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Abstract—In this paper a BEM is used to solve a class
of variable coefficient parabolic equations numerically. Some
examples are considered to show the accuracy of the numerical
solutions.

Index Terms—Anisotropic functionally graded materials, un-
steady Laplace equation, Laplace transform, boundary element
method.

I. INTRODUCTION

We will consider initial boundary value problems governed
by a Laplace type equation with variable coefficients of the
form

∂

∂xi

[
κij (x)

∂µ (x, t)

∂xj

]
= α (x)

∂µ (x, t)

∂t
(1)

The coefficients [κij ] (i, j = 1, 2) is a real symmetric positive
definite matrix. Also, in (1) the summation convention for
repeated indices holds. Therefore equation (1) may be written
explicitly as
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= α
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∂t

Equation (1) is usually used to model antiplane strain in elas-
tostatics and plane thermostatic problems (see for examples
[1]–[5]).

Recently a number of authors had been working on the
Laplace equation to find its solutions. However the works
mainly focus on problems of isotropic homogeneous mate-
rials. See for example, Guo et. al [6] and Chen and Du [7].
For such kind of materials, the boundary element method
(BEM) and other methods had been successfully used to find
the numerical solutions of problems associated to them. But
this is not the case for inhomogeneous materials, due to the
unavailability of fundamental solutions for equations of vari-
able coefficients which govern problems of inhomogeneous
media. Some progress of solving problems for inhomoge-
neous media of a certain class of inhomogeneities has been
done. Timpitak and Pochai [8], for example, investigated
finite difference solutions of unsteady diffusion-convection
problems for heterogeneous media.

Azis and co-workers had been working on steady state
problems of anisotropic inhomogeneous media of some other
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classes of inhomogeneities for several types of governing
equations, for examples [9]–[11] for the modified Helmholtz
equation, [12] for elasticity problems, [13]–[17] for the
diffusion convection equation, [18]–[24] for the diffusion
convection reaction equation, [25]–[29] for the Helmholtz
equation.

This paper is intended to extend the recently published
works in [1]–[5] for steady anisotropic Laplace type equation
with spatially variable coefficients of the form

∂

∂xi

[
κij (x)

∂µ (x, t)

∂xj

]
= 0

to unsteady anisotropic Laplace type equation with spatially
variable coefficients of the form (1).

During the last decade functionally graded materials
(FGMs) have become an important topic, and numerous stud-
ies on FGMs for a variety of applications have been reported.
Authors commonly define an FGM as an inhomogeneous ma-
terial having a specific property such as thermal conductivity,
hardness, toughness, ductility, corrosion resistance, etc. that
changes spatially in a continuous fashion. Therefore equation
(1) is relevant for FGMs.

Equation (1) will be transformed to a constant coefficient
equation from which a boundary integral equation will de-
rived. It is necessary to place some constraint on the class
of coefficients κij and β for which the solution obtained is
valid. The analysis of this paper is purely formal; the main
aim being to construct effective BEM for class of equations
which falls within the type (1).

II. THE INITIAL-BOUNDARY VALUE PROBLEM

Referred to a Cartesian frame Ox1x2 solutions µ (x, t)
and its derivatives to (1) are sought which are valid for
time interval t ≥ 0 and in a region Ω in R2 with boundary
∂Ω which consists of a finite number of piecewise smooth
closed curves. On ∂Ω1 the dependent variable µ (x, t)
(x = (x1, x2)) is specified and on ∂Ω2

P (x, t) = κij (x)
∂µ (x, t)

∂xi
nj (2)

is specified where ∂Ω = ∂Ω1 ∪ ∂Ω2 and n = (n1, n2)
denotes the outward pointing normal to ∂Ω. The initial
condition is taken to be

µ (x, 0) = 0 (3)

The method of solution will be to transform the variable
coefficient equation (1) to a constant coefficient equation, and
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then taking a Laplace transform of the constant coefficient
equation, and to obtain a boundary integral equation in the
Laplace transform variable s. The boundary integral equation
is then solved using a standard boundary element method
(BEM). An inverse Laplace transform is taken to get the
solution c and its derivatives for all (x, t) in the domain.
The inverse Laplace transform is implemented numerically
using the Stehfest formula.

The analysis is specially relevant to an anisotropic medium
but it equally applies to isotropic media. For isotropy, the
coefficients in (1) take the form κ11 = κ22 and κ12 = 0 and
use of these equations in the following analysis immediately
yields the corresponding results for an isotropic medium.

III. THE BOUNDARY INTEGRAL EQUATION

The coefficients κij , α are required to take the form

κij (x) = κijg(x) (4)
α (x) = αg(x) (5)

where the κij , α are constants and g is a differentiable
function of x. Further we assume that the coefficients κij (x)
and α (x) are exponentially graded by taking g(x) as an
exponential function

g(x) = [exp (c0 + cixi)]
2 (6)

where c0 and ci are constants. Therefore if

κijcicj − λ = 0 (7)

then (6) satisfies

κij
∂2g1/2

∂xi∂xj
− λg1/2 = 0 (8)

Use of (4)-(5) in (1) yields

κij
∂

∂xi

(
g
∂µ

∂xj

)
= αg

∂µ

∂t
(9)

Let
µ (x, t) = g−1/2 (x)ψ (x, t) (10)

therefore substitution of (4) and (10) into (2) gives

P (x, t) = −Pg (x)ψ (x, t) + g1/2 (x)Pψ (x, t) (11)

where

Pg (x) = κij
∂g1/2

∂xj
ni Pψ (x) = κij

∂ψ

∂xj
ni

Also, (9) may be written in the form

κij
∂

∂xi

[
g
∂
(
g−1/2ψ

)
∂xj

]
= αg

∂
(
g−1/2ψ

)
∂t

which can be simplified

κij
∂

∂xi

(
g1/2 ∂ψ

∂xj
+ gψ

∂g−1/2

∂xj

)
= αg1/2 ∂ψ

∂t

Use of the identity

∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi

implies

κij
∂

∂xi

(
g1/2 ∂ψ

∂xj
− ψ∂g

1/2

∂xj

)
= αg1/2 ∂ψ

∂t

Rearrranging and neglecting the zero terms gives

g1/2κij
∂2ψ

∂xi∂xj
− ψκij

∂2g1/2

∂xi∂xj
= αg1/2 ∂ψ

∂t

Equation (8) then implies

κij
∂2ψ

∂xi∂xj
− λψ = α

∂ψ

∂t
(12)

Taking the Laplace transform of (10), (11), (12) and applying
the initial condition (3) we obtain

ψ∗ (x, s) = g1/2 (x)µ∗ (x, s) (13)
Pψ∗ (x, s) = [P ∗ (x, s) + Pg (x)ψ∗ (x, s)] g−1/2 (x)(14)

κij
∂2ψ∗

∂xi∂xj
− (λ+ sα)ψ∗ = 0 (15)

where s is the variable of the Laplace-transformed domain.
A boundary integral equation for the solution of (15) is

given in the form

η (x0)ψ∗ (x0, s) =

∫
∂Ω

[Γ (x,x0)ψ∗ (x, s)

−Φ (x,x0)Pψ∗ (x, s)] dS (x) (16)

where x0 = (a, b), η = 0 if (a, b) /∈ Ω ∪ ∂Ω, η = 1 if
(a, b) ∈ Ω, η = 1

2 if (a, b) ∈ ∂Ω and ∂Ω has a continuously
turning tangent at (a, b). The fundamental solution Φ in (16)
is any solution of the equation

κij
∂2Φ

∂xi∂xj
− (λ+ sα) Φ = δ (x− x0)

and the Γ is given by

Γ (x,x0) = κij
∂Φ (x,x0)

∂xj
ni

where δ is the Dirac delta function. For two-dimensional
problems Φ and Γ are given by

Φ (x,x0) =


K
2π lnR if λ+ sα = 0
ıK
4 H

(2)
0 (ωR) if λ+ sα < 0

−K
2π K0 (ωR) if λ+ sα > 0

(17)

Γ (x,x0) =


K
2π

1
Rκij

∂R
∂xj

ni
−ıKω

4 H
(2)
1 (ωR)κij

∂R
∂xj

ni
Kω
2π K1 (ωR)κij

∂R
∂xj

ni if λ+ sα = 0
if λ+ sα < 0
if λ+ sα > 0

where

K = τ̈ /D

ω =
√
|λ+ sα|/D

D =
[
κ11 + 2κ12τ̇ + κ22

(
τ̇2 + τ̈2

)]
/2

R =

√
(ẋ1 − ȧ)2 + (ẋ2 − ḃ)2

ẋ1 = x1 + τ̇x2

ȧ = a+ τ̇ b

ẋ2 = τ̈x2

ḃ = τ̈ b
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where τ̇ and τ̈ are respectively the real and the positive
imaginary parts of the complex root τ of the quadratic

κ11 + 2κ12τ + κ22τ
2 = 0

and H
(2)
0 , H(2)

1 denote the Hankel function of second kind
and order zero and order one respectively. K0, K1 denote
the modified Bessel function of order zero and order one
respectively, ı represents the square root of minus one. The
derivatives ∂R/∂xj needed for the calculation of the Γ in
(17) are given by

∂R

∂x1
=

1

R
(ẋ1 − ȧ)

∂R

∂x2
= τ̇

[
1

R
(ẋ1 − ȧ)

]
+ τ̈

[
1

R

(
ẋ2 − ḃ

)]
Use of (13) and (14) in (16) yields

ηg1/2µ∗ =

∫
∂Ω

[(
g1/2Γ− PgΦ

)
µ∗ −

(
g−1/2Φ

)
P ∗
]
dS

(18)
This equation provides a boundary integral equation for
determining µ∗ and its derivatives at all points of Ω.

Knowing the solutions µ∗ (x, s) and its derivatives
∂µ∗/∂x1 and ∂µ∗/∂x2 which are obtained from (18), the
numerical Laplace transform inversion technique using the
Stehfest formula is then employed to find the values of
µ (x, t) and its derivatives ∂µ/∂x1 and ∂µ/∂x2. The Stehfest
formula is

µ (x, t) ' ln 2

t

N∑
m=1

Vmµ
∗ (x, sm)

∂µ (x, t)

∂x1
' ln 2

t

N∑
m=1

Vm
∂µ∗ (x, sm)

∂x1
(19)

∂µ (x, t)

∂x2
' ln 2

t

N∑
m=1

Vm
∂µ∗ (x, sm)

∂x2

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m ×

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

A simple script is developed and embedded into the main
FORTRAN code to calculate the values of the coefficients
Vm,m = 1, 2, . . . , N for any number N . Table (I) shows the
values of Vm for N = 4, 6, 8, 10.

IV. NUMERICAL EXAMPLES

In order to justify the analysis derived in the previous
sections, we will consider several problems either as test
examples of analytical solutions or problems without simple
analytical solutions.

We assume each problem belongs to a system which
is valid in given spatial and time domains and governed
by equation (1) and satisfying the initial condition (3) and
some boundary conditions as mentioned in Section II. The
characteristics of the system which are represented by the
coefficients κij (x) , α (x) in equation (1) are assumed to be

TABLE I
VALUES OF Vm OF THE STEHFEST FORMULA FOR N = 4, 6, 8, 10

Vm N = 4 N = 6 N = 8 N = 10
V1 −2 1 −1/3 1/12
V2 26 −49 145/3 −385/12
V3 −48 366 −906 1279
V4 24 −858 16394/3 −46871/3
V5 810 −43130/3 505465/6
V6 −270 18730 −236957.5
V7 −35840/3 1127735/3
V8 8960/3 −1020215/3
V9 164062.5
V10 −32812.5

of the form (4) and (5) in which g(x) is an exponential
function of the form (6). The coefficients κij (x) , α (x) may
represent respectively the diffusivity or conductivity and the
change rate of the unknown or dependent variable µ (x, t).

Standard BEM with constant elements is employed to
obtain numerical results. The value of N in (18) for the
Stehfest formula is chosen to be N = 10. For a simplicity,
a unit square (depicted in Figure 1) will be taken as the
geometrical domain for all problems. A number of 320
elements of equal length, namely 80 elements on each side of
the unit square, are used. And the time interval is chosen to
be 0 ≤ t ≤ 5. A FORTRAN script is developed to compute
the solutions and a specific FORTRAN command is imposed
to calculate the elapsed CPU time for obtaining the results
as to measure the efficiency of the numerical procedure.

-

6

x1

x2

D(0, 1)

A(0, 0) B(1, 0)

C(1, 1)

Fig. 1. The domain Ω

For all problems the inhomogeneity function is taken to
be

g1/2(x) = exp [−0.75 + 0.45x1 + 0.3x2]

and the constant anisotropy coefficient κij

κij =

[
1 0.3

0.3 0.9

]
so that 7 implies

λ = 0.3645
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Fig. 2. Solutions µ at (x1, x2) = (0.5, 0.5) for Problem 1

A. Examples with analytical solutions

1) Problem 1:: Another aspect that will be justified is the
accuracy of the numerical solutions. The analytical solutions
are assumed to take a separable variables form

µ (x, t) = g−1/2 (x)h (x) f (t)

where h (x) , f (t) are continuous functions. The boundary
conditions are assumed to be (see Figure 1)

P is given on side AB
P is given on side BC
µ is given on side CD
P is given on side AD

Case 1:: We take

h(x) = 1− 0.25x1 − 0.75x2

f(t) = 1− exp (−1.75t)

Thus for h(x) to satisfy (15)

α = −0.3645/s

Case 2:: For the analytical solution we take

h(x) = cos (1− 0.25x1 − 0.75x2)

f(t) = t/5

So that in order for h(x) to satisfy (15)

α = −1.04575/s

Case 3:: We take

h(x) = exp (−1 + 0.25x1 + 0.75x2)

f(t) = 0.16t (5− t)

Therefore (15) gives

α = 0.31675/s

Table II shows the accuracy of the numerical solutions
µ and the derivatives ∂µ/∂x1 and ∂µ/∂x2 solutions in the
domain. For the Case 1, 2 and 3 the errors mainly occur in the
fourth decimal place for the µ, ∂µ/∂x1, ∂µ/∂x2 solutions.

TABLE II
COMPARISON OF THE NUMERICAL (NUM) AND THE ANALYTICAL

(ANAL) SOLUTIONS AT (x1, x2) = (0.5, 0.5) FOR PROBLEM 1

t
µ ∂µ

∂x1

∂µ
∂x2

Num Anal Num Anal Num Anal
Case 1

0.0005 0.0003 0.0003 -0.0001 -0.0001 -0.0004 -0.0004
0.5 0.2147 0.2149 -0.0885 -0.0885 -0.2781 -0.2782
1.0 0.3041 0.3044 -0.1254 -0.1254 -0.3939 -0.3941
1.5 0.3414 0.3418 -0.1407 -0.1408 -0.4420 -0.4425
2.0 0.3568 0.3573 -0.1472 -0.1472 -0.4623 -0.4626
2.5 0.3635 0.3638 -0.1498 -0.1499 -0.4711 -0.4710
3.0 0.3664 0.3665 -0.1510 -0.1510 -0.4745 -0.4745
3.5 0.3674 0.3677 -0.1515 -0.1515 -0.4760 -0.4760
4.0 0.3679 0.3681 -0.1518 -0.1517 -0.4766 -0.4766
4.5 0.3681 0.3683 -0.1517 -0.1517 -0.4766 -0.4768
5.0 0.3682 0.3684 -0.1517 -0.1518 -0.4772 -0.4769

Case 2
0.0005 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

0.5 0.0647 0.0647 0.0145 0.0145 0.0398 0.0398
1.0 0.1294 0.1293 0.0291 0.0290 0.0795 0.0796
1.5 0.1941 0.1940 0.0436 0.0436 0.1193 0.1193
2.0 0.2588 0.2587 0.0581 0.0581 0.1590 0.1591
2.5 0.3235 0.3234 0.0726 0.0726 0.1988 0.1989
3.0 0.3882 0.3880 0.0872 0.0871 0.2385 0.2387
3.5 0.4528 0.4527 0.1017 0.1017 0.2783 0.2785
4.0 0.5175 0.5174 0.1162 0.1162 0.3180 0.3182
4.5 0.5822 0.5820 0.1307 0.1307 0.3578 0.3580
5.0 0.6469 0.6467 0.1453 0.1452 0.3976 0.3978

Case 3
0.0005 0.0002 0.0002 0.0001 0.0001 0.0002 0.0002

0.5 0.1610 0.1609 0.0544 0.0544 0.1537 0.1537
1.0 0.2862 0.2861 0.0967 0.0967 0.2733 0.2733
1.5 0.3756 0.3754 0.1269 0.1269 0.3587 0.3587
2.0 0.4293 0.4291 0.1451 0.1450 0.4100 0.4099
2.5 0.4472 0.4470 0.1511 0.1511 0.4271 0.4270
3.0 0.4293 0.4291 0.1451 0.1450 0.4100 0.4099
3.5 0.3757 0.3754 0.1269 0.1269 0.3588 0.3587
4.0 0.2863 0.2861 0.0967 0.0967 0.2734 0.2733
4.5 0.1611 0.1609 0.0544 0.0544 0.1539 0.1537
5.0 0.0002 0.0000 0.0001 0.0000 0.0002 0.0000

Figure 2 shows a variation of the µ solution values at point
(x1, x2) = (0.5, 0.5) as the time increases from t = 0.0005
to t = 5. As expected, the variation follows the way the
associated function f(t) changes. Specifically for the Case
1 of associated function f(t) = 1 − exp (−1.75t) the µ
solution will tend to approach a steady state solution. This is
also expected, as the function f(t) = 1− exp (−1.75t) will
converge to 1 as t gets bigger.

The elapsed CPU time for the computation of the numer-
ical solutions at 19× 19 spatial positions and 11 time steps
is 4534.875 seconds for the Case 1, 6466.40625 seconds for
the Case 2, and 2443.078125 seconds for the Case 3. The
longer computation time for the Cases 1 and 2 is produced by
the iterative calculation of the polynomial approximation of
the Hankel and Bessel functions in the fundamental solutions
(17).

B. Examples without analytical solutions

The aim is to show the effect of inhomogeneity and
anisotropy of the considered material on the solution µ.

1) Problem 2:: The material is supposed to be either
inhomogeneous or homogeneous and either anisotropic or
isotropic. If the material is homogeneous then

g(x) = 1

and if it is isotropic then
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κij =

[
1 0
0 1

]
So that there are four cases regarding the material,
namely anisotropic inhomogeneous, anisotropic homoge-
neous, isotropic inhomogeneous and isotropic homogeneous
material. The corresponding value of λ for each case is
obtained from equation (7). We set α = 1 and the boundary
conditions are (see Figure 1)

P = f(t) on side AB
P = 0 on side BC
µ = 0 on side CD
P = 0 on side AD

Four cases of the function f(t) will be considered, namely

Case 1: f(t) = 1
Case 2: f(t) = 1− exp (−1.75t)
Case 3: f(t) = t/5
Case 4: f(t) = 0.16t (5− t)

In fact, for the case of isotropic and homogeneous material
the system is geometrically symmetric about the axis x1 =
0.5, but asymmetric about x2 = 0.5 (see Figure 3). Figure 3
also indicates that the solution µ tends to follow the variation
of the function f(t) associated for the boundary condition
on the side AB. In addition, Figure 4 also shows the effect
of anisotropy and inhomogeneity on the asymmetry of the
solution µ.

Figure 5 shows again the effect of anisotropy and inhomo-
geneity on the solution µ and the tendency of the solution
µ to agree the variation of the corresponding function f(t).
In particular, for bigger t the boundary conditions on the
side AB with f(t) = f1(t) = 1 and f(t) = f2(t) = 1 −
exp (−1.75t) are identical. This is verified by the results in
Figure 5, the two plots for the cases when f(t) = f1(t) = 1
and f(t) = f2(t) = 1−exp (−1.75t) will coincide as t goes
to infinity.

After all, the results suggest it is important to put the
anisotropy and inhomogeneity into account in any practical
application.

V. CONCLUSION

A combined Laplace transform and standard BEM has
been used to find numerical solutions to initial boundary
value problems for anisotropic functionally graded materials
which are governed by the equation (1). It is easy and
accurate. It involves a time variable free fundamental solution
and therefore that is why it is more accurate. Unlikely,
the methods with time variable fundamental solution may
produce less accurate solutions as the fundamental solution
usually has singular time points and the procedure may
involve round error propagation.

It has been applied to three classes of functionally
graded materials, namely quadratically, exponentially and
trigonometrically graded materials. As the coefficients
κij (x) , α (x) do depend on the spatial variable x only and
on the same inhomogeneity or gradation function g(x), it
is interesting to extend the study in the future to the case
when the coefficients depend on different gradation functions
varying also with the time variable t.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

mu

t

Iso. Hom. at (.25,.25)
Iso. Hom. at (.25,.75)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

mu

t

Iso. Hom. at (.25,.25)
Iso. Hom. at (.25,.75)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

mu

t

Iso. Hom. at (.25,.25)
Iso. Hom. at (.25,.75)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

mu

t

Iso. Hom. at (.25,.25)
Iso. Hom. at (.25,.75)

Fig. 3. Asymmetry of solution µ about x2 = 0.5 for Case 1 (first row),
Case 2 (second row), Case 3 (third row), Case 4 (fourth row) of Problem 2
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Fig. 4. The effect of anisotropy and inhomogeneity on the asymmetry of
the solution µ for Case 1 of Problem 2

In order to use the boundary integral equation (18), the
values µ (x, t) or P (x, t) of the boundary conditions as
stated in Section (II) of the original system in time variable
t have to be Laplace transformed first. This means that from
the beginning when we set up a problem, we actually put a
set of approached boundary conditions. Therefore it is really
important to find a very accurate technique of numerical
Laplace transform inversion.
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