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A New GM(1,1) Based on Piecewise Rational
Linear/linear Monotonicity-preserving Interpolation
Spline

Fengyi Chen and Yuanpeng Zhu*

Abstract—The classical GM(1,1) model reduces the random-
ness of the original nonnegative sequence by cumulatively
generating the original nonnegative sequence to get a monotone
increasing 1-AGO sequence. The accuracy and usability of the
model will be directly affected by the background construction
method. Hence, reconstructing the model background value is
of great research significance for improving its prediction accu-
racy. In this paper, we establish a new GM(1,1) model by using
the C! continuous monotonic piecewise rational linear/linear
interpolation spline, which provides a more reasonable formula
for calculating the background value. Compared with the classic
GM(1,1) model, the new GM(1,1) model has more advantages
in data processing for their effectiveness and accuracy.

Index Terms—Background value, GM(1,1) model, Grey the-
ory, Monotonicity-preserving interpolation spline

I. INTRODUCTION

Et an original nonnegative sequence be
X = {x(0>(1),x(0)(2), - ,x(o)(n)} . (1)

The classical grey prediction GM(1,1) model was firstly
proposed by Deng in 1982 [1], whose main idea is to make an
cumulated generating operation on the original nonnegative
sequence, so as to reduce the randomization of the original
data and obtain a monotonically increasing 1-AGO sequence
X @) Then establish a first-order grad prediction differential
equation on the sequence X (). Besides, use the least square
method to solve the differential equation numerically to es-
timate the parameters. Finally, the original data is simulated
and predicted by using the inverse cumulative generation
operation showed by Deng and Wei [2].

The 1-AGO sequence X (1) is given as follows

X0 = {a0@),2D@),... a0}, @

where

k
e (k) = 3 2O (k) 3
P 3)

_ x(l)(k' —1) —‘,—x(o)(k),k =1,2,...,n.

From Eq. (3), we can see that the 1-AGO sequence X (V)
has the feature of monotonicity-increasing. Let’s suppose
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that (1) (¢) meets the following first order grad forecasting
differential equation

dx M (t)
dt
where the grey developmental coefficient a and the grey
control parameter b are the parameters in the model to be
estimated. _
From the Eq. (4) and the initial condition X (1) =
XM(1), we get

20 (1) = {x“)u) _

+azM(t) = b, (4)

b:| e—a(t—l) +
a

b &)
a

Thus, to find the prediction model of the original data
sequence, we need to identify the effect of the grey develop-
ment coefficient a and the grey control parameter b in Eq. (4).
In order to get this, we do the integral accumulation on both

sides of Eq. (4) for [k, k+ 1],k =1,2,...,n — 1, then we

can get
k+1 g1 (4 E+1
/ L()dﬁa/ W (t)dt = b,
k k

dt
that is
kt1
2Ok +1) — 20 (k) + a/ 2O (t)dt = b,
k
or
k+1
eO(k+1) + a/ M (t)dt = b. (6)
k
Let background value be (M) (k + 1) := f:“ M (t)dt.

To find the result of the background value 2V (k + 1),
we need to integrate z(!)(t), which requires the values of
a and b to be given in advance. Besides, we can determine
the values of a and b by the values of the original sequence
and structure form of the background value from the Eq. (6).
Thus, to estimate the values of a and b, we must use some
methods to estimate the background value z(!)(k + 1) in the
first place, which is a key factor affecting the simulation error
€ and the quality of the predicting model.

In the classical GM(1,1) model, the piecewise linear
polynomial interpolation L(t) := (k+1—t)zM (k) +
(t — k)2 (k+1) will be used to approximate z(!) (), then
the estimated background value z(!)(k + 1) will be found as
follows

2D (k41) = [Fa®(n)dt
[ L)t @)
=1 [2W (k) +2W(k+1)].

Q
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At each interval [k, k + 1], & = 1,2,...,n — 1, by
substituting the estimated background value z")(k + 1) into
Eq. (6) and the use of the least square method in the further,
the values of the parameters a and b can be estimated by the
following formula

( ) > = (G"G)'G"X,

where
29(2) —2M(2) 1
0 _,)
i | PO | e
:EO.(H) fz(l.)(n) 1

At last, we can get the estimated solution from the differential
Eq. (4) with the initial condition X1 (1) = X™M(1) , as
follows

#0(1) = [a@(l) - b} T S P

a a

Therefore we obtain the following grey prediction equation

TOh+1) =2V Fk+1) -2V %), E=1,2,.... 9

Al

Fig. 1. Prediction error source diagram of conventional GM(1,1) model.

From Eq. (7), it is known that the average of adjacent
values is used by the classical GM(1,1) model to construct
the background value z()(k + 1). Its geometric meaning is
to replace the straight ladder region to the trapezoidal area
which is based on the edge of exponential curve (V) (t), as
shown in Fig. 1. This method, however, has its own weak-
ness. When the 1-AGO data sequence changes significantly,
the prediction result comes out a large error (AS) which
would increase exponentially. Hence, the classical GM(1,1)
model has some limitations in actual applications. As indi-
cated in [3], [4], [5], the background value’s construction
determines the prediction accuracy of the GM(1, 1) model
directly. In [6], Li and Dai reconstructed z(!)(¢) by a high-
order Newton interpolation polynomial. Besides, the value of
the background z(") (k + 1) was estimated by Newton-Cores
integral. Nevertheless, the high-order Newton interpolation
polynomial may have the Runge phenomenon when there are
a mess of data and the truncation error become very large.
Thus the numerical stability cannot be guaranteed when the

approximate value of Newton-Cores was calculated integral.
Tang and Xiang [7] reconstructed 2! (t) on the interval
[k,k + 1] by using the piecewise quadratic interpolation
polynomial to estimate the background value =M (k +1). It
shows that numerical stability is good and the calculation
complexity is low. Wang et al. [8] used piecewise cubic
interpolation spline to reconstruct (") (¢), and found out the
estimated background value z(Y)(k + 1). The advantage of
this method is that it has a better approximation order which
could avoid Runge phenomenon of high-order polynomial.
However, all the methods that we have mentioned ignore
the important of the increasing monotone characteristic of
the curve x(1)(¢) which is to be reconstructed. If the re-
constructed curve loses the monotonicity-increasing charac-
teristic of z(!)(¢), a large error in the background value
2z (k+1) will be accrued. Thus, a crucial way to exact the
function of (M) (¢) approximately is to enhance the back-
ground value’s estimation and to improve its effectiveness
and accuracy. It is believed that constructing monotonicity-
preserving interpolation splines has a great significance,
meanwhile many methods have been proposed in recent
years. Qin and his team are committed to building new
splines, including rational polynomial interpolation spline,
rational trigonometric interpolation spline and the piecewise
bivariate rational interpolation spline; see [9], [10] and the
references quoted therein.

Recently, many grey prediction models have been de-
veloped based on the analogous methods of the GM(1,1).
For example, the FGM(1,1), the NGM model, INDGM,
TDPGM(1,1), Grey polynomial model, seasonal GM(1,1),
etc; Refer to [11], [12], [13], [14], and the references
quoted therein. Since the classical GM(1,1) model has some
limitations in practical application, lots of new methods
concerning the improvement of the classical GM(1,1) model
have been proposed by many researchers, for instance [15],
[16], [171, [18], [19], [20], [21], [22], [23], [24].

In this paper, we use a C! continuous monotonicity-
preserving piecewise rational linear/linear interpolation s-
pline developed in [25] to reconstruct the curve (1) (¢) and
present a new scheme to estimate the background value
2z (k +1). It improves on the schemes in some ways:

(1) The Lagrange polynomial interpolation scheme develope-
d in [6] may have Runge phenomenon. Whereas, the giv-
en monotonicity-preserving piecewise rational linear/linear
interpolation spline method can avoid this situation, thus
helping to reduce the error and improve the numerical
stability.

(2) The existing methods developed in [5], [6], [7], [8] ignore
the important monotone increasing characteristic of the curve
(M (t), which is considered in this paper.

(3) Our paper refers to monotonicity-preserving piecewise ra-
tional linear/linear interpolation spline in [25] to reconstruct
x(M(t), which is based on function value only.

(4) Compared with the usage of piecewise rational quadrat-
ic/Quadratic interpolation spline in [24] to reconstruct
x(M(t), the usage of piecewise rational linear/linear inter-
polation spline to reconstruct z(!)(#) in this paper is more
computational efficient.

(5) In the numerical examples, we compare the new model
with the classical GM(1,1) model and other models in this
paper. The prediction results show that our new model can
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improve the prediction accuracy in practice.

The rest of this paper is organized as follows. In section II,
the construction of C'! monotonicity-preserving piecewise ra-
tional linear/linear interpolation spline is given. In section III,
a new GM(1,1) model based on C'' monotonicity-preserving
rational linear/linear interpolation spline is constructed in
detail. Several numerical examples are also given to prove
the value of the new developed schemes. And section IV
presents the conclusions.

I1. C! MONOTONICITY-PRESERVING RATIONAL
LINEAR/LINEAR INTERPOLATION SPLINE

According to Eq. (3), the 1-AGO sequence X (V) has a
monotonically increasing feature, that is (") (k) < () (k +
1), Vk. And the fitting exponential curve z(!)(¢) to the 1-
AGO sequence X1 also has a monotonicity-increasing fea-
ture and infinite smoothness. Hence, we use a C'! monotonic-
preserving rational linear/linear interpolation spline to inter-
polate the 1-AGO sequence, so as to reconstruct the curve

(M ().
For the 1-AGO monotone increasing sequence
(k,zW(k)), k = 1,2,...,n, for t € [kk+1],

1 < k < n — 1, a rational linear/linear interpolation
spline is constructed as follows

MezM (k) (1 = 8) + D (k+1)s

S(t) = 10
®) Ae(l—8)+s ’ (19)
where s =t — k € [0, 1].
From Eq. (10), by direct calculation, we have
S'(t) = Ak[x<1>(k+1)—x<;>(m]

[Ae(1=s)+s] an

_ )\k[z(())(kJrl)] > O

- [Ak(l—s)-i-s}z =

which indicates that S’(¢) > 0 for any ¢ € [k,k + 1] on
condition that Ay > 0. Therefore, the interpolant S(t) is
monotone increasing on [1, n] for all Ay > 0.

From (10) and (11), we can also see that

Si(k)y=aW (k), S_(k+1)=aW (k+1),
S (k) = 220D 6 (k4 1) = M@ (k4 1).

Thus we can see that S, (k) = S_ (k). Moreover, if
Me—ide = 2Ok + 1) /2O (k), we further have S (k) =
S” (k+1), which implies that S(t) is C'! continuous at t = k.

From the above analysis, when dealing with the 1-AGO
monotone increasing sequence (k, 2™ (k)), k=1,2,...,n
we choose the parameter \;, k = 1,2, ..., n by the following
way so as to generate a C'' monotone increasing rational
linear/linear interpolant S(t)

Mo=1,
_ Q%+
Ak = 3, @ (k)

III. ESTABLISH NEW GM(1,1) MODEL

k=23,...,n—1.

For the original non-negative sequence X =
{20(1),29(2), -, 2D (n)}, we first calculate its 1-AGO
sequence XM = {z(1(1),2()(2),--- () (n)}. Then for
the 1-AGO sequence XV, we use the C'' monotonicity-
preserving piecewise rational linear/linear interpolation s-
pline S(t) to reconstruct the exponential curve 2(!)(t). For

the interval [k,k + 1], we estimate the background value

M (k+1) = fkﬂ x() (t)dt by the following method
Dk +1) = [FaM@)a
~ [P S )dt
1 ApzM (K)(1—s) 42D (k+1)s
—Jo . A (1—s)+s ds

1 s
M (k) + 2Ok +1) [y xrrtemsds
) ,
z(etl) ta k), if w=1,
2 (k) 4 L) [1+ 2 ln)\k}, if A £ 1,
(12)
Then, the estimated background value was substituted into

the grey differential equation Eq. (6). And we further use
the least square method to solve Eq. (6). The formula is as

follows
( ) ) — (G"G)'a@"x,
where
29(2) —M(2) 1
. xo'(?)) oo —z<t>(3) 1
2°(n) W) 1

Finally, we obtain the following estimated solution to the
differential equation (4) with the initial condition X (M (1) =
XM(1) as follows

() = {x(l)(l) —
We thus get the following grey prediction equation

Ok +1)=2W(E+1) — M (k)
=(1—e?) [zM(1) — 2]e ok, k=1,2,....

We shall give several numerical examples to show that the
new GM(1,1) model based on C' monotonicity-preserving
piecewise rational linear/linear interpolation spline improves
prediction accuracy compared to the classical GM(1,1) mod-
el. In the following examples, the relative error is computed
by

b b
:| e—a(t—l) 4=,
a a

|7 (k) — 2O (k)|
2O (k)

Example 1. In this example, we consider the non-negative
data x© (k), k=1,2,---,7 given in [19]. In addition, we
compare the results predicted by our new GM(1,1) model
with the GM(1,1) model and the method proposed in [19].
Table I and Fig. 2 give the numerical results. The results
show that our model has the best prediction effect compared
with the other two prediction models, and it performs very
well in predicting data with the exponential growth trend.

E =

Example 2. In this example, we consider the non-negative
data zO(k), k = 1,2,...,12 given in [8]. Similarly, we
compare the results predicted by our new GM(1,1) model
with the GM(1,1) model and the method proposed in [7].
Table II and Fig. 3 give the numerical results. The results
turn out that the new GM(1,1) model still performs the best
among the three prediction models. In addition, its prediction
accuracy is significantly higher than the classical GM(1,1)
model.
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TABLE 1
NUMERICAL RESULTS FOR EXAMPLE 1.

Classical GM(1,1)

New GM(1,1) The Model in [19]

z(0) Prediction data  Relative error € (%)  Prediction data  Relative error € (%)  Prediction data  Relative error £ (%)
2.9836 2.9836 0.0000 2.9836 0.0000 2.9836 0.0000
4.4511 4.3804 1.5884 4.4925 0.9292 4.4561 0.1123
6.6402 6.5006 2.1027 6.6826 0.6383 6.6132 0.4066
9.9061 9.6469 2.6161 9.9404 0.3465 9.8146 0.9237
14.7781 14.3162 3.1226 14.7865 0.0569 14.5657 1.4373
22.0464 21.2454 3.6331 21.9951 0.2327 21.6168 1.9486
32.8893 31.5285 4.1374 32.7180 0.5209 32.0812 2.4570
z (%) 2.4576 0.3892 1.0408
TABLE II
NUMERICAL RESULTS FOR EXAMPLE 2.
2(0) Classical GM(1,1) New GM(1,1) The Model in [7]
Prediction data  Relative error € (%)  Prediction data  Relative error € (%)  Prediction data  Relative error £ (%)
110852 110852 0.00 110852 0.00 110852 0.00
135175 117980 12.72 130156 3.71 127821 5.41
153647 119117 22.47 128634 16.27 126664 17.66
120296 128264 6.62 127130 5.68 125830 4.68
96362 121422 26.27 125644 30.38 124380 29.23
90798 122592 35.01 124176 36.76 123253 35.70
102591 123773 20.65 122724 19.62 122137 19.11
150534 124965 16.99 121289 19.42 121031 19.63
175123 126168 27.95 119872 31.55 119934 31.52
127148 113383 10.83 118470 6.82 114848 9.76
102085 128610 25.98 117085 14.69 117772 15.47
97103 116705 20.19 115717 19.16 116705 20.21
z (%) 19.92 17.01 17.37
Example 3. In this example, we consider the non-negative
' ' ' ' ' P data O (k), k = 1,2,...,9 given in [20]. Table IIl and
80t © 1-AGO data 1 Fig. 4 give the numerical results.
----- Piecewise linear interpolant
i I ' TABLE I
X (t) NUMERICAL RESULTS FOR EXAMPLE 3.
401 1
Classical GM(1,1) New GM(1,1)
20 1 z(0) Prediction Relative Prediction Relative
& - ) ) ) ) data error £ (%) data error € (%)
1 5 3 4 5 6 7 0.0200  0.0200 0.0000 0.0200 0.0000
0.0191 0.0192 0.9929 0.0192 1.0434
0.0176 0.0174 0.8486 0.0174 0.7981
Fig. 2. Graphic results for example 1. 0.0159 0.0157 0.7109 0.0157 0.6596
0.0144 0.0142 0.8202 0.0142 0.7681
0.0129 0.0129 0.1575 0.0129 0.2108
«10° N 0.0117 0.0116 0.0979 0.0116 0.0439
ur 1-AG:O toa ' ' P 1 00105 0.0105 0.7067 0.0105 0.7618
12 Piccewise linear interpolant g@ ] 0.0095  0.0095 0.6958 0.0095 0.7517
10F ——s@ g ] z (%) 0.5589 0.5597
Y p— O ]
61 ] Example 4. In this example, we consider the non-negative
4r 1 data zO(k), k = 1,2,...,10 given in [21]. Table IV and
2" ‘ ‘ ‘ ‘ 1 Fig. 5 give the numerical results.
2 4 6 8 10 12

Fig. 3.

Graphic results for example 2.

Example 5. In this example, we consider the non-negative
data O (k), k = 1,2,...,14 given in [22]. Table V and
Fig. 6 give the numerical results.
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NUMERICAL RESULTS FOR EXAMPLE 5.

TABLE V

Classical GM(1,1) New GM(1,1) The model in [24]
z(©) Prediction Relative Prediction Relative Prediction Relative
data error € (%) data error € (%) data error € (%)
64832.05 64832.05 0.000 64832.05 0.000 64832.05 0.000
71847.09 57476.77 20.001 57476.76 20.001 57600.77 19.829
78646.30 67165.21 14.598 67165.20 14.598 67327.40 14.392
86293.10 78486.76 9.046 78486.75 9.046 78696.50 8.803
93887.95 91716.70 2.312 91716.69 2312 91985.41 2.026
105557.09  107176.71 1.534 107176.71 1.534 107518.32 1.858
125761.85  125242.71 0.413 125242.70 0412 125674.17 0.070
143143.63  146353.96 2.243 146353.95 2.242 146895.86 2.621
168850.20  171023.78 1.287 171023.77 1.287 171701.11 1.688
198739.27  199852.01 0.560 199852.00 0.559 200695.05 0.984
245352.80  233539.60 4.815 233539.60 4.814 234584.98 4.389
278541.09  272905.57 2.023 272905.66 2.023 274197.66 1.559
334839.41  318907.39 4.758 318907.38 4.758 320499.45 4.283
386086.72  372663.28 3.477 372663.27 3.476 374619.89 2.970
g (%) 4.791 4.650 4.677
0.12 O 1-AGO data 1 O 1-AGO data
""" Piecewise linear interpolant 6000 [ .. piecewise linear interpolant |
01r ——s() 1 —— (1)
.......... 1 1
0.08 X ] 2000 | x(t) |
0.06 1
0.04 1 1 2000 1
0.02 ' ' ' ' ' ' ' . . . . . .
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 8 9
Fig. 4. Graphic results for example 3. Fig. 5. Graphic results for example 4.
TABLE IV %108
NUMERICAL RESULTS FOR EXAMPLE 4. T T T T T T ;)
: 5l 0 1-AGOdata 7]
Classical GM(1,1) NewGMUD ] aeee Piecewise linear interpolant
z(0) Prediction Relative Prediction Relative A
1.5 — S 3 1
data error € (%) data errore (%) T 1
897 897.00 0.0000 897.00 0.0000 1} x(® |
897 939.52 4.7407 939.53 47414
890 898.25 0.9275 898.29 0.9320 05t o ]
876 858.80 1.9637 858.86 1.9555 “
848 821.07 3.1751 821.17 3.1634 * * * * *
814 78501 3.5616 785.13 3.5463 2 4 6 8 10 12 14
779 750.53 3.6551 750.67 3.6362
738 717.56 2.7698 71772 2.7470 Fig. 6. Graphic results for example 5.
669 686.04 2.5470 686.22 2.5749
600 655.90 9.3175 656.10 9.3513
g (%) 3.2658 3.2648

Example 6. In this example, we consider the non-negative
data zO(k), k = 1,2,...,7 given in [23]. Table VI and
Fig. 7 give the numerical results.

Example 7. In this example, we consider the non-negative
data O (k), k = 1,2,...,7 given in Table VII. And
Table VII give the numerical results.

From the above examples 1-7, we can get the conclusion
that the average relative error € of the new GM(1,1) model
is lower than that of the classical GM(1,1) model, which
implies that the new GM(1,1) model can improve the quality
of the forecasting model.

IV. CONCLUSION

In order to reconstruct the background value, we estab-
lish a new GM(1,1) model by using a C'' monotonicity-
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TABLE VII
NUMERICAL RESULTS FOR EXAMPLE 7.

Classical GM(1,1) New GM(1,1) The Model in [24]
z(0) Prediction data  Relative error € (%)  Prediction data  Relative error € (%)  Prediction data  Relative error £ (%)
2.8414 2.8414 0.0000 2.8414 0.0000 2.8414 0.0000
4.9092 4.7726 2.7831 4.7911 2.4061 4.7534 3.1741
6.1411 5.9365 3.3315 5.9630 2.8996 5.9358 3.3418
7.2431 7.3842 1.9468 7.4215 2.4624 7.4124 2.3366
9.0410 9.1849 1.5911 9.2368 2.1648 9.2562 2.3804
11.7205 11.4247 2.5237 11.4960 1.9158 11.5588 1.3803
g (%) 2.0294 1.9748 2.1022
TABLE VI
NUMERICAL RESULTS FOR EXAMPLE 6. [4] G.J. Tan, “The structure method and application of background value
in grey system GM(1,1) model (II),” Systems Engineering-Theory and
Classical GM(1,1) New GM(1,1) Practice, vol. 20, no. 5, pp. 125-132, 2000.
2(0) Prediction Relative Prediction Relative [5] G.J. Tan, “The structure mezhod and application of backgro;lmd valu;
in grey system GM(1,1) model (III),” Systems Engineering-Theory an
data error € (%) data error € (%) Practice, vol. 20, no. 6, pp. 70-74, 2000.
211 21.1 0.0000 21.1 0.0000 [6] J.F. Li and W.Z. Dai, “A new approach of background value-building
26.6 21.4 19.4566 21.3 19.8219 and its application based on data interpolation and Newton-Cores
formula,” Systems Engineering-Theory and Practice, vol. 24, no. 10, p-
36.1 327 9.3820 32.8 8.8849 p. 122-126, 2004.
52.3 49.9 4.4941 50.7 3.0036 [7] W.M. Tang and C.H. Xiang, “The improvements of forecasting method
80.1 76.2 4.7842 78.2 2.3247 in GM(1,1) model based on quadratic interpolation,” Chinese Journal
126.8 116.4 8.1599 120.6 4.8393 (]f Management Science, vol. 14, no. 6, Pp. 109-1 12, 2006.
[8] X.J. Wang, S.L. Yang, J. Ding, and H.J. Wang, “Dynamic GM(1,1)
196.3 177.8 94182 186.0 5.1982 model based on cubic spline for electricity consumption prediction in
g (%) 7.9564 6.2961 smart grid,” China Communications, vol. 7, no. 4, pp. 83-88, 2010.
[9] X.B. Qin, L. Qin, and Q. S. Xu, “C'! positivity-preserving interpolation
schemes with local free parameters,” JAENG International Journal of
Computer Science, vol. 43, no. 2, pp. 219-227, 2016.
. . . . . © [10] X.B. Qin and Q.S. Xu, “C' rational cubic/linear trigonometric
500 VA interpolation spline with positivity-preserving property,” Engineering
© 1-AGO data Y Letters, vol. 25, no. 2, pp.152-159, 2017.
400+ — - Piecewise linear interpolant %= - [11] H.M. Duan, X.P. Xiao, and L.L. Pei, “Forecasting the short-term
—S(t) traffic flow in the intelligent transportation system based on an inertia
300 1 d i nonhomogenous discrete gray model,” Complexity, vol. 2017, pp. 1-
""""" X (1) 16, 2017.
| | [12] X. Ma and Z.B. Liu, “Application of a novel time-delayed polynomial
200 o grey model to predict the natural gas consumption in China,” Jour-
e ’ nal of Computational and Applied Mathematics, vol. 324, pp. 17-
100 | o I 24, Nov. 2017.
& : o ) ) ) [13] B.L. Wei, NM. Xie, and A.Q. Hu, “Optimal solution for nov-

Fig. 7. Graphic results for example 6.

preserving piecewise rational linear/linear interpolation s-
pline. Numerical examples show that the new GM(l,1)
model has smaller prediction error than the classical one,
especially in these aspects such as reliability and validity
of the prediction. And the new model performs better for
the original data with convexity in time series. The practical
applications of the new GM(1,1) model both in industry and
service area will be the next step of the study. And the
applications in hotel revenue forecast and tourism market
forecasting will be also our future work.
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