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Abstract—At present there are many existing methods to 

obtain the safety factor of slope, although the most used, 

due to its simplicity, are the Bishop’s simplified method, 

the Spencer’s method and the Morgenstern and Price 

procedure among others. However, the search for a 

method that facilitates even more the calculations has 

given rise to an endless number of new procedures. In this 

paper, a new method based on Mohr-Coulomb failure 

criterion is presented. A brief review is presented on 

analysis procedures for this class of problem. This new 

method is valid for both homogeneous and heterogeneous 

dams, and it produces accurate values factor of safety as 

has been proven in real projects by the authors. 

 
Index Terms—Terzaghi principle, limit equilibrium, Mohr-

Coulomb, factor of safety  

 

I. INTRODUCTION 

CCORDING to [1], over several decades, the limit 

equilibrium method has almost dominated the profession 

for examining the stability of slopes, embankments, and other 

soil and rock structures. In this method, a slope is usually 

assumed to fail along a distinct failure surface that could be of 

circular or noncircular form [2]. When dealing with 

nonhomogeneous and irregular slopes, the method-of-slices is 

most often adopted, wherein a potential failure surface is 

defined and the slope is subdivided into slopes [3-7]. 

In 1977, [8] compared several methods-of-slices and 

showed that the manner in which inter-slice forces are handled 

has an impact on the global factor of safety. 

In the one hand, [8] specify that research into the 

development of the method-of-slices has been along two 

fronts: the development of algorithms for identifying the 
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critical failure surface corresponding to the minimum factor of 

safety [9-16]; and refining the simplifications with regards to 

satisfying equilibrium conditions on the local and global 

levels. A difficulty that arises is the presence of multiple local 

minima points, although there is no guarantee that the failure 

surface that has been identified corresponds to the global 

minimum factor of safety. 

In another vein, [17] developed a method where the factor 

of safety is formulated as a multivariable function F(x) with 

the independent variables x describing the geometry of the 

failure surface. [15] proposed a more efficient one-

dimensional optimization technique to replace the quadratic 

interpolation method used by Celestina and Duncan, as [9] 

specify. Moreover, [16] defined the failure surface by a 

number of nodal points connected by straight lines. The 

vertical coordinates of the nodal points are the variables in his 

method and the dynamic programming technique is employed 

as the optimization method. [18] defined a global optimization 

algorithm for finding the critical failure surface by nodal 

points connected by straight lines for any shape of failure. A 

large number of computations are needed to find the critical 

failure surface, as an arbitrary nodal coordinate could be 

irrelevant among the rest of created nodal coordinates [9]. 

Although the slope stability analysis has focused on the 

limit equilibrium method, only few studies have looked at new 

methods to simplify the calculation of the factor of safety. For 

this reason, in this paper a new mathematical method, that 

simplifies even more the process of calculating the slope 

stability analysis, is developed. 

II. PRESENTATION 

 

A. Literature Review 

As [1] point out, the calculation of slope stability consists in 

determining a safety factor taking into account all aspects that 

affect to the slope stability before being carried out. 

As is known, all slice-based methods (Fellenius, Bishop, 

Janbu, Spencer, Lowe and Karafiath, and Morgenstern-Price) 

are statically indeterminate, so they require of several 

assumptions to solve the problem. However, the methods of 

analysis differ from each other in relation to the equilibrium 

equations used both globally and at the slice level. In this 

sense, and according to [19], the simplified Bishop method 

takes into account inter-slices normal forces, although it does 

not use inter-slices shear forces. On the other hand, 
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Morgenstern-Price method consider both normal and 

tangential equilibrium as well as the moment equilibrium for 

each slice in non-circular and circular surfaces [20]. 

[18] establish that Janbu’s method assumes that the inter-

slice force has a horizontal direction whereas Spencer’s 

method assumes an inter-slice force constant for all slices. 

Both methods include the effect of pore water by taking the 

water pressure to be hydrostatic below the phreatic surface. 

For this reason, seepage forces are ignored. 

In reference to the Lowe and Karafiath method, it is known 

that the direction of the resultant of each inter-slice force is 

assumed to be equal to the average of the surface and slip 

surface slopes [8]. 

In reference to Fellenius method, it is generally considered 

that this method assumes that the increment of inter-slice 

forces through a slice is parallel to the base of the slice [21], 

although several authors think the method assumes no inter-

slice forces [3, 10-11, 18-19]. 

On the other hand, Monte-Carlo is a simulation method 

based on the knowledge of the joint probability density 

function of the random variables, fx1,x2,…,xn(x1, x2,…, xn), in 

addition to knowing precisely the integration domain defined 

by g+( x1, x2,…, xn) ≤ 0 [11, 13]. 

 

B. Theoretical base 

According to [22], the behavioral model of the slopes of 

these hydraulic structures, in relation to limit equilibrium, it is 

based on the study of the global equilibrium of mass slope in 

unstable conditions. For this reason, it is necessary establish 

the following assumptions: a) to define the allegedly unstable 

surface; b) to define the acting external forces; and c) to 

calculate the water pressure in the failure surface. 

With these conditions, the safety factor of slope (F) can be 

defined as follows (1):  

 

𝐹 =
𝑅

𝑇
                                                                                     (1) 

 

where (R) is the force resulting from the maximum shear 

strength actually available along the failure surface, and (T) is 

the resulting force for shear strength which must be mobilized 

along the potentially unstable surface at the time that 

movement starts. 

If we consider a point (A) contained in a plane (π) (Fig. 1), 

the breakage in said plane (π) occurs when shearing stress 

reaches the value given by (2): 

 

𝜏 = 𝑐 + [𝜎 · 𝑡𝑔(𝜙)]                                                               (2) 

 

where (τ) is the shear stress, (c) is the cohesion intercept, (σ) 

is the normal stress, and (ϕ) is the internal angle of friction. 

However, the shear strength of a saturated soil (τ’) is defined 

by a linear Mohr-Coulomb failure criterion, thus, in terms of 

effective stress, (2) can be written as follows (3): 

 

𝜏′ = 𝑐′ + [𝜎′ · 𝑡𝑔(𝜙′)]                                                            (3) 

 

where (c’) is the effective cohesion intercept, (σ’) is the 

effective normal stress, and (ϕ’) is the effective angle of 

internal friction. 

(1) is obtained as a consequence of Terzaghi principle. For 

this reason, as it is known, Mohr circles are displaced a 

distance equal to interstitial pressure (u). 

 

III. MATHEMATICAL FORMULATION 

Consider a dam with a maximum flood level (h) and a 

leeway of full height (r), such that the total height (H) of the 

dam is given by (4):  

 

rhH                                                                              (4) 

 

Suppose that the slope angle upstream of the dam is (β). 

According to [22-23], in the deformed section of the dam is 

produced a filtration network that exerts its effect on the part 

of the slope in contact with the water surface. We also know 

that the filtration lines have an incidence angle of 90º with the 

slope, to later end up having a parabolic trajectory that reaches 

the superstructure filter. 

As is known, there are two areas to consider for calculating 

the safety factor of slope. The first one is located in contact 

with water at a height (h), where effective stress will be used 

to carry out the calculation. The second one is the leeway (r) 

which although is not in all times in contact with water, has to 

be considered the opposite to make the calculation from the 

point of view most unfavorable. 

During the construction of a dam, and in the process of 

compaction of the upper layers, the lower layers are setting 

increasingly, resulting in a circle of Mohr smaller the closer 

we get to the last layer. 

As shown in Fig. 2, on the failure plane (AB), located at a 

depth (z), there will be a slice bounded by two vertical planes, 

the slip plane and the plane of the ground surface. 

 
Fig. 1. Scheme of stresses produced in an inner floor element. 
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In these vertical planes take places a forces (E), equal and in 

opposite direction, which are parallel to the failure plane 

defined by (AB). If we consider (W) the slice weight, its 

balance requires that the reaction at the base is equal, and in 

opposite direction, to the weight. This reaction will have a 

normal component (N) and another (T) parallel to the failure 

plane that is mobilized by shear strength. 

The total normal component (N) will be the sum of the 

resulting effective pressures at the base (N’) and the resulting 

interstitial pressures (U), also, at the base. 

Knowing the specific weight (γ) of the ground, and as shown 

in Fig. 2, the slice weight (W) is given by (5): 

 

𝑊 = 𝛾 · 𝑧 · 𝑎 · cos⁡(𝛽)                                                        (5) 

 

And the value of its components (6) and (7): 

 

𝑁 = 𝑊 · cos⁡(𝛽) = 𝛾 · 𝑧 · 𝑎 · 𝑐𝑜𝑠2⁡(𝛽)                                 (6) 

 

𝑇 = 𝑊 · sin(𝛽) = 𝛾 · 𝑧 · 𝑎 · 𝑐𝑜 𝑠(𝛽) · sin⁡(𝛽)                 (7) 

 

To obtain both shear (τ) (8) and normal (σ) (9) stress, it will 

suffice to divide equations (6) and (7) by (a): 

 

𝜎 = 𝛾 · 𝑧 · 𝑐𝑜𝑠2⁡(𝛽)                                                               (8) 

 

𝜏 = 𝛾 · 𝑧 · 𝑐𝑜 𝑠(𝛽) · sin⁡(𝛽)                                      (9) 

 

If (u) is the value of the interstitial pressure in the failure 

plane, so that (U) is constant, and based on the Terzaghi 

principle, the maximum shear stress (10) that can occur at the 

base of the slice will be: 

 

𝜏𝑚𝑎𝑥 = 𝑐′ + [(𝜎 − 𝑢) · 𝑡𝑔(𝜙′)]                                          (10) 

 

Which provides a value of (R) (11) equal to: 

 

𝑅 = 𝑎 · {𝑐′ + [(𝜎 − 𝑢) · 𝑡𝑔(𝜙′)]}                                      (11) 

 

Substituting this value into (1) yields (12): 

 

𝐹 =
𝑎·{𝑐′+[(𝜎−𝑢)·𝑡𝑔(𝜙′)]}

𝑇
                                                      (12) 

 

If we now substitute (7) and (8) in (12) and simplify, we 

obtain (13): 

 

𝐹 =
𝑐′+[(𝛾·𝑧·𝑐𝑜𝑠2⁡(𝛽)−𝑢)·𝑡𝑔(𝜙′)]

𝛾·𝑧·𝑐𝑜 𝑠(𝛽)·sin⁡(𝛽)
                                              (13) 

 

As is known, the existence of a water filtration network in a 

dam requires determining the value of the interstitial pressure 

(u) in the sliding plane. If water filtration network is 

rectilinear, which does not happen in reality (in Fig. 2, the 

filtration network appears as discontinuous line) it would cut 

at the point (D) of the dam (see Fig. 2). 

As both (D) and (O) points are located on the same 

equipotential line (Fig. 2), we can write (14): 

 

ℎ𝐷 = 𝑧𝐷 + (
𝑢𝐷

𝛾𝑤
) = ℎ𝑂 = 𝑧𝑂 + (

𝑢𝑂

𝛾𝑤
)                                  (14) 

 

As point (D) is on the surface of the dam slope, we can 

consider that the interstitial pressure in (D) is zero, which 

allows us to express the interstitial pressure at the point (O) as 

(15): 

 

ℎ𝑂 = (𝑧𝐷 − 𝑧𝑂) · 𝛾𝑤                                                          (15) 

 

Where the difference (zD - zO) is the segment (EO) of Fig. 2, 

which can be written as follows (16, 17 and 18): 

 

𝐸𝑂 = 𝐷𝑂 · cos⁡(𝛼)                                                              (16) 

 

𝐷𝑂 =
𝐶𝑂

cos⁡(𝛽−𝛼)
                                                                     (17) 

 

𝐶𝑂 = 𝑧 · 𝑐𝑜 𝑠(𝛽)                                                 (18) 

 

And substituting (17) and (18) into (16) yield (19): 

 

𝐸𝑂 =
𝑧·cos(𝛽)·cos⁡(𝛼)

cos⁡(𝛽−𝛼)
                                                              (19) 

 

And by introducing (19) into (15) we have the following 

interstitial pressure value (u) (20): 

 

𝑢 =
𝛾𝑤·𝑧·cos(𝛽)·cos⁡(𝛼)

cos⁡(𝛽−𝛼)
                                                          (20) 

 

Finally, substituting (20) into (13), and taking into account 

that the water filtration network is perpendicular to the slope 

upstream of the dam, which means that α = (90 –β), and after 

simplifying and introducing an average shape factor called 

(JER) obtained as a result of the OTR2010-PC36 research 

project, in order to homogenize the different typologies of 

existing dams, we obtain the new safety factor of slope (F) 

defined as follows (21): 

 

𝐹 = 𝐽𝐸𝑅 · ∑ [𝐹1 + 𝐹2]
𝑛
𝑖=1                                                       (21) 

 

 
Fig. 2. Diagram of the water filtration network in a dam. 
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where (n) is the number of slices in which the slope of the 

dam is divided. 

It is very important to know that when water table is not 

taken into account, we have to use (22) to obtain (21), while 

(23) will be used in opposite case. The values of coefficient F1 

(24) and F2 (25) are shown below: 

 

𝐽𝐸𝑅𝑊𝐹𝐿 = 0.182                                                                  (22) 

 

𝐽𝐸𝑅𝐹𝐿 = 0.1613                                                                  (23) 

 

𝐹1 =
𝑐′

𝛾·𝑧·cos(𝛽)·sin⁡(𝛽)
                                              (24) 

 

𝐹2 = 𝑡𝑔(𝜙′) · (
cos⁡(2𝛽+90)

𝑡𝑔(𝛽)
−

cos⁡(90−𝛽)

cos⁡(2𝛽+90)
)                              (25) 

 

IV. EXAMPLES OF APPLICATION 

In order to check this new method called Ra-Ma (Ramírez-

Madueño), it was applied to four examples to find, and 

comparing it with the classic methods (Fellenius, Bishop and 

Janbu), the most critical failure surface. Soil parameters used 

in each example are shown in table I. All examples consisted 

of a slope with height 10 m, slope angle of 1.75:1 and 

different types of soil. 

Safety factors for all example problems are shown in table 

II. As can be observed, all methods obtained a safety factor 

value higher than one in each example, although in the first 

case could be convenient a little variation of dam height or 

slope angle to obtain a safety factor more favorable. In Fig. 3, 

it is shown the critical failure surface corresponding to 

example 4 for all methods specified in table II. 

V. DISCUSSION 

As is known, all slice-based methods (Fellenius, Bishop, 

Janbu, Spencer, Lowe and Karafiath, and Morgenstern-Price) 

are statically indeterminate, so they require of several 

assumptions to solve the problem. However, the methods of 

analysis differ from each other in relation to the equilibrium 

equations used both globally and at the slice level. In this 

sense, and according to [19], the simplified Bishop method 

takes into account inter-slices normal forces, although it does 

not use inter-slices shear forces. Otherwise, Morgenstern-Price 

method consider both normal and tangential equilibrium as 

well as the moment equilibrium for each slice in non-circular 

and circular surfaces [20]. 

On the other hand, [18] establish that Janbu’s method 

assumes that the inter-slice force has a horizontal direction 

whereas Spencer’s method assumes an inter-slice force 

constant for all slices. Both methods include the effect of pore 

water by taking the water pressure to be hydrostatic below the 

phreatic surface. For this reason, seepage forces are ignored. 

Moreover, it is known, in reference to the Lowe and Karafiath 

method [8], that the direction of the resultant of each inter-

slice force is assumed to be equal to the average of the surface 

and slip surface slopes. 

In reference to Fellenius method, it is generally considered 

that this method assumes that the increment of inter-slice 

forces through a slice is parallel to the base of the slice, 

although several authors think the method assumes no inter-

slice forces [3, 10-11, 18-19]. 

Unlike the previous methods, the new proposed 

methodology simplifies the required calculus being a method 

valid to obtain the factor of safety in hydraulic infrastructures 

using variables collected easily. In relation to the number of 

iterations required to carry out a satisfactory calculus of the 

safety factor of slope, it is important to take into account that 

when the slope angle is between 20º and 60º, a low number of 

computations are required to obtain the best solution. 

As can be seen in table II, the new proposed method “Ra-

Ma” obtains intermediate safety factor values between the 

other three methods (Fellenius, Bishop and Janbu). 

VI. CONCLUSIONS 

In the previous sections a new method was presented to 

obtain the critical failure surface during slope stability 

analysis. From the results shown it may be concluded that 

there is a clear consistency in this new method to calculate the 

TABLE I 
SOIL PARAMETERS USED IN THE EXAMPLES 

 
Soil 

no. 

Effective 
cohesion 

(kPa) 

Effective angle of 

friction (º) 

Unit weight 

(kN/m3) 

Example 1 1 10 15 20.2 

 2 10 15 19.6 
Example 2 1 6 24 19.6 

 2 6 24 20.2 

Example 3 1 28.73 20 19.6 

Example 4 1 5 35 17 

 

 

 

TABLE II 
SAFETY FACTOR FOR EXAMPLE PROBLEMS 

Method Ex. 1 Ex. 2 Ex. 3 Ex. 4 

Fellenius 1.01 1.33 1.87 1.91 

Bishop 1.113 1.512 2.002 2.187 

Janbu 1.023 1.38 1.82 1.99 

Ra-Ma 1.09 1.48 1.97 2.15 

 

 

 
Fig. 3. Critical failure surfaces for each method of the example 4. 
 

  

Engineering Letters, 29:3, EL_29_3_12

Volume 29, Issue 3: September 2021

 
______________________________________________________________________________________ 



 

 

safety factor. 

(21), obtained by dimensionless calculation, is much simpler 

than all the others that currently exist, which facilitates 

calculation. Used in a total of 34 dam construction projects has 

revealed the great importance of shape factors in the 

calculation of this type of superstructures. As future studies, it 

could be interesting to test the new equation in environments 

with strong seismicity, where the dynamic acceleration 

reaches values much higher than the maximum allowed by the 

construction regulations of each country. 

In these cases, with strong seismicity, can be useful the use 

of B-spline curve interpolation model [24] because structure 

movement under dynamic forces could be adjusted to this kind 

of curves. 
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