
Evaluating the Impact of ANN Architecture for
Driver Activity Anticipation in Semi-autonomous

Vehicles
Shilpa Gite, Ketan Kotecha

Abstract—Artificial neural networks (ANNs) consist of multi-
ple intermediate layers known as hidden layers stacked together
through which the input is passed to obtain the desired output.
The hidden layers are crucial for feature extraction which in
turn impacts the performance of the entire model. However,
they do not have a fixed number and the ideal value is
traditionally derived iteratively by assessing the performance
of the architecture. It is thus desired to analyze and derive
the standard amount and deciding criteria for these hidden
layers, as well as the impact of altering their configuration on
the performance of the system. In this paper, we present our
findings for this problem when working on Spatio-temporal
data to predict the activity of drivers in semi-autonomous
vehicles. The performance of the different architectures is as-
sessed on the standard brain4cars dataset. Exploratory research
is conducted to understand the impact of variation in the
hidden layers in a deep neural network architecture. A detailed
modeling procedure is followed out to present an unbiased
analysis of the impact which the architectural changes hold
on the performance of the system. The performance is assessed
by considering the accuracy and other performance metrics
of the system on the testing data. We also evaluate the time
required by the system for delivering the inference. Both these
factors are seen to be significantly affected by the architecture
configuration.

Index Terms—Artificial neural networks, deep learning,
LSTMs, RNNs, brain4cars

I. INTRODUCTION

ARTIFICIAL neural networks or ANNs consist of mul-
tiple layers of nodes connected together. The layers in

the architecture could be categorized as input, output, and
hidden layers. There is always only a single input and output
layer but the hidden layers could be varying in number.
The input neurons or nodes correspond to the number of
features present in the training dataset. The output layer
corresponds to the number of classes associated with every
input. However, when it comes to the hidden layers, the
researcher possesses the liberty in deciding the configuration
of the hidden layers and the nodes present in each of them
[1].

While the input layer accepts the case data in a model-
friendly format and the output layer produces an output
prediction in a determined form, the hidden layers are

Manuscript received January 24, 2021; revised March 17, 2021.
Dr. Shilpa Gite is an Associate Professor at Symbiosis Institute of

Technology and Associate Research Faculty at Symbiosis Centre for Applied
Artificial Intelligence, Symbiosis International (Deemed University), Pune,
Maharashtra, India. e-mail: (shilpa.gite@sitpune.edu.in).Corresponding au-
thor

Dr. Ketan Kotecha is the Head of Symbiosis Centre for Applied Artificial
Intelligence and Dean Director, Symbiosis Institute of Technology, Sym-
biosis International (Deemed University), Pune, Maharashtra, India. e-mail:
(head@scaai.siu.edu.in).

responsible for extracting and propagating the feature values
from the input layer to the output layer [2]. Hidden layers are
private to the neural network and are crucial in facilitating
the learning and extracting the features, especially for non-
linear data. Currently, the number of hidden layers and nodes
is determined through an iterative approach of configuration
and testing process by computing the discrepancy between
the obtained performance and the desired performance. It
is desired that insights are shared upon the best-suited
configuration of nodes and hidden layers to get the ideal
deep network architecture for a given task [3].

In the past, there have been attempts to review and analyze
the impact of altering the configuration of hidden layers
and neurons within the ANN architecture for performing a
diverse set of tasks [4] [5] [6]. These efforts have stressed
making changes in the activation functions, and the number
of nodes and layers on a small scale. However, there has
been paltry work in this area when working on an image or
video-based data of driver activity anticipation. Further, the
analysis has been performed up to a restricted small scale of
layers and only with one or two architectures [7] [8]. There
is thus ample scope for more comprehensive research in this
domain.

The performance of an ANN architecture could be as-
sessed in multiple ways. Firstly, the standard performance
metrics for the task in hand are a good indicator of the
model’s learning. These performance metrics evaluate how
close the predicted outcome is to the actual outcome or
ground truth for the given sample [9]. Overfitting is a
scenario where the model performs excellently on the perfor-
mance metric for training data but fails to get similar levels
of results for the testing data [10]. The model architecture
should be such that it does not overfit while training. Further,
another factor to be considered while assessing the system
performance is the inference time required by the architec-
ture. While it does not affect the prediction value, it has
a significant impact on the cost incurred for running the
system and it also directly impacts the entities which are
in the environment of the model. Generally, for a particular
architecture, the training time is in direct proportion to the
depth of layers and trainable weights present along with other
factors. An architecture that gives good results on the given
performance metric while also having a lesser inference time
would be considered optimal.

In this paper, we present our evaluation of the impact
which the architecture configuration of ANNs has on their
performance for a given task. Specifically, we work on the
task of driver activity anticipation [11] in semi-autonomous
vehicles which involves Spatio-temporal data and conducts

Engineering Letters, 29:3, EL_29_3_07

Volume 29, Issue 3: September 2021

__

the study for multiple ANN architectures. The performance
of the different architectures is calculated on the standard
brain4cars [12] dataset. We follow an in-depth methodology
for analyzing the system and elucidate our findings in the
later sections. Specifically, the novelties and contribution of
our work are as mentioned below:

1) Unlike previous attempts, an assessment of the impact
of variation in hidden layers configuration is done for
not just one, but five different ANN architectures.

2) We have carried out the analysis on Spatio-temporal
data which requires sharper feature extraction methods
while also maintaining lesser training cost.

3) We analyze the variations in the architecture configu-
ration for a significant depth up to 25 hidden layers,
unlike previous approaches that have worked on only
up to 10-12 hidden layers.

4) Our performance evaluation provides the reader with
reasoning not just based on the results obtained on the
performance metrics but also based on the architecture
complexity and training costs.

The rest of the paper is structured as: We provide infor-
mation about the work previously done in this domain. Our
work methodology and the used architecture configurations
are described in the next section while the dataset used
is reported in the succeeding section. This is followed by
elucidation of the results obtained and their analysis, and the
conclusion and future work scope are mentioned in the final
section of the paper.

II. BACKGROUND AND RELATED WORK

Considerable amount of research is being conducted in an-
alyzing the working and the applications of Artificial Neural
Networks. Previously, there have been multiple attempts to
assess and formulate the impact of the configuration of these
architectures. These attempts have focused on the issues of
optimizers [13], parameters [14], and the number of layers
and types of features which should be present in the ANN
architecture [15] [16].

In one of the earliest works in this area, Li et al. [3]
proposed an optimization algorithm and theory to estimate
the suitable amount of neurons in a feed-forward neural
network. Tamura and Tateishi demonstrated the capability of
a four-layer feedforward network as compared to a three-
layer network [7]. Heaton [2] proposed a thumb rule to
be followed for deciding the optimal configuration of the
hidden layer. Xu and Chen proposed the calculation of the
number of hidden layer neurons by considering the known
target function [8]. Shibata and Ikeda presented a general
set of guidelines while taking into account the input features
and output classes and also mentioning the need for task-
specific modifications [9]. Hunter et al. [17] conducted a
comparative analysis before determining the neural network
size and architecture and inferred a generalized solution by
considering all the neurons in the network. One of the more
extensive works was conducted by Sheela and Deepa where
they tested over 101 different criteria to come up with their
mathematical method [18]. Alvarez and Salzmann proposed
the parameters of the neural network to be regularized using
a group sparsity regularizer to reduce the size of the network
[19]. Hu et al. [20] made use of a network pruning approach
for improving the efficiency of CNNs.

Some researchers in the past have also tried to analyze
these variations for a specific task. Shafi et al. [4] investigated
the effect of changes in ANN architecture for a highly
concentrated time-frequency distribution target. Xu et al. [5]
observed the learning undergone by various layers in an
autoencoder. Tangkraingkij explored the appropriate number
of neurons for performing private authentication using delta
signals of the brainwave [6]. Quite recently, Zhang and Shen
commented on ways of choosing the hidden layers setup
when working with time-series-based stock price data and
its prediction [21]. A major observation from these previous
approaches has been that majority of them have focused
on a fixed mathematical function-driven approach and have
worked only on structured or sequential data while making
use of primitive ANN architectures. There is ample scope to
analyze the impact of layer configurations when working on
an image or video-based task, especially with contemporary
ANN architectures and increased depth in terms of layers
stacked together.

III. WORK METHODOLOGY AND ARCHITECTURE
CONFIGURATIONS

Assistive driving helps the driver in various ways like
a lane change, parking, and collision detection, etc. by
giving him a warning or informatory message. This re-
search problem delves around assistive driving in semi-
autonomous vehicles. Detecting the driver’s actions well in
advance can alert the drivers and also offers ADAS more
response time to equip them to avert the possibility of an
accident. However, it’s a challenging research problem to
design computer vision-based methods that can improve the
performance not only in terms of action detection accuracy
but also the anticipation time. The focus of this research
is to improve the anticipation time, which is very critical
in a real-time scenario like driving. Reaction time for an
average person is 1-2 sec, and ADAS aims to provide more
reaction/anticipation time for driver safety. More anticipation
time means the system has informed the driver that many
seconds before so that possible incidents are avoided. Our
research work is inspired by the Brain4cars research group
of Cornell University, USA. They have used a fusion of three
types of features; namely, the car’s inside features, outside
features, and the maps. Their sensory fusion architecture
using deep learning gives 3.5 sec anticipation time with 86%
action accuracy. We further try to improve these parameters
in our research by novel preprocessing techniques, which
form the baseline for our study.

Timely anticipation of driver intention offers a possible
solution for allowing ADAS to prevent potential accidents
at an early stage. This made vehicle maneuver prediction
an established research topic in the last decades, mostly
addressed by classifying handcrafted features with a variety
of approaches, such as Support Vector Machines, Relevance
Vector Machines, Hidden Markov Models, and Recurrent
Neural Networks. Despite recent progress in deep end-to-end
learning, the majority of previous work on driver maneuver
anticipation has been based on manually designed feature
descriptors, often employing eye gaze, head, and body pose
or other context features, such as GPS and car speed. Though
deep learning techniques extract features automatically, we
extract more features manually or using a handcrafted way

Engineering Letters, 29:3, EL_29_3_07

Volume 29, Issue 3: September 2021

__

in the preprocessing step. Then we apply deep learning
classifiers, more specifically RNN+LSTM, to find out the
driver’s maneuver. Here the reason for using RNN is, it
works very well as a sequential classifier where data keeps
on coming continuously, and previous data gives input to
the next data, which helps in our problem to identify and
anticipate action.

In this paper, we have worked on the driver activity
anticipation task in semi-autonomous vehicles. Given the
recent context of the drive video and related features, we are
supposed to predict the future maneuver of the driver from
one of the following possibilities: shift to the lane on the left,
left turn, shift to the lane on the right, right turn, or drive
straight. The task thus involves Spatio-temporal kind of data
and to model this data, we try out five different architectures
as follows:

1) Feed Forward Neural Network (FFNN):
Feedforward neural network is the traditional kind of
ANN architecture where individual layers hold uni-
dimensional data and layers are fully connected in the
architecture [22]. The video of the driver and the exter-
nal scenario for the previous five seconds are combined
with the structured features for better modeling and
training of the architecture. The general equations for
a hypothesis in FFNN are given as follows:

h(x) = w1x1 + w2x2 ++ wnxn + b (1)

where w1, w2, .., wn are the weights corresponding to
the n input features represented by x1, x2, .., xn and
b is the bias included in calculation. Both the w and b
terms are trained for the nodes present in the hidden
layer of the architecture [23].

2) Fusion-RNN-Exponential Loss (FRE):
In this architecture, we include several Recurrent
Neural Networks (RNNs) together through which the
sensor stream data is passed [24]. The higher level
feature representations from the various RNNs are then
fused together to be passed through a fully connected
neural network. The RNN layer could be formulated
as follows:

ht =Wf(ht−1) +Whxx[t] (2)

where ht represents the hypothesis for the tth term
in the sequence and f(ht−1) and x[t] indicate the
intermediate representation and the input at the tth

state in the sequence respectively [25]. In F-RNN-
EL, the model loss grows exponentially with time and
could be modeled as follows:

Loss = −e−(T−t)log(ykt) (3)

The introduction of exponential loss layer along
with the fusion of RNNs helps to minimize the loss
function of the architecture [24]. Figure 1 indicates
the architecture of an individual RNN when being
trained on the anticipation task.

3) FRE-PreProc:
The architecture is entirely similar to the previous
one except for some changes in the preprocessing

Fig. 1. Training RNN for activity anticipation task

techniques. The driver’s anticipation time is identified
using advanced preprocessing techniques involving
the fusion of the context variables for efficient training.

4) FRE-STIP:
As the given data is Spatio-temporal in nature, we also
intend to take benefit of this characteristic by including
the suitable method in our model architecture. Spatio
Temporal Interest Points or STIP refers to such feature
spaces that we need to focus upon to improve the
model performance. It should be noted that we make
use of these STIP techniques in the model while they
work only on the internal context of the driver and
not the external factor.

5) FRE-DMT:
DMT stands for Driver Movement Tracking and in-
volves a special focus on the internal tracking features
i.e. stressing the factors related to the driver. It consists
of the preprocessing techniques, STIP methods, and
the extraction of the driver’s stance and their optic
movements [26] [27].

For all these architectures, we analyze the effect of change
in the configuration by first incrementing the hidden layers
from one to five. We also carry out the same analysis for
even deeper architectures by further expanding the number
of hidden layers to 25, in the multiples of 5 (i.e. 5, 10, 15,..),
and observe the variation in the performance. For a partic-
ular intermediate layer, the neurons could be determined as
follows:

No. of Neurons =
Training Data Samples

f ∗ (Input +Output neurons)
(4)

where f is a factor used to prevent the overfitting of the
model and is a number chosen between 1 and 10. This
provides us with the optimum number of neurons to be
kept per layer. The models were trained with each of such
configuration and architecture types.

For prediction, the trained model provides probabilities for
each of the four possible change events. A threshold value is
decided and if none of the probabilities across the threshold,
we consider the prediction to be the fifth possibility of no
activity i.e. ’go straight’. However, if any of the other four
predictions are above the threshold, those are retained for the
next 5 seconds. In all other cases, the anticipation of driver
activity is done every 0.8 seconds based on the context. The

Engineering Letters, 29:3, EL_29_3_07

Volume 29, Issue 3: September 2021

__

algorithm for inference of activity anticipation is written in
Algorithm 1.

The predicted maneuver is then predicted with the ground
truth to get the final performance estimate. The input context
features of the data are explained in the next section.

Algorithm 1 Inference of activity anticipation
Input: Context features X[(x1, x2, ..., xT),(z1, z2, ..., zT)],

threshold value pt
Output: Next maneuver mnext

1: Initialize m0 = driving straight
2: M : Four possible activity maneuvers
3: while t = 1 to T do
4: Predict probability yt of each m ε M
5: mt

pred = argmaxmεM yt
6: if mt

pred 6= driving straight and yt > pt then
7: mnext = mt

pred

8: end if
9: end while

10: return mnext

IV. DATASET DESCRIPTION

For our work we make use of the publicly available1

brain4cars dataset. The dataset consists of multiple types of
features: inner context and outer context. The inner context
features xi include a video recording of the activity of the
driver’s head. They are used to follow the driver’s face, their
head motion, and identify any facial landmarks [12]. The
outside features zi include multiple components of video,
GPS as well as speed. The GPS coordinates of the vehicle
are used to check its proximity to any road artifact. The
minimum, maximum, and average speed of the vehicle for
the last 5 seconds are maintained. The outer camera provides
video used to keep track of lanes on either edge of the driver’s
vehicle. Sample images from the dataset including both the
inside and outside features are shown in Figure 2.

Fig. 2. Sample images from the dataset

The dataset consists of 2 million video frames from
different landscapes covering over 1180 miles of city and
freeway driving videos. Over 700 events are annotated for
these frames including 131 instances of turning the vehicle,

1http://www.brain4cars.com

274 cases of changing the lane, and 295 randomly chosen
instances of driving straight. As mentioned earlier, the five
possible driver activities are: turn left, change to the left lane,
turn right, change to the right lane, and drive straight. 80%
of the dataset is used for training while testing of the models
is carried out on the remaining data.

The performance of machine learning methods is pro-
foundly dependent on the choice of data representation (or
features) on which they are applied. For the data used in this
thesis, the sensory input of the system is the multi-modality
sequences derived from the following: (i). Face camera: Head
pose and eye gaze; (ii) Dashboard camera: Right and left lane
change, the relative position of the vehicle (iii) GPS+map:
distance and direction from the nearest intersection. We
use both handcrafted feature extraction methods and deep
learning techniques for extracting useful features from the
videos.

A particular configuration of hyperparameters is decided
depending on the number of layers present in the architecture.
These hyperparameter configuration details are tabulated in
Table I.

TABLE I
HYPERPARAMETERS USED FOR DIFFERENT LAYERS

Hidden
Lay-
ers

Layer
De-
lay

Epoch Performance Gradient Batch
Size

Initial
Learn-
ing
Rate

5 1:2 7 0.494 0.655 150 0.01
10 1:2 7 0.643 1.08 150 0.01
15 1:2 7 1.58 2.28 150 0.01
20 1:2 7 1.94 3.06 150 0.01
25 1:2 7 1.98 4.01 150 0.01

V. RESULT AND ANALYSIS

To evaluate the predictions which are made, we first define
the following terminologies:

• True Positive (TP): When the correct driver activity is
predicted

• False Activity Prediction (FAP): A driver activity is
predicted but the driver keeps driving straight

• False Prediction (FP): When a wrong driver activity is
predicted

• Missed Prediction (MP): When the driver performs an
activity but we predict them to drive straight

Concerning these terms, we can define accuracy as the
fraction of correctly predicted maneuvers from the total
maneuvers. Apart from accuracy, we also evaluate our ar-
chitectures for two other performance metrics: precision and
recall.

Precision refers to the ratio of predicted maneuvers that
are accurate while recall refers to the ratio of maneuvers that
are correctly predicted. The precision and recall values are
calculated as:

Precision =
TP

TP + FAP + FP
(5)

Recall =
TP

TP + FP +MP
(6)

Apart from the performance-based metrics, the amount of
time required for making the prediction is also crucial for

Engineering Letters, 29:3, EL_29_3_07

Volume 29, Issue 3: September 2021

__

the driver’s safety. We term this as anticipation time and
calculate it as follows:

T = TA − TP (7)

where TA is the instance at which the actual activity
takes place, and TP is the instance at which the activity
is predicted to take place at TA. The higher the anticipation
time, the better it would be for the system as the driver and
vehicle would be more prepared for the activity. Similarly, a
higher value of accuracy, precision, and recall is desired.

As mentioned earlier, we first check the impact of layers
by gradually increasing them from one to five in each of the
architectures. Firstly, we start by calculating the accuracy of
the architectures in Table II, followed by precision and recall
in Tables III and IV respectively.

It can be seen that there is no difference in the accuracy
of the architectures when layers move from 1 to 4. This in-
dicates that the model is stuck at a particular minimum when
working with the respective nodes and layers. However, there
is a significant increase in the accuracy of the architecture
when 5 hidden layers are configured. An increase of up to 9%
has been observed in the accuracy when the number of layers
has been increased. The highest accuracy is achieved by the
FRE-DMT architecture. Next, we compare the variation and
impact on the anticipation time and tabulate our results in
Table V.

TABLE II
EFFECT OF VARIATION IN HIDDEN LAYERS ON ACCURACY (IN %)

Hidden
Layers FFNN FRE FRE

-PreProc
FRE
-STIP

FRE
-DMT

1 80.2 81.11 83.23 84.67 88.34
2 80.2 81.11 83.23 84.67 88.34
3 80.2 81.11 83.23 84.67 88.34
4 80.2 81.11 83.23 84.67 88.34
5 85.76 87.76 92.12 87.89 96.21

TABLE III
EFFECT OF VARIATION IN HIDDEN LAYERS ON PRECISION (IN %)

Hidden
Layers FFNN FRE FRE

-PreProc
FRE
-STIP

FRE
-DMT

1 75.23 78.19 82.74 86.52 89.45
2 77.59 79.56 88.89 88.56 90.91
3 80.21 80.19 88.96 88.66 91.23
4 81.54 82.66 90.44 88.76 92.15
5 82.75 83.56 91.12 89.44 94.11

TABLE IV
EFFECT OF VARIATION IN HIDDEN LAYERS ON RECALL (IN %)

Hidden
Layers FFNN FRE FRE

-PreProc
FRE
-STIP

FRE
-DMT

1 72.35 74.90 81.77 84.15 88.82
2 75.20 75.44 83.44 87.41 91.35
3 82.67 78.49 93.22 87.87 94.73
4 84.39 80.34 91.25 88.39 95.10
5 87.76 88.56 94.12 91.33 97.56

TABLE V
EFFECT OF VARIATION IN HIDDEN LAYERS ON ANTICIPATION TIME (IN

SECONDS)

Hidden
Layers FFNN FRE FRE

-PreProc
FRE
-STIP

FRE
-DMT

1 2.87 2.62 2.53 4.23 4.17
2 2.92 2.9 2.87 4.65 4.43
3 3.39 3.32 3.31 4.54 4.41
4 3.68 3.63 3.6 4.71 4.64
5 3.94 3.72 3.69 4.92 4.89

We observe that for all of the architectures, there is a
direct proportionality between the number of layers and the
anticipation time. Improvements of upto 45% have been
observed from layer 1 to layer 5 in terms of anticipation
time in case of FRE-PreProc. The best results have been
given by the FRE-STIP architecture with 5 layers which has
also seen an improvement of over 16% when going from
layer 1 to layer 5.

It could thus be inferred that as the number of hidden
layers is improved, the system performs better on the perfor-
mance metric while making faster predictions as compared to
a smaller number of layers. This is true for Spatio-temporal
data in our case with an increase of hidden layers from 1 to 5,
owing to sufficient training samples and suitable architecture
types.

Next, we perform a similar kind of analysis by increasing
the hidden layers even further up to 25 in increments of five.
The accuracy, precision and recall for each architecture for
these varying configurations are listed in Table VI, VII, and
VIII respectively.

TABLE VI
EFFECT OF VARYING HIDDEN LAYERS FROM 5 TO 25 ON ACCURACY (IN

%)

Hidden
Layers FFNN FRE FRE

-PreProc
FRE
-STIP

FRE
-DMT

5 85.76 87.56 92.12 87.89 96.21
10 79.12 87.2 91.23 87.45 94.56
15 77.78 85.4 90.56 86.77 93.1
20 73.45 84.67 89.2 86.24 91.45
25 68.49 79.62 84.93 83.44 86.98

TABLE VII
EFFECT OF VARYING HIDDEN LAYERS FROM 5 TO 25 ON PRECISION (IN

%)

Hidden
Layers FFNN FRE FRE

-PreProc
FRE
-STIP

FRE
-DMT

5 82.76 83.56 91.12 89.44 94.11
10 78.12 85.2 90.23 89.1 94.01
15 76.78 84.4 88.56 86.7 92.3
20 73.45 84.67 89.2 85.78 90.1
25 68.49 79.62 84.93 83.56 85.78

TABLE VIII
EFFECT OF VARYING HIDDEN LAYERS FROM 5 TO 25 ON RECALL (IN %)

Hidden
Layers FFNN FRE FRE

-PreProc
FRE
-STIP

FRE
-DMT

5 87.76 88.56 94.12 91.33 97.56
10 80.12 85.2 92.23 91.13 95.34
15 79.78 87.4 91.56 90.45 93.78
20 75.45 86.67 90.2 90.37 93.56
25 68.49 79.62 84.93 83.4 92.34

It can be seen that increasing the layers from 5 to 25 has
to lead to a considerable drop in the accuracy of the systems

Engineering Letters, 29:3, EL_29_3_07

Volume 29, Issue 3: September 2021

__

as high up to 10% in the case of the best performing FRE-
DMT architecture. An inverse relation has been observed in
the system performance and hidden layers after increasing
them beyond a point. This could be attributed to Overfitting
as there is an increase in the number of trainable parameters
and sufficient training data is not present. As a result, the
model ‘overfits’ or tends to be too constrained to the nature
of the training data and thus underperforms for the testing
data. There is no improvement but rather a reduction in the
generalization ability of the system.

TABLE IX
EFFECT OF VARYING HIDDEN LAYERS FROM 5 TO 25 ON ANTICIPATION

TIME (IN SECS)

Hidden
Layers FFNN FRE FRE

-PreProc
FRE
-STIP

FRE
-DMT

5 3.94 3.72 3.78 4.92 4.89
10 3.11 3.21 3.33 4.76 4.75
15 2.89 2.79 2.82 4.34 4.32
20 1.93 1.67 1.78 3.76 3.75
25 1.74 1.62 1.65 2.7 2.69

As a part of ablation study, we also confirm this impact by
evaluating the anticipation time of the architectures in Table
IX. A significant drop up to 66% in the case of FRE-PreProc
can be observed. With such heavy configurations, the model
is getting roughly 2.5-3 seconds to anticipate the activity thus
not being reliable enough for the driver. It can be seen that
increasing the layers from 5 to 25 has neither been beneficial
for performance metrics nor for anticipation time for all types
of configurations. For better interpretability of the results, we
also visualize the variations in the accuracy, precision, recall
and anticipation time for both layers 1-5 and layers 5-25. All
these visualizations are shown in the subsequent images.

Fig. 3. Impact of hidden layers on accuracy

Fig. 4. Impact of hidden layers on precision

Fig. 5. Impact of hidden layers on recall

Fig. 6. Impact of hidden layers on anticipation time

Engineering Letters, 29:3, EL_29_3_07

Volume 29, Issue 3: September 2021

__

Fig. 7. Impact of hidden layers on accuracy (layers 5 to 25)

Fig. 8. Impact of hidden layers on precision (layers 5 to 25)

Fig. 9. Impact of hidden layers on recall (layers 5 to 25)

VI. CONCLUSION

We have performed a thorough investigation on the effect
of varying the configuration of the hidden layers on the
performance of ANNs, specifically on Spatio-temporal data
for driver activity anticipation. We observe that initially, the
number of hidden layers is directly proportional to the perfor-
mance of the system. However later as on stacking more such

Fig. 10. Impact of hidden layers on anticipation time (layers 5 to 25)

layers together, the training saturates and there is a decline in
the performance. These inferences have been confirmed by
deducing the performance of the system based on both task-
based performance metrics as well as the inference time of
the system. ANN architectures with inadequate hidden layers
struggle in deriving the right mapping of the input features to
the output labels. On the other hand, after a particular level,
the model tends to memorize the training data and not im-
prove on the mapping function thus leading to a reduction in
the performance. It is thus crucial to have only the necessary
and not the excessive stacking of these intermediate layers in
the architecture. Further improvements in the work include
automated learning of activation functions and improvement
in task performance. Natural algorithms like PSO could also
be used to decide the ideal ANN configuration. Deep learning
methods tend to outperform traditional methods, but it is
necessary to come up with architectures that are memory
and time-efficient yet effective at the same time.

REFERENCES

[1] H. Huang, J. Cao, and Y. Qu, “Global robust stability of delayed
neural networks with a class of general activation functions,” Journal
of Computer and System Sciences, vol. 69, no. 4, pp. 688–700, 2004.

[2] J. Heaton, Introduction to neural networks with Java. Heaton
Research, Inc., 2008.

[3] J.-Y. Li, T. W. Chow, and Y.-L. Yu, “The estimation theory and opti-
mization algorithm for the number of hidden units in the higher-order
feedforward neural network,” in Proceedings of ICNN’95-International
Conference on Neural Networks, vol. 3. IEEE, 1995, pp. 1229–1233.

[4] I. Shafi, J. Ahmad, S. I. Shah, and F. M. Kashif, “Impact of varying
neurons and hidden layers in neural network architecture for a time
frequency application,” in 2006 IEEE International Multitopic Con-
ference. IEEE, 2006, pp. 188–193.

[5] Q. Xu, C. Zhang, L. Zhang, and Y. Song, “The learning effect of
different hidden layers stacked autoencoder,” in 2016 8th International
Conference on Intelligent Human-Machine Systems and Cybernetics
(IHMSC), vol. 2. IEEE, 2016, pp. 148–151.

[6] P. Tangkraingkij, A. Montaphan, and I. Nakavisute, “An appropriate
number of neurons in a hidden layer for personal authentication using
delta brainwave signals,” in 2017 2nd International Conference on
Control and Robotics Engineering (ICCRE). IEEE, 2017, pp. 232–
236.

[7] S. Tamura and M. Tateishi, “Capabilities of a four-layered feedforward
neural network: four layers versus three,” IEEE Transactions on Neural
Networks, vol. 8, no. 2, pp. 251–255, 1997.

[8] S. Xu and L. Chen, “A novel approach for determining the optimal
number of hidden layer neurons for fnn’s and its application in data
mining,” 2008.

[9] K. Shibata and Y. Ikeda, “Effect of number of hidden neurons on
learning in large-scale layered neural networks,” in 2009 ICCAS-SICE.
IEEE, 2009, pp. 5008–5013.

Engineering Letters, 29:3, EL_29_3_07

Volume 29, Issue 3: September 2021

__

[10] D. M. Hawkins, “The problem of overfitting,” Journal of chemical
information and computer sciences, vol. 44, no. 1, pp. 1–12, 2004.

[11] V. Sharma, H.-C. Chen, and R. Kumar, “Driver behaviour detection
and vehicle rating using multi-uav coordinated vehicular networks,”
Journal of Computer and System Sciences, vol. 86, pp. 3–32, 2017.

[12] A. Jain, H. S. Koppula, S. Soh, B. Raghavan, A. Singh, and A. Saxena,
“Brain4cars: Car that knows before you do via sensory-fusion deep
learning architecture,” arXiv preprint arXiv:1601.00740, 2016.

[13] Ö. F. Ertuğrul, “A novel type of activation function in artificial neural
networks: Trained activation function,” Neural Networks, vol. 99, pp.
148–157, 2018.

[14] J. Tanevski, L. Todorovski, and S. Džeroski, “Combinatorial search for
selecting the structure of models of dynamical systems with equation
discovery,” Engineering Applications of Artificial Intelligence, vol. 89,
p. 103423, 2020.

[15] M. A. J. Idrissi, H. Ramchoun, Y. Ghanou, and M. Ettaouil, “Genetic
algorithm for neural network architecture optimization,” in 2016 3rd
International Conference on Logistics Operations Management (GOL).
IEEE, 2016, pp. 1–4.

[16] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective
ant colony system algorithm for virtual machine placement in cloud
computing,” Journal of Computer and System Sciences, vol. 79, no. 8,
pp. 1230–1242, 2013.

[17] D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and B. M. Wilamowski,
“Selection of proper neural network sizes and architectures—a com-
parative study,” IEEE Transactions on Industrial Informatics, vol. 8,
no. 2, pp. 228–240, 2012.

[18] K. G. Sheela and S. N. Deepa, “Review on methods to fix number
of hidden neurons in neural networks,” Mathematical Problems in
Engineering, vol. 2013, 2013.

[19] J. M. Alvarez and M. Salzmann, “Learning the number of neurons
in deep networks,” in Advances in Neural Information Processing
Systems, 2016, pp. 2270–2278.

[20] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A
data-driven neuron pruning approach towards efficient deep architec-
tures,” arXiv preprint arXiv:1607.03250, 2016.

[21] P. Zhang and C. Shen, “Choice of the number of hidden layers for back
propagation neural network driven by stock price data and application
to price prediction,” in Journal of Physics: Conference Series, vol.
1302, no. 2. IOP Publishing, 2019, p. 022017.

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, pp. 436–444, 2015.

[23] J. Han, C. Moraga, and S. Sinne, “Optimization of feedforward neural
networks,” Engineering Applications of Artificial Intelligence, vol. 9,
no. 2, pp. 109–119, 1996.

[24] A. Jain, A. Singh, H. S. Koppula, S. Soh, and A. Saxena, “Recurrent
neural networks for driver activity anticipation via sensory-fusion
architecture,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 3118–3125.

[25] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International conference on machine
learning, 2013, pp. 1310–1318.

[26] S. Gite, H. Agrawal, and K. Kotecha, “Early anticipation of driver’s
maneuver in semiautonomous vehicles using deep learning,” Progress
in Artificial Intelligence, vol. 8, no. 3, pp. 293–305, 2019.

[27] S. Gite and H. Agrawal, “Early prediction of driver’s action using
deep neural networks,” International Journal of Information Retrieval
Research (IJIRR), vol. 9, no. 2, pp. 11–27, 2019.

Shilpa Gite Dr. Shilpa Gite is a passionate educationalist and researcher at
Symbiosis Centre for Applied AI (SCAAI) under Symbiosis International
(Deemed University). She has more than 15 years of teaching experience and
guided many UG, PG, and Ph.D. students. Her research areas include deep
learning, computer vision,Multi-sensor data fusion, Assistive driving. She
is currently working in the domains of machine learning, medical imaging,
explainable AI, GANs. She has published impactful manuscripts in reputed
international conferences and Scopus/ web of science indexed journals
and books. In addition to academics and research, she is also a reviewer
for reputed journals such as IEEE Transactions on Industrial Electronics,
Neurocomputing, PeerJ Computer Science, and many other reputed journals.

Ketan Kotecha Dr. Ketan Kotecha accomplished his Doctorate degree from
Indian Institute of Technology (IIT) Bombay in the year 2003. Artificial
Intelligence, Machine Learning, and Deep Learning are the core area of
research interest along with Computer Algorithms amp; Machine Learning,
and Higher Order Thinking Skills, Critical Thinking and Ethics and Value.
He had worked as a Principal of GH Patel college of engineering and
Technology; then served as Director of Nirma University. He was also a
Vice-Chancellor of Parul University. He is presently working as the Dean,
Faculty of Engineering amp; Director of Symbiosis Institute of Technology,
Symbiosis International (Deemed University). He is the Head of Symbiosis
Centre for Applied Artificial Intelligence (SCAAI) amp; CEO of Symbiosis
Centre for Entrepreneurship and Innovation. He is a member of the National
Advisory Council for Confederation of Indian Industry’s (CII) Engineering
and Management Curriculum Restructuring Task Force. He is a Technical
advisor of a team for “BRTS” implementation at Ahmedabad. He is also
appointed as an Independent Director at Gujarat Informatics by Govt of
Gujarat. A total of around 45 publications in Scopus indexed journals are
to his credit. He has guided 13 Ph.D. scholars and 6 students are taking his
guidance for Ph.D.

Engineering Letters, 29:3, EL_29_3_07

Volume 29, Issue 3: September 2021

__

