
A Numerical Study of Steady Pollutant Spread in
Water from a Point Source

Nurcahya Yulian Ashar, Imam Solekhudin∗

Abstract—In this paper, problems involving steady pollutant
spread from a point source in a path with laminar water flow
are studied. Three different paths with different inclination
angles are considered. The problems are governed by diffusion-
convection equations. These governing equations may not be
solved analytically. Hence, in this paper a numerical method
called Dual Reciprocity Method (DRM) is employed to solve the
problems numerically. The numerical solutions are presented
to determine the effect or influence of inclination angles to the
pollutant concentration in the water.

Index Terms—Dual reciprocity method, diffution-convection
equation, velocity profile, Navier-Stokes equation, laminar flow.

I. INTRODUCTION

D IFFUSION-convection equation is widely used to mo-
delled problems involving pollution spread in fluid

path. One of the purposes of modelling the problems mathe-
matically is to study the problems more efficiently. To study
the problems mathematically, derivation of mathematical
models is needed. One of such derivation is presented by
Samec [1]. Resulting mathematical models of these problems
are then solved to obtain required solutions. To solve the
problems, analytical and numerical methods are used. Some
of analytical studies of diffusion-convection problems have
been conducted by Polyanin [2] and Morales-Delgadoa et.
al. [3]. However, analytical methods may only be applied
for limited number of problems.

Most of the resulting mathematical models may not be
solved analytically. Hence numerical methods are employed
to solve the mathematical models. Some of numerical studies
of diffusion-convection problems have been conducted by
numerous researchers. Such researchers are Fajie et. al. [4],
Xingxing et. al. [5], Mengxing et. al. [6], and [7]. In these
numerical studies, problems with point sources has not been
considered.

To incorporate point sources into the problems, one of
suitable method is Dual Reciprocity Method (DRM), which
is part of Boundary Element Methods (BEM). These meth-
ods, BEM and DRM, have been used by researchers to solve
various problems. Such researchers are Clements and Lobo
[8], Solekhudin and Ang [9], Solekhudin [10], Munadi et.
al. [11], Yun and Ang [12], and Ashar [13]. Researchers
in [8], [9], [10], and [11] studied water infiltration from
irrigation channels into soils. Yun and Ang studied heat
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conduction in non-homogeneous solid [12]. Ashar studied
pollutant spread in a river [13]. DRM has been reported for
its flexibility. Moreover, DRM may be employed to solve
problems over any domain shape bounded by a simple closed
curve. In this paper, a DRM is used to solve pollutant
spread from a point source over shallow fluid paths with
different inclinations. Some numerical solutions obtained
are presented to investigate the influence of inclination to
distribution of pollutant concentration over the shallow fluid
paths.

II. PROBLEM FORMULATION AND BASIC EQUATIONS

In this section, the mathematical model of steady
diffusion-convection problems is presented. A brief deriva-
tion of DRM for solving the problems is also presented.
Steady diffusion-convection problems over a region Ω
bounded by simple closed curve Γ are governed by

f1
∂T
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∂T

∂y
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∂x2
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∂2T

∂y2

)
= Q(x, y), (1)

where T is pollutant concentration, f1 and f2 are fluid velo-
city in x and y direction respectively, D is pollutant diffution
coefficient in fluid, and Q is the source. For problems with
a point source, the governing equation is
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where (a, b) is the coordinate of the source, and σ is a Dirac
delta function with the source at (a, b). Equation (1) and (2)
may be solved numerically using DRM. To solve Equation
(1) and (2) using DRM, we first express their solutions in the
form of boundary integral equations. The boundary integral
equations for Equations (1) and (2) are
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respectively. Here
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is the fundamental solution of two-dimensional Laplace’s
equation. From integral Equations (3) and (4), two systems
of linear algebraic equations
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are respectively derived. Here N is the number of segment
or element on boundary Γ, Γ(1), Γ(2),. . . , Γ(N) are the
segments satisfy Γ = Γ(1) ∪ Γ(2) ∪ · · · ∪ Γ(N). Number L is
the number of interior collocation point. Points (x(1), y(1)),
(x(2), y(2)), . . . , (x(N), y(N)) are the midpoints of segments
Γ(1), Γ(2),. . . , Γ(N), respectively. Points (x(N+1), y(N+1)),

(x(N+2), y(N+2)),. . . ,(x(N+L), y(N+L)), are the interior col-
location points,
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Function r is defined as

r(x, y; a, b) =
√

(x− a)2 + (y − b)2.

By solving system of linear algebraic Equations (5) and (6),
numerical solutions at collocation points may be obtained.
Using these solutions, numerical solution at any (ξ, η) ∈
Ω ∪ Γ may also be obtained.

III. RESULT AND DISCUSSION

In this section, the DRM presented in Section II is applied
to solve problems involving diffusion-convection equations.
The first problem is a problem with analytical solution. This
problem is used to investigate the accuracy of the DRM. The
second problem is problem without analytical solution. This
problem involving steady pollutant concentration range over
shallow fluid path with a point source.

Engineering Letters, 29:3, EL_29_3_03

Volume 29, Issue 3: September 2021

 
______________________________________________________________________________________ 



A. A Problem with analytic solution
We consider a problem involving diffusion-convection

equation

g(x, y) = f1(x, y)
∂T (x, y)

∂x
+ f2(x, y)

∂T (x, y)

∂y
−

D

(
∂2T (x, y)

∂x2
+
∂2T (x, y)

∂y2

)
(7)

with
f1(x, y) = y, f2(x, y) = x, D = 1,

and

g(x, y) = 2xy3 + 2x3y − 2x2 − 2y2,

defined over a square region with boundary conditions pre-
sented in Figure 1.

1

== 1

= 1 1
x

y

e y y+ 2

= e x x+ 2

O

Fig. 1: Region and boundary conditions of diffusion-
convection equation (7)

Analytical solution of Equation (7) subject to boundary
conditions in Figure 1 is

φ(x, y) = exy + x2y2.

To solve the problem using DRM, a number of element and
interior point are needed. We consider two sets of element
and interior points, namely Set A and Set B. In Set A,
the number of elements is 80 and the number of interior
collocation points is 81. In Set B, the number of elements
and interior collocation points are 200 and 196, respectively.
Absolute errors obtained using Set A and Set B are deninted
by eA and eB . Some of the numerical results are presented
in Table 1.

Table I shows numerical solutions at selected points ob-
tained using the DRM with Set A and Set B. The corre-
sponding analytical solutions and absolute errors are also
presented in the table. It can be seen that numerical solutions
obtained using the DRM are good in accuracy. It seems that
the absolute errors of the numerical solutions obtained using
Set A and Set B are less than 0.0006 and 0.0002, respectively.
It can also be seen that Set B results in better accuracy than
Set A. This means that generally the higher the number of
segments and interior colllocation points the more accurate
the numerical solution obtained.

TABLE I: Numerical and analytical solutions at selected
points

Point Analytic Set A Set B eA eB
(0.2, 0.2) 1.0424 1.04242 1.04241 0.000018 0.000005
(0.4, 0.2) 1.0896 1.08969 1.08970 0.000008 0.000013
(0.6, 0.2) 1.1418 1.14196 1.14192 0.000063 0.000028
(0.8, 0.2) 1.1991 1.19932 1.19917 0.000216 0.000061
(0.2, 0.4) 1.0896 1.08973 1.08969 0.000047 0.000003
(0.4, 0.4) 1.1991 1.19916 1.19912 0.000053 0.000014
(0.6, 0.4) 1.3288 1.32902 1.32889 0.000178 0.000047
(0.8, 0.4) 1.4795 1.48000 1.47964 0.000475 0.000119
(0.2, 0.6) 1.1418 1.14191 1.14189 0.000016 0.000006
(0.4, 0.6) 1.3288 1.32883 1.32884 0.000012 0.000007
(0.6, 0.6) 1.5629 1.56304 1.56295 0.000117 0.000028
(0.8, 0.6) 1.8464 1.84703 1.84661 0.000560 0.000143
(0.2, 0.8) 1.1991 1.19903 1.19908 0.000077 0.000026
(0.4, 0.8) 1.4795 1.47930 1.47946 0.000221 0.000060
(0.6, 0.8) 1.8464 1.84621 1.84640 0.000258 0.000071
(0.8, 0.8) 2.3060 2.30623 2.30611 0.000153 0.000036

B. Steady pollutant concentration in fluid paths with one
point source

In this part, we apply the DRM to solve the steady
pollutant concentration range in twinned fluid path with point
source. We are given shallow path of water with the width of
24 m. To investigate the influence of inclination to pollutant
concentration, the three cases are 30 deg, 60 deg, and 90
deg cases. For convenience, the three cases are denoted by
Case 1, Case 2, and Case 3, respectively. A source with
concentration of 200/107 gram/s and D=11.75 m2/s is placed
at point (24,24). The problem described is illustrated in
Figure 2.

In Figure 2, a path which has width of 24 m is selected,
provided that the boundary condition at the upstream is
T = 0, and on the other part of the boundary is ∂T/∂n = 0.
Before computing numerical values of pollutant concentra-
tion using the DRM, laminar velocity profiles of water flow at
interior collocation points need to be obtained. In this paper,
we set a maximum incoming water flow of 0.1113 m/s. The
laminar velocity profiles are obtained by solving a system of
equations,

∂vx
∂x

+
∂vy
∂y

= 0,

vx
∂vx
∂x

+ vy
∂vx
∂y

= −1

ρ

∂p

∂x
+ γ

(
∂2vx
∂x2

+
∂2vx
∂y2

)
,

vx
∂vy
∂x

+ vy
∂vy
∂y

= −1

ρ

∂p

∂y
+ γ

(
∂2vy
∂x2

+
∂2vy
∂y2

)
,

where ρ is density, γ is kinematic viscosity and p is pressure.
For the cases considered the resulted velocity profiles are
presented in Figure 3. These velocity profiles are generated
by ANSYS 19.2.

To test the effect of number of segment and interior
collocation point to numerical solutions, the DRM is applied
using different sets of number of element and interior collo-
cation point to solve Case 1. There are four different sets of
elements and interior collocation points, namely Set C, Set
D, Set E, and Set F. In Set C, the number of element is 200
and the number of interior collocation point is 351. In Set
D the number of element is 250 and the number of interior
collocation point is 351. The numbers of element and interior
collocation point in Case E are 200 and 423, respectively. In
Set F the number of elements is 250 and the number of
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interior collocation points is 423. Some of numerical results
obtained using these different sets of element and interior
collocation points are summarized in Table II.

(a) Case 1

(b) Case 2

(c) Case 3

Fig. 2: Region and boundary conditions of steady pollutant
concentration range for three different cases.

 

(a) Case 1

 

(b) Case 2

 

(c) Case 3

Fig. 3: Velocity profile for Case 1, Case 2, and Case 3,
generated by ANSYS 19.2.
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TABLE II: Numerical solutions at selected points for Case 1

Point Set C Set D Set E Set F
(12.00, 6.00) 0.076758 0.076495 0.076284 0.076114
(12.00, 12.00) 0.081824 0.081591 0.081406 0.081257
(12.00, 18.00) 0.089827 0.089584 0.089394 0.089242
(30.23, 6.65) 0.164204 0.163798 0.163476 0.163216
(28.98, 12.52) 0.173449 0.173077 0.172781 0.172543
(27.74, 18.39) 0.197025 0.196693 0.196430 0.196220
(70.67, 28.30) 0.242782 0.242189 0.241713 0.241330
(67.67, 33.50) 0.242923 0.242336 0.241865 0.241485
(64.67, 38.69) 0.242875 0.242292 0.241825 0.241447

In Table II, numerical solutions at nine different points
obtained using Set A, Set B, Set C, and Set D are presented.
It can be observed from Table II that at the same point,
numerical solutions obtained from different sets of segment
and interior collocation point are about the same. The differ-
ences between them are less than 0.0006. Hence, for further
implementation of the DRM, we use Set C for solving the
problems in Figure 2. Surface plots of the numerical results
for Case 1, Case 2, and Case 3 are presented in Figure 4.

For further discussion, we analyze the behavior of the
pollutant concentration values at lines l1, l2, and l3 from
three cases. Line l1 is the line connecting point (24,24) and
point (24,0). Line l2 is the line in the middle of the curved
fluid path forming an angle of θ/2 with line l1. Line l3 is the
line forming an angle of θ with line l1. The illustration of
these three lines can be seen in Figure 5. Numerical results
obtained along these three lines are presented in Figure 6a,
Figure 6b, and Figure 6c.

Pollutant concentrations along the three lines, l1, l2, and
l3, from Case 1, Case 2, and Case 3 are shown in Figure 6. In
Figure 6(a), it can be seen that there is no significant effect
between the magnitude of the inclination and the pollutant
concentration value along line l1. This means that before
entering the curved path, pollutant concentration values are
relatively the same for all cases. All cases have the same
tendency that the value of pollutant concentration decreases
monotonically along line l1. The value of the pollutant
concentration at point around the source point is about 0.262
gram/litre and at furthest point from the source point is about
0.139 gram/litre.

Figure 6b shows a comparison of the value of pollutant
concentration along line l2. As in Figure 6a, all cases have
pollutant concentration value which is decreases monotoni-
cally along line l2. Before reaching point which is 5.182 m
from the source point, the higher the inclination, the lower
the pollutant concentration value. After point which is 5.182
m from the source point, the higher the inclination, the higher
the pollutant concentration value. The pollutant concentration
at point around the source point has the highest value which
is about 0.227 mg/litre and the lowest value which is about
0.206 mg/litre. The pollutant concentration at farthest point
from the source point has the highest value which is about
0.191 mg/litre and the lowest value which is about 0.166
mg/litre. The changes in the concentration values of all cases
will be stable after point which is 20.727 m from the source
point.

Figure 6c shows a comparison of the value of pollutant
concentration along line l3. It can be seen that only in Case
1 the pollutant concentration value decreases monotonically
and in Case 2 tends to be stable along line l3. The pollutant
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(b) Case 2
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Fig. 4: Surface plot of pollutant concentration for Case 1,
Case 2, and Case 3.
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Fig. 5: Line l1, l2, and l3 formulation

concentration at point around the source point has the highest
value which is about 0.218 mg/litre in Case 3 and the lowest
value which is about 0.209 mg/litre in Case 2. The pollutant
concentration at furthest point from the source point has the
highest value which is about 0.239 mg/litre in Case 3 and
the lowest value which is about 0.185 mg/litre in Case 1.
This means that before exiting the curved path, the pollutant
concentration value at furthest point from the source point
will be higher when the higher the inclination.

For further discussion, we test the effect of the flow
velocity and the source value to the values of pollutant
concentration along l1, l2, and l3 for Case 1. We consider
three different values of flow velocity. The flow velocities
considered are 0.0557 m/s, 0.1113 m/s, and 0.2226 m/s.
Numerical results obtained using these three flow velocities
are presented in Figures 7a - 7c. We also consider three
different values of source. The values of source are 0.9345
gram/second, 1.8691 gram/second, and 3.7382 gram/second.
Numerical results obtained are presented in Figures 8a - 8c.

Figure 7 shows the concentrations distribution of pollutant
which is influenced by the magnitude of the incoming
velocity. It can be seen that the higher the velocity the
lower the pollutant concentration. It can also be seen that
all graphs have a monotonous descending behavior. Along
l1, the differences in pollutant concentration get higher as
the distance from upper point bigger. Along l2 and l3, the
differences in pollutant concentration are about the same.

Figure 8 shows the distributions of pollutant concentration
influenced by the value or the intensity of the pollutant source
(Q). From the figures, it can seen that at the same line,
the trends of pollutant distribution resulted from different
values of pollutant are about the same. It can be observed
that the higher the source value the higher the pollutant
concentration, which is expected. It can also be observed
that lower source value results in less variation in pollutant
concentration.

Figure 9 shows the distribution of pollutant concentrations
which are influenced by locations of the pollutant source.
Here the pollutant sources are selected at points (24,24)
and (24,0), which are denoted by QA and QB , respectively.
Unlike the previous graphs, the fashions of the distribution
of pollutant concentrations values with pollutant source at
QB is inversely proportional to those resulted from source
at QA. It can be observed that concentration of pollutant
for the two different source locations is the same at position
about 11.999 m on line l1, about 14.181 m on line l2, and
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Fig. 6: Pollutant concentration along three lines for Case 1,
Case 2, and Case 3.
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Fig. 7: Pollutant concentration along lines l1, l2, and l3 based
on incoming velocity

5 10 15 20

m

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

m
g/

l

Q=0.9345
Q=1.8691
Q=3.7382

(a) Along line l1.

5 10 15 20

m

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

m
g/

l
Q=0.9345
Q=1.8691
Q=3.7382

(b) Along line l2.

5 10 15 20

m

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

m
g/

l

Q=0.9345
Q=1.8691
Q=3.7382

(c) Along line l3.

Fig. 8: Pollutant concentration along lines l1, l2, and l3 with
different values of source intensity
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Fig. 9: Pollutant concentration along line l1 based on source
position

about 23.272 m on line l3.
From the figure it seems that the total pollutant concen-

tration resulted from the source at QA is different from that
resulted from QB . To compute the total pollutant concentra-
tion along lines l1, l2, and l3, we compute∫

li

T (x, y)ds, i = 1, 2, 3, (8)

using Simpson’s rule. It is assumed that the volume of water
along each line is 240 litres. The results obtained using the
Simpson’s rule are presented in Table III.

TABLE III: Total Pollutant in 240 litres water.

Source Along l1 Along l2 Along l3
QA 41.2549 mg 44.4622 mg 46.7023 mg
QB 40.8488 mg 41.1404 mg 41.9351 mg

From Table III, it can be seen that among the three lines,
the highest amount of pollutant is at line l3, and the lowest
amount is at l1. It can also be seen that for QA, there are
significant increases in the total amount of pollutant from
41.2549 mg along l1 to 44.4622 mg along l2, and from
44.4622 mg along l2 to 46.7023 mg along l3. The increases
are about 3.2073 mg and 2.2401 mg, respectively. On the
other hand, QB results in insignificant increases in the total
amount of pollutant. The increases are about 0.2916 mg and
0.7947 mg, respectively, which are much smaller than those
resulted from QA. From these results, it seems that pollutant
source placed at QA results in higher amount of pollutant
than that placed at QB .

IV. CONCLUDING REMARKS

A mathematical model for steady pollutant concentration
range in twinned fluid path with laminar water flow has
been constructed. The model has been successfully solved
numerically using a DRM. This method is tested to solve
problem with analytical solution and problems without ana-
lytical solution. The problem without analytical solution is
the problem involving steady pollutant concentration range
in twinned fluid path with inclinations of 30o, 60o, and 90o.

To investigate the accuracy of numerical solution using
DRM, Set A and Set B are applied to the problem with
analytical solution. In Set A, the number of elements is 80
and the number of interior collocation points is 81. In Set B,
the number of segments is 200 and the number of interior
collocation points is 196. It seems that the absolute errors
of the numerical solutions obtained using Set A and Set B
are less than 0.0006 and 0.0002, respectively. It can also be
seen that Set B results in better accuracy than Set A. This
means that generally the higher the number of segments and
interior colllocation points the more accurate the numerical
solution obtained.

From the previous discussion, it can be concluded that
before entering the curved path, the pollutant concentration
value is relatively the same and decreases monotonically. At
the middle of the curved path, all cases have pollutant con-
centration values which is also decreases monotonically. The
higher the inclination, the higher the pollutant concentration
value after a point with distance of 5.182 m from the source
point. It can also be concluded that before leaving the curved
path, the higher pollutant concentration at furthest point from
the point source occurs in the path with higher inclination.

From a deeper discussion for Case 1 by considering the in-
fluence of the intensity of the incoming velocity, the intensity
of the pollutant source and positions of the pollutant source.
It may be concluded that the higher the value of the incoming
velocity, the lower the values of the pollutant concentrations,
and two positions of the selected pollutant source produce
the analogous pollutant concentrations distribution.

Moreover, position of source affects the concentration of
pollutants. Distribution of pollutant concentration influenced
by source point at QB is inversely proportional to that
influenced by source point at QB . From the results presented,
it can be concluded that total pollutant resulted from QA is
higher than that resulted from QB .
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