T then

10: Not injury of the region
11: else
12: Have injury for the region
13: end if

Where A represents the SLIC result and B the output
of the region merging method. Fig. 8 shows a combination
of methods. Firstly, the region merging method is shown in
Fig. 8.a, while the SLIC method using different stages is
presented in Fig. 8.b. Finally, high-performance results are
achieved using a hybrid approach as shown in Fig. 8.c.

(a) (b) (c)

Fig. 8. The processing to combine the result. a) Region merging develop-
ment, b) SLIC result, c) The result of a hybrid technique.

H. Segmentation

To consider each brain image CT scan in the region and
whether a pixel can be classified as a haemorrhage or non-
haemorrhage, the region-based segmentation approach was
used with the red pixels representing the boundary region
detection cluster. In order for the central pixel to be sym-
metrical, the smallest matrix should be 3×3 [19]. To clearly
detect the haemorrhage region, the threshold algorithm was
implemented using segments with different grayscales. To
provide white pixels, the haemorrhage region is segmented,
and the boundary of the region detected as red pixels. The
white clustering districts were filled inside the boundary.
The size of the matrix in the region containing the highest
number of pixels must not be outside the boundary. The
ultimate result in Fig. 9.b. shows the bleeding clearly without
any noise. In this research, the regional based segmentation
method was used to improve segmentation performance,
based on the SLIC algorithm without noise and different
processing steps as shown in Fig. 10.

V. EXPERIMENTAL RESULTS

The experiments on the collected dataset have previously
been discussed. The significant advantage of the proposed
approach is that it achieves high classification accuracy with
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(a) (b) (c)

Fig. 9. The region haemorrhage segmentation, a) Region merging, b) A
hybrid technique, c) Segmentation.

(a) (b) (c)

Fig. 10. The bleeding for the original image without the skull. a) Original
image, b) Thresholding, c) Haemorrhage Segmentation.

low computational effort. The hybrid technique performs
well in extracting the complex texture of a brain haemor-
rhage. Furthermore, the spectral clustering of this method
with global eigen decomposition achieved high accuracy in
segmenting the regions and sophisticated features of a brain
haemorrhage. Hence, the proposed method outperforms the
conventional segmentation technique for CT brain scans. It
also overcomes the dense similarity construction of spectral
clustering following application of the region-based segmen-
tation model.

VI. EVALUATION METRICS AND DISCUSSION
In this study, ICH is referred to intracranial haemorrhage

which consists of EDH ,SDH , and IPH haemorrhage
subtypes. the following thresholding and SLIC Algorithm
were performed on the ICH slices, which range thresholding
technique with pixel number > 160 to detect the haemor-
rhage and also we modify the SLIC Algorithm for Hybrid
technique is presented . In this section, the performance of
the proposed method is discussed by calculating the different
evaluation matrices.
PPV : Also known as precision, represents the number of
correct positive results divided by the number of positive
consequences predicted by the classifier [20].

PPV =
TP

TP + FP
× 100% (9)

TPR: Also known as sensitivity or recall, represents the
number of correct positive results divided by the number of
relevant samples.

TPR =
TP

TP + FN
× 100% (10)

TNR: Also known as specificity, is used to measure the
rate of true negatives.

TNR =
TN

TN + FP
× 100% (11)

F1Score: This is the harmonic mean between precision and
recall. These two measures are sometimes used together in
the F1 Score (or-f-measure) to provide a single measurement
for the system.

F1 =
2TP

2TP + FP + FN
× 100% (12)

ACC: This is a statistical measurement method, character-
ising how close the predictions are to the valid values [21].

ACC =
TP + TN

TP + TN + FP + FN
× 100% (13)

Where TP is the true positive (complementary issue of the
correct segment), TN is the true negative (negative point
of the appropriate segment), while FP is false positive
(incorrectly segmented in the complementary case), and FN
is false negative (negative effect of an incorrect segment)
[22].
DSC Dice Similarity Coefficient, using S stands for Seg-
mentation, is observed from the equation 14. DSC is a tool
for measuring the similarity between predicated segmentation
and ground truth. Both false alarm and true positive are
considered in DSC. DSC not only evaluate the accuracy
of image segmentation results but also identify the correct
labelled region [23] defined as.

DSC =
2
∣∣SICH ∩ SICĤ

∣∣
|SICH |+

∣∣SICĤ

∣∣ = 2× TP

2× TP + FP + FN
(14)

Jaccard Similarity Index JSI is additionally identified as
Intersection-Over-Union IoU and is characterized as the ratio
of the region of the similarity between the ground truth
(SICH ) and the predicted segmentation (SICĤ ) to the area
of union between and the ground truth segmentation and the
predicted segmentation.

JSI =
SICH ∩ SICĤ

SICH ∪ SICĤ

=
TP

TP + FP + FN
(15)

JSI is another tool for evaluating the similarity and diversity
of two datasets. The correlation of data can be calculated by
JSI as equation 15. However, JSI will give more weight
to incorrect results compared to DSC can be seen from the
equation 16.

JSI =
DSC

2−DSC
DSC =

2× JSI

1 + JSI
(16)

To evaluate the measurement of the three features of
a brain haemorrhage, namely EDH , SDH , and IPH
segmented by different steps such as 30 to 81 slices, the
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TABLE I
THE PERFORMANCE OF DIFFERENT FEATURES

HAEMORRHAGE IS START FROM SLICE 30.

Precision Recall F1 ACC
EDH 98.42 90.35 94.68 90.45
SDH 97.55 88.85 92.86 87.45
IPH 94.59 96.32 95.65 94.11

Average 97.76 90.33 93.90 89.34

performance of this method is accurate as shown in Table I,
and average for the haemorrhage steps.

In calculating the three features of a brain haemorrhage
(EDH , SDH , and IPH) segmented by various slicing
steps such as 40 to 95 slices, the performance score of this
approach is accurate and average for the haemorrhage stages
as shown in Table II.

TABLE II
THE PERFORMANCE OF VARIOUS FEATURES

HAEMORRHAGE IS BEGIN FROM SLICE 40.

Precision Recall F1 ACC
EDH 99.42 90.55 94.78 97.76
SDH 97.34 88.90 92.93 98.26
IPH 97.76 97.22 95.89 97.35

Average 98.17 92.04 94.53 97.79

Therefore, the proposed technique for brain haemorrhage
segmentation is compared using ten cross-validation to eval-
uate the estimated performance of the projection profile
method. The dataset was divided into 80% training and
20% testing. Intracranial haemorrhage was analysed using
CT scans by radiologists to identify ICH and focus on its
regions [27].

TABLE III
THE COPMERISM BETWEEN FOUR METHODS BY USING

KAGGLE.

Methods PPV TPR TNR F1 ACC
Projection
Profile [24] 88.23 75.75 90.16 81.9 83

ICH UNet [25] 90 49.72 47.37 64.06 49.5
UNet++ [26] 55.56 100 0 71.42 55.56
Our Method 88.89 81.63 89.9 85.1 85.78

For regional segmentation of the ICH in a fully au-
tomated manner, the Kaggle dataset (https://www.kaggle.
com/felipekitamura/head-ct-haemorrhage) consisting of 100
images with and without haemorrhage was evaluated us-
ing the four methods shown in Table III. The proposed
method in this study which includes different statistical
parameters was found to outperform the baseline approaches.
The results can be compared using the PhysioNet dataset
(https://physionet.org/content/ct-ich/1.2.0/), consisting of 318
images with haemorrhage and 340 images without haemor-
rhage as shown in Table IV.

The four methods were compared using the dataset in this
study and different statistical measurement parameters, as
indicated in Table V. The proposed technique was improved
to achieve a higher performance in comparison to other
methods.

The ICH sub-type showed that our method performed the
best with a Dice Similarity Coefficient for the segmentation

TABLE IV
THE COMPARISON BETWEEN FOUR METHODS BY USING

PHYSIONET DATASET.

Method PPV TPR TNR F1 ACC
Projection profile[24] 82.90 77.43 79.6 80.05 78.53
ICH UNet [25] 96.23 12.05 95.64 21.42 20.22
UNet++ [26] 57.64 98.43 32.35 72.71 64.28
Our Method 83.67 78.93 85.59 81.22 82.37

TABLE V
THE COMPARISON BETWEEN FOUR METHODS BY USING

OUR DATASET.

Method PPV TPR TNR F1 ACC
Projection profile [24] 65.35 69.44 91.85 67.3 87.77
ICH UNet [25] 78.76 87.32 82.82 45.59 74.71
UNet++ [26] 84.88 96.44 72.14 90.29 82.50
Our Method 97.77 90.34 93.91 79.44 89.34

by users based on the 512 × 512 mask of the CT slices
resulted. By using the ground truth segmentation from the
PhysioNet dataset, we can calculate Dice Similarity Coef-
ficient DSC and the Jaccard Similarity Index JSI of the
ICH high sensitivity and segmentation is identifying the
ICH regions to be respected as the following table VI.

TABLE VI
THE COMPARISON BETWEEN TWO METHODS OUR METHOD

AND UNET++ BY USING JSI AND DSC

Method Jaccard Similarity Index Dice Similarity
ICH UNet [25] 0.22 0.31
UNet++ [26] 0.88 0.19
Our Method 0.43 0.44

We used five samples of output image to comparison
between two methods our method and UNet++ method by
involving Jaccard Similarity Index and the Dice score for
showing on the high value for two measurements show on
table VII.

TABLE VII
THE COMPARISON BETWEEN FIVE IMAGE WITH OUR
METHOD AND UNET++ METHOD BY USING JACCARD

SIMILARITY INDEX AND DICE SIMILARITY.

Symbols Jaccard Similarity Index Dice Similarity
Our Method UNet++ Our Method UNet++

A 0.71 0.44 0.83 0.63
B 0.49 0.43 0.66 0.62
C 0.81 0.79 0.88 0.89
D 0.62 0.71 0.77 0.81
E 0.49 0.43 0.66 0.62

The boundary impact of each predicted 512 × 512 mask
was minimal. The non-ICH regions are the value of low
probabilities and then converted to zero after thresholding.
The final segmented ICH regions after merging the win-
dows, thresholding, and performing for a few CT slices
are presented in Fig. 11.a, demonstrates the results between
ground truth (green color) and our method (red color),
our model matches most of the ICH segmentation region
labelled by radiologist. Fig. 11.b, presents the results between
ground truth (green color) and UNet++ (blue color), there are
some false-positive regions and noise regions in the output
contours from UNet++.
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A

B

C

D

E

(a) (b)

Fig. 11. The testing CT slices along with the radiologist delineation of the
ICH . a) The green color is ground truth, the red color is contour from our
method, b) The green color is ground truth, the blue color is contour from
UNet++ method.

For evaluation purposes, the brain-injured haemorrhage
considers two or three features (EDH, SDH or IPH), de-
pending on numerous markers such as the size and location
of each feature. To achieve high accuracy for different slices,
the proposed method depends on reaching high-performance
segmentation with fewer area errors, as show in Table VIII.

TABLE VIII
ESTIMATION OF HAEMORRHAGE INDEX FOR EDGE

DETECTION ALGORITHM DIFFERENT SLICES.

Slices Error Area Image
haemorrhage

61 1.3

62 1.1

63 1.7

64 1.9

65 1.8

66 1.5

VII. CONCLUSION AND FUTURE WORK
Medical image processing of brain haemorrhages is signif-

icant in assisting specialists to diagnose an injury. In this pa-
per, a novel regional SLIC based method is proposed, based
on the superpixel technique for segmenting haemorrhages in
brain scans. The images are computed using SLIC to project
the boundaries in the initial step as well as segments with
different greyscales. The pre-processing techniques of noise
reduction and the removal of unwanted regions from brain
tissue. Preliminary results of the images from the dataset used
in this study indicate that the current approach of region-
based and brain haemorrhage segmentation can achieve 97%
accuracy. Different datasets with varying statistical measure-
ment parameters were used to achieve different results.
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