
VPV: Enforcing Secure C++ Dynamic Dispatch by
Vtable Pointer Verification

Xiaokang Fan, Sifan Long, Chun Huang, and Canqun Yang

Abstract—C++ is a very popular object-oriented program-
ming language. Due to its abstraction and high performance,
C++ has been widely used in performance critical applications.
During the last several years, vtable hijacking attack has
become a major attack vector. By corrupting the vtable pointer
of a C++ object, an attacker can hijack a virtual call and
compromise the control flow of a C++ program.

This paper proposes VPV (Vtable Pointer Verification), a
new method to mitigate vtable hijacking attacks. The novelty
of VPV is that VPV enforces virtual call integrity by verifying
the legitimacy of the vtable pointer, which is the key part in
vtable hijakcing attacks. We use class hierarchy analysis to
build a fine-grained control flow graph, which determines the
legitimate targets precisely for each vtable pointer. We designed
an efficient runtime verification technique which requires only
a range check. The average (maximum) runtime performance
overhead incurred is only 1.52% (2.30%). VPV provides precise
and efficient protection against vtable hijacking attacks. It is
an ideal technique to be applied to production software.

Index Terms—C++, vtable hijacking attack, vtable pointer

I. INTRODUCTION

C++ is an object-oriented language with direct low level
memory access. C++ provides both high level abstraction and
high performance. A lot of performance critical applications
has adopted C++ as the main language. Examples of large
C++ applications include major web browsers like Chrome
and Firefox, language runtimes like Oracle’s Java Virtual
machine, and so on.

Unfortunately, programs written in C++ is neither memory
safe nor type safe. Therefore, programs written in C++ are
prone to memory errors like buffer overflow and use after free
(UAF). Attackers now increasingly exploit memory vulnera-
bilities to compromise C++ programs. Although some well-
known mitigation techniques like Data Execution Prevention
(DEP) [1], stack canaries [2] and Address Space Layout
Randomization (ASLR) [3] have been broadly deployed.
Attackers can still compromise a program by the so-called
vtable hijacking attack [4], [5], [6], which is among the most
popular control flow hijacking attacks against C++ programs.

Manuscript received December 3, 2020; revised May 28, 2021. This work
was supported by the National Key Research and Development Program
of China (No.2020YFA0709800), and the National Science Foundation of
China (No.62002367).

X. Fan is an Assistant Professor of School of Computer, Na-
tional University of Defense Technology, Changsha, 410073, Hunan,
P.R.China (corresponding author, phone: +86 13787208712, email: fanxi-
aokang@nudt.edu.cn)

S. Long is a PhD candidate of School of Computer, National Univer-
sity of Defense Technology, Changsha, 410073, Hunan, P.R.China (email:
164712110@csu.edu.cn).

C. Huang is a Professor of School of Computer, National University of
Defense Technology, Changsha, 410073, Hunan, P.R.China (email: chun-
huang@nudt.edu.cn).

C. Yang is a Professor of School of Computer, National University of
Defense Technology, Changsha, 410073, Hunan, P.R.China (email: can-
qun@nudt.edu.cn).

For example, over 80% of attacks against Google’s Chrome
and more than 50% of known attacks against Windows 7
exploit UAF vulnerabilities and virtual calls [7].

C++ relies on dynamic dispatch to implement polymor-
phism. C++’s dynamic dispatch is implemented using a data
structure called virtual function table (vtable) in modern
compilers, such as LLVM [8] and GCC [9]. A vtable is a
table containing a set of pointers to all the virtual functions
defined by a polymorphic class. The compilers put vtables
in the read only section of a program. Thus they can not
be modified. However, vtable pointers (vptrs) are stored in
objects which are allocated in the heap or stack, both of
which are writable sections. An attacker can hijack a virtual
call through the writable vptr in the following three steps: (i)
exploiting an initial memory corruption error already existed
in the program; (ii) corruption of the vptr, redirecting it to a
counterfeit or an existing vtable; (iii) hijacking the program
to a piece of malicious code.

Enforcing full memory safety [10], [11], [12] prevents
both temporal and spartial memory errors in the program.
A vtable hijacking attack will be stopped in its first step.

However, the high runtime overhead (over 100% perfor-
mance slowdown) has prevented memory safety measures
from being widely deployed.

Control Flow Integrity (CFI) [13] significantly raises the
bar against vtable hijacking attacks by keeping the control
flow of the program in a pre-computed Control Flow Graph
(CFG). Every virtual call is verified by runtime checks
that a legitimate target function, instead of malicious code
controlled by the attacker, is called. However, no existing
CFI work is capable of stopping the full spectrum of vtable
hijacking attacks.

Insights Observe that mitigating a virtual hijacking attack
from neither its first step (memory safety measures) nor its
last step (CFI) can ensure full safety of dynamic dispatch.
Thus the correctness of vptr is the key factor for virtual call
integrity.

Solution We propose VPV (Vtable Pointer Verification), a
lightweight approach to enforce secure dynamic dispatch by
stopping a vtable hijacking attack from its second step. The
novelty of VPV is twofold: (i) VPV enforces a precise CFG
constructed by using Class Hierarchy Analysis (CHA). (ii)
VPV implements a lightweight runtime verification which
only consists a range check instead of a time consuming
membership test, thus making performance slowdown negli-
gible.

Contributions In this paper, we make the following con-
tributions:

• We propose VPV, an effective and efficient technique
for mitigating virtual call hijacking attacks in C++
programs.

Engineering Letters, 29:3, EL_29_3_16

Volume 29, Issue 3: September 2021

__

1:class A {
2: public: double d1;
3: virtual void f1();
4: virtual void f2();
5:};
6:class B: public A {
7: public: double d2;
8: virtual void f1();
9: virtual void f2();
10:};
11:class C {
12: public: double d3;
13: virtual void h1();
14: virtual void h2();
15:};
16:
17:A *p = new B;
18:p->f2(); //callee: B::f2

(a) C++ source code

vptr

d1

d2

fp1

fp2

VtableA

fp1

fp2

VtableB

fp1

fp2

VtableC

fp1

fp2

Fake Vtable

A::f1

C::h2

B::f1

B::f2

C::h1

A::f2

gadget

p

o
b

je
ct

(b) Memory layout

Fig. 1. An example illustrating the dynamic dispatch mechanism of C++.

• We present a prototype implementation of VPV upon
LLVM-10.0.0.

• We conduct a thorough evaluation using nine C++ pro-
grams from SPEC CPU2000/CPU2006/CPU2017. The
average (maximum) runtime performance overhead is
1.52% (2.30%).

The rest of the paper is organized as follows: Some back-
ground knowledge on dynamic dispatch and vtable hijacking
attack is provided in Section II. We define the threat model
in Section III. The design and implementation details of
VPV are described in Section IV. Followed by a thorough
evaluation in Section V. Section VI discusses the related
work. We conclude the paper in Section VII.

II. BACKGROUND

In this section we provide some background knowledge
including: the dynamic dispatch mechanism of C++ (Sec-
tion II-A) and vtable hijacking attack (Section II-B).

A. Dynamic Dispatch

C++ relies on dynamic dispatch to achieve polymorphism.
For a virtual function call in C++, static type denotes the

type of the pointer that invokes the virtual call, while dynamic
type denotes the runtime type of the object that the pointer
refers to. The actual function invoked at runtime by a virtual

call is determined by the dynamic type rather than the static
type, thus achieving polymorphism.

Figure 1 illustrates dynamic dispatch through a simple
example. There are three classes: class A, class B, and class
C. Class B is a derived class of class A. Each class defines
two virtual functions. At line 17, the program creates an
object of type B and then assigns its address to a pointer p
of type A*. At line 18, the pointer p is used to invoke a
virtual call. At runtime, the static type and dynamic type of
the virtual are A and B, respectively. Therefore, the actual
function called should be B::f2.

Dynamic dispatch is implemented using a data structure
called virtual function table (vtable) in Modern compilers
(e.g., LLVM and GCC). As shown in Figure 1(b), The
compiler generates one vtable for each polymorphic class
(a class that defines virtual functions or inherits virtual
functions from its parent classes). A vtable is an array of
function pointers. Each entry of a vtable holds the address
of a virtual function defined by the corresponding class. For
example, class B defines two virtual functions B::f1 and
B::f2. Therefore VTableB has two entries: VTableB[0]
points to B::f1, and VTableB[1] points to B::f2. For
each object of a polymorphic class, the compiler generates
a vtable pointer and put the pointer right in the head of the
object. The vptr points to the vtable of the object’s class.
As depicted in Figure 1(b), vptr locates at the first field of
the object created at line 17 in Figure 1(a), followed by two
data fields: d1 and d2.

The virtual call at line 18 is dispatched in the fol-
lowing four steps: (1) obtaining vptr, which is the ad-
dress of VtableB; (2) obtaining vptr[1], the address of
VtableB[1]; (3) loading the function pointer stored in
VtableB[1], and that function pointer points to the target
function B::f2; (4) transferring the control flow to the
target function B::f2 and continuing execution.

B. Vtable Hijacking Attack

The first step of a vtable hijacking attack is to direct the
vptr of an object to a location of the attacker’s choice.
Attackers can often achieve this goal by exploiting mem-
ory corruption bugs or type confusion bugs. Whenever the
corrupted object is used to invoke a virtual call, the attacker
can redirect the virtual call to some malicious code through
the corrupted vptr. Thus compromising the program.

The dashed lines in Figure 1(b) presents an example. The
attackers can make the vptr point to VTableA, VTableC,
or even a fake vtable created by the attacker instead of
VTableB, by corrupting the object created at line 17. There-
fore, function A::f2, C::h2 or a code gadget selected by
the attacker can be invoked at the virtual callsite p->f2().

III. THREAT MODEL

The attackers can perform arbitrary reads of memory
and write to all writable memory addresses. However, we
assume that the attackers can not perform arbitrary writes.
This work exclusively focuses on protecting virtual calls
in C++ programs. Other vulnerabilities such as memory
corruption or type confusion are out of scope. Auxiliary
defense mechanisms for these vulnerabilities are assumed to
be deployed.

Engineering Letters, 29:3, EL_29_3_16

Volume 29, Issue 3: September 2021

__

1:class A {
2: public: virtual void f();
3: public: double d1;
4:};
5:class B: public A {
6: public: virtual void f();
7:};
8:class C: public A {
9: public: virtual void f();
10:};
11:class D: {
12: public: virtual void g();
13:};
14:class E: public D {
15: public: virtual void g();
16:};
17:
18:A *p = new B;
19:p->f(); //callee: B::f

(a) C++ source code

vptr

d1

fp1

VtableA

fp1

VtableB

fp1

VtableC

fp1

Fake Vtable

A::f

E::g

B::f

D::g

C::f

gadget

p

o
b

je
ct

fp1

VtableD

fp1

VtableE

(b) Memory layout

A

B C

Dummy

D

E

(0)

(1)

(2) (3)

(4)

(5)

(c) Class hierarchy
& vtable ID assignment

1:vptr = *p;
2:vtid = *(vptr-0x08);
3:assert(idmin ≤vtid≤ idmax);
4:vfn = &(vptr[0]);
5:*fp = *vfn;
6:call fp(p);

(d) Runtime vtable ID verification

Fig. 2. An example illustrating VPV: (a) C++ source code; (b) Memory layout; (c) Class hierarchy & vtable ID assignment, dashed lines represent
artifical inheritence from the Dummy node, while solid lines represent real inheritence relations; (d) Runtime vtable ID verification in pseudo IR, the code
with blue color (line 2 and line 3) are the instrumented runtime verification.

IV. VTABLE POINTER VERIFICATION

In this section, we will describe our vtable pointer verifi-
cation method. Our key idea is to verify that the vptr points
to a legitimate vtable during a virtual call. By enforcing
the legitimacy of the vptr, a vtable hijacking attack can be
stopped in its second step.

A mitigating technique often consists of two parts: i) a
static analysis to construct the CFG enforced during runtime;
and ii) a runtime verification technique to verify the legit-
imacy of the control transfer targets. The precision of the
static analysis determines the effectiveness of the mitigating
technique, which is how much safety insurance the protection
technique provides. The more precise the static analysis
is, the stronger protection will be provided. While the
performance overhead incurred by the runtime verification
technique determines the efficiency of the mitigating tech-
nique. Lower runtime performance overhead usually means
wider deployment of the protection technique to production
software.

The success of VPV relies on two key components: (i)
a precise static analysis to determine the legitimate target
vtable sets for each vptr (Sectoin IV-A); and (ii) an efficient
runtime verification technique to enforce the legitimacy of
vptrs (Section IV-B).

A. Class Hierarchy Analysis

According to the semantics of C++, the types of objects
pointed to by a pointer to type T include T or any subclass
of T. As a result, when a pointer of type T is used to invoke
a virtual call, the vptr is allowed to point to vtables of T or
any subclass of T.

The legitimate target vtable sets of vptrs can be constructed
by the Class Hierarchy Graph (CHG). A CHG is Directed
Acyclic Graph (DAG). Each node in the CHG represents a
class. While each edge represents an inheritance relation.
For each node in the CHG, its predecessor nodes and
successor nodes represent its base classes and derived classes,
respectively.

We use Class Hierarchy Analysis (CHA) to construct the
CHG. A node for each polymorphic class is created in the
CHG. Then we use constructor-destructor analysis to build
edges between nodes.

An object of a polymorphic class is created by calling
its constructor. The constructor creates the vptr and makes it
point to the VTable of the object’s class. Then the constructor
stores the vptr in the object.

For a class with multiple base classes, the “primary base
class” denotes its first base class, while “secondary base
classes” represent all the remaining base classes. An object
of a derived class is made up of several sub-objects, each
sub-object corresponds to a base class. Similarly, the VTable
of a derived class is made up of several sub-VTables, each
corresponding to a VTable of a base class.

During the construction process of an object, constructors
of its base classes are first invoked to initialize all the sub-
objects before initializing its own vptr. The constructor of
the primary base class will be the first one to be invoked,
followed by constructors of secondary base classes in the
declaration order.

Similarly, The destructors of all the base classes are called
in a reverse order (from the last secondary base class to the
primary base class) in the destructor of a derived class.
Besides, unlike the construction process which initialize the
vptr after all base classes are constructed, the destructor
assigns the vptr before invoking the destructors of base
classes.

We scan all the constructors and destructors in the program
to build the edges in the CHG. For each constructor, all the
constructors called before the initialization of the vptr are
extracted. While for each destructor, we extract all the calls
to destructors after the assignment of the vptr. For each call
extracted, an edge from the class of the callee to the class of
the caller is created in the CHG, representing a base→derived
relation.

Engineering Letters, 29:3, EL_29_3_16

Volume 29, Issue 3: September 2021

__

B. Runtime Verification

We designed a highly efficient runtime verification tech-
nique to validate the legitimacy of vtable pointer targets. The
key idea is an efficient ID range check instead of a time
consuming membership test.

Traditional protection techniques verify control transfer
targets by membership test (i.e., by comparing the runtime
target to the statically computed legitimate targets one by
one.) A vptr of a virtual call in the program may have hun-
dreds or even more legitimate targets. Such large number of
legitimate targets means high performance overhead incurred
by membership test. Larger C++ applications will exacerbate
this problem since larger applications usually have larger
class hierarchies and more legitimate virtual call targets.

Our runtime verification transforms an expensive mem-
bership test into an efficient ID range check. Two phases are
needed: (a) a static phase to assign a unique ID to every
vtable in the program; and (b) a runtime phase to verify the
ID of a target vtable during a virtual call.

a) VTable ID Assignment: In C++, the CHG must be
a DAG. Every edge in the graph represents an inheritance
relation, pointing from a base class to one of its derived
classes. By adding a dummy class and connecting the
dummy node to root nodes of every subtrees, the whole graph
can be transformed into a single tree with the dummy node
as the root. We can then assign a unique ID to every node
in the tree continuously by traversing the tree in a preorder.
This ID will be assigned to the vtables corresponding to each
class in the tree.

b) VTable ID Verification: For every subtree, the IDs
are continuous. While for subtrees with different root, their
IDs do not overlap. Therefore, for each virtual call, the
ID of the legitimate vtables must be in a unique range.
During a virtual call, by checking whether the ID of the
target vtable is in the legitimate range, which comprises only
two comparisons, the legitimacy of the target vtable can be
verified.

Example 1: An example that explains VPV is presented
in Figure 2. As shown in Figure 2(a), there are five classes:
A, B, C, D, and E. Classes B and C inherit from class A.
While class E inherits from class D. In line 18, the program
creates a pointer p of type A * and then make it point to an
object of type B. Then pointer p is used to invoke a virtual
function f in line 19. As annotated in line 19, the callee of
the virtual call is B::f.

Figure 2(b) depicts the memory layout. The object created
in line 18 has two fields: the implicit vptr which points to
VTableB, and a data filed d1.

Figure 2(c) presents the class hierarchy constructed using
our Class Hierarchy Analysis described in Section IV-A.
There are two subtrees (rooted by A and D, respectively)
in the class hierarchy. With the help of the Dummy node,
different subtrees can be connected into a single tree with
the Dummy node as the root. A unique ID starting from 0
can be assigned to each node continuously by traversing the
whole tree in a preorder.

The runtime verification is presented in Figure 2(d). Line
2 and line 3 are the instrumented verification code. We use
a 64-bit word to store a vtable’s unique ID. A vtable’s ID is
inserted right before it. Line 2 loads the vtable ID from the
address which is 8 bytes before the starting address of the

.cpp

.cpp

.bc .bc exe

…
vpv clang++ -flto

Fig. 3. Compilation process of VPV.

TABLE I
PROGRAM STATISTICS.

Program KLOC Application Area
blender 1577 3D rendering and animation
dealII 198 Finite Element Analysis
eon 41 Computer Visualization
leela 21 Artificial Intelligence: Monte Carlo tree search (Go)
omnetpp 134 Discrete Event simulation - computer network
parest 427 Biomedical imaging: optical tomography with finite

elements
povray 170 Ray tracing
soplex 41 Linear Programming, Optimization
xalancbmk 520 XML to HTML conversion via XSLT

vtable. Line 3 checks whether the ID of the target vtable is
in the legitimate range. The type of the pointer that invokes
the virtual call determine idmin and idmax. According the
semantics of C++, the legitimate vtables of the vptr are those
whose type are derived from the type of the pointer that
invokes the virtual call. Therefore, idmin and idmax are the
min ID and the max ID of the subtree rooted by p’s type.
As can be seen from Figure 2(c), idmin and idmax are 1 and
3, respectively.

V. EVALUATION

In this section we present the details of our exper-
iments. Results of nine C++ programs from SPEC
CPU2000/CPU2006/CPU2017 show that VPV can provide
strong protection with very small runtime performance over-
head.

A. Compilation process

VPV is a tool built upon LLVM-10.0.0. VPV takes a C++
LLVM bitcode file as input and exports an instrumented
LLVM bitcode file as output. Figure 3 presents the compila-
tion process of VPV. First, all c++ source files are compiled
into an LLVM bitcode file using clang++ with the -flto
option and the -c option. Then, VPV applies class hierarchy
analysis and inserts runtime verification into the bitcode file.
Finally, the instrumented bitcode file is transformed into the
final executable binary file by using clang++ with option
-flto.

B. Experimental Setup

The platform on which we conducted all our experiments
consists of a 3.60GHz Core i7-9700KF CPU with 16 GB
memory. The OS used is Ubuntu Linux 16.04. The compiler
we used is Clang-10.0.0. All programs are compiled at
optimization level -O3. In our evaluation, we consider the
following two different configurations:

Engineering Letters, 29:3, EL_29_3_16

Volume 29, Issue 3: September 2021

__

TABLE II
OVERHEAD OF BINARY SIZE AND INSTRUCTION NUMBER.

Program # of virtual call
Overhead

Binary size (%) Inst Num (%)
blender 293 8.09 0.10
dealII 365 5.72 1.03
eon 59 4.04 0.44
leela 1 3.56 0.19
omnetpp 8952 1.70 11.54
parest 2432 0.54 1.83
povray 283 4.05 0.39
soplex 625 9.05 3.19
xalancbmk 27743 2.49 12.40
Average N/A 4.36 3.46

1) baseline: All programs are compiled with Clang-10.0.0
at optimization level -O3. No runtime checks are
instrumented.

2) VPV: All programs are compiled in the process de-
scribed in Section V-A with runtime verification en-
abled.

C. Programs

We use nine C++ programs from SPEC
CPU2000/CPU2006/CPU2017: blender(2017),
dealII(2006), eon(2000), leela(2017), omnetpp(2017),
parest(2017), povray(2017), soplex(2006), and
xalancbmk(2017) to evaluate. The rest C++ programs
from SPEC CPU2000/CPU2006/CPU2017 are not selected
because there is no virtual call in them. Table I lists the size
and application area of each program.

D. Static Statistics

First, we measure the static statistics in Table II, including
the number of virtual calls, the overhead in binary size, and
the overhead in the number of LLVM instructions.

Column 2 of Table II presents the number of virtual calls
in each program. The largest program blender (1577 KLOC)
is a C and C++ mixed program. Therefore it has only 293
virtual calls. The program xalancbmk is heavily dependent
on dynamic dispatch, as it has the largest number (27743)
of virtual calls. The smallest program leela (21 KLOC) has
the least number (1) of virtual call.

The overhead of binary size is presented in column 3.
VPV incurs the maximum overhead in binary size in program
sopolex (9.05%). While the minimum overhead in binary
size incurred is in program parest, which is only 0.54%.
On average the overhead in binary size incurred by VPV is
4.36%.

Column 4 lists the overhead of the number of LLVM
instructions. The number of LLVM instructions are collected
in the final bitcode file generated using link time optimization
(lto). For programs omnetpp and xalancbmk, VPV incurred
over 10% overhead in the number of LLVM instructions.
While for programs blender, eon, leela and povray, the
overheads incurred are less than 1%. The average overhead
of LLVM instruction number is 3.46%.

blender
dealII eon

leela

omnetpp
parest

povray
soplex

xalancb
mk

Average

Program

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
u

n
ti

m
e
 p

e
rf

o
rm

a
n

c
e
 o

v
e
rh

e
a
d

(%
)

Fig. 4. Runtime performance overhead incurred by VPV compared with
native runs.

blender
dealII eon

leela

omnetpp
parest

povray
soplex

xalancb
mk

Average

Program

0

1

2

3

4

5

M
e
m

o
ry

 O
v
e
rh

e
a
d

 (
%

)

maximum average

Fig. 5. Memory overhead (maximum and average resident set size (RSS))
incurred by VPV.

E. Performance Overhead

Figure 4 presents the runtime performance overhead of
VPV. The overhead measures the slowdown in the execution
time of the VPV configuration compared with the baseline
configuration. The reference inputs are used for the SPEC
programs.

As shown in Figure 4, for CPU intensive SPEC CPU
C++ programs, the runtime performance overhead incurred
by VPV is quite small. The maximum overhead comes from
program xalancbmk (2.30%) as it has the largest number
of virtual calls and those virtual calls are called frequently.
The average runtime performance overhead is only 1.52%.
Such low runtime performance overhead means that VPV is
a suitable protection technique to be applied to production
software.

F. Memory Overhead

The runtime memory overhead of VPV is also measured.
We use the resident set size (RSS) to represent the mem-
ory footprint. Figure 5 shows the memory overhead in
the maximum and average RSS. For all the programs, the
largest overhead in maximum and average RSS are 3.50%
and 4.28%, respectively. While on average, the overhead in
maximum and average RSS incurred by VPV are 1.46% and
1.39%.

Engineering Letters, 29:3, EL_29_3_16

Volume 29, Issue 3: September 2021

__

VI. RELATED WORK

The security of software is a major research topic and
has drawn a lot of research attention during the last several
decades [16], [17], [4], [18], [14], [19]. Memory safety tech-
niques [10], [11], [12], [20] have been studied extensively.
With memory safety techniques, control flow hijacking at-
tacks can be stopped in the first step. Softbound+CETS
provides full memory safety [10], [11]. However, the high
runtime performance overhead (> 100%) has prevented the
widely application of it.

Abadi proposed Control Flow Integrity (CFI) [13] in
2005. CFI enforces a statically computed Control Flow
Graph (CFG) during the runtime. Thus it can prevent an
attacker from compromising the control flow of a program
even if memory corruption errors took place. CFI has
drawn a lot of attention since it was proposed. General
CFI techniques [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [19] provide protection for both forward (indirect
function call) and backward (return instruction) control flows.
However, as they are often more focused on C programs and
return instructions, the CFG of general CFI techniques are
usually more coarse grained and class hierarchy information
is generally missing. Therefore, general CFI techniques are
still vulnerable to sophisticated vtable hijacking attacks [31].
Virtual call protection techniques [16], [17], [4], [15], [32],
[5], [7], [14] usually focus more on the protection of virtual
calls. The CFGs are more fine grained with class hierarchy
information taken into consideration. Both source-level and
binary-level mitigation techniques have been proposed.

VII. CONCLUSION

Vtable hijacking attack is a popular attack surface used by
attackers to compromise C++ programs. The research com-
munity has proposed a lot of mitigating techniques. However,
most of these works suffer from the problem of high runtime
performance overhead. VPV is an effective and efficient
technique against vtable hijacking attacks. Legitimate targets
for virtual calls are determined by class hierarchy analysis,
which is precise enough to provide a strong protection.
The runtime verification of each virtual call only requires
a range check, which incurs negligible runtime performance
overhead. The effectiveness and efficiency of VPV make it an
appropriate technique to be applied into production software.

REFERENCES

[1] MicroSoft data execution prevention, https://support.microsoft.com/en-
au/kb/875352.

[2] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: automatic adaptive
detection and prevention of buffer-overflow attacks.” in USENIX
Security Symposium, vol. 98. San Antonio, TX, 1998, pp. 63–78.

[3] PaX, https://pax.grsecurity.net/docs/aslr.txt.
[4] D. Bounov, R. Kici, and S. Lerner, “Protecting C++ dynamic dispatch

through vtable interleaving,” in NDSS ’16, 2016.
[5] D. Jang, Z. Tatlock, and S. Lerner, “Safedispatch: securing C++ virtual

calls from memory corruption attacks,” in NDSS ’14, 2014.
[6] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “Vtint:

Protecting virtual function tables’ integrity.” in NDSS ’15, 2015.
[7] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song,

“Vtrust: Regaining trust on virtual calls,” in NDSS ’16, 2016.
[8] The LLVM Compiler Infrastructure, https://llvm.org/.
[9] GCC, the GNU Compiler Collection, https://gcc.gnu.org/.

[10] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“Softbound: Highly compatible and complete spatial memory safety
for c,” in Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’09.
New York, NY, USA: ACM, 2009, pp. 245–258. [Online]. Available:
http://doi.acm.org/10.1145/1542476.1542504

[11] ——, “Cets: Compiler enforced temporal safety for c,” in Proceedings
of the 2010 International Symposium on Memory Management, ser.
ISMM ’10. New York, NY, USA: ACM, 2010, pp. 31–40. [Online].
Available: http://doi.acm.org/10.1145/1806651.1806657

[12] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“Ccured: Type-safe retrofitting of legacy software,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 27, no. 3,
pp. 477–526, 2005.

[13] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in CCS’ 05. ACM, 2005, pp. 340–353.

[14] X. Fan, Y. Sui, X. Liao, and J. Xue, “Boosting the precision of virtual
call integrity protection with partial pointer analysis for c++,” in ITTSA
’17. ACM, 2017, pp. 329–340.

[15] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow in-
tegrity in gcc & llvm,” in USENIX Security ’14, 2014, pp. 941–955.

[16] I. Haller, E. Göktas, E. Athanasopoulos, G. Portokalidis, and H. Bos,
“Shrinkwrap: Vtable protection without loose ends,” in ACSAC ’15.
ACM, 2015, pp. 341–350.

[17] V. van der Veen, E. Göktas, M. Contag, A. Pawlowski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A
tough call: Mitigating advanced code-reuse attacks at the binary level,”
in S&P ’16, 2016, pp. 934–953.

[18] X. Fan, Z. Xia, S. Long, C. Huang, and C. Yang, “Accelerating
type confusion detection with pointer analysis,” IAENG International
Journal of Computer Science ’20, vol. 47, no. 4, pp. 664–671, 2020.

[19] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive
cfi,” in CCS ’15. ACM, 2015, pp. 927–940.

[20] N. Nethercote and J. Seward, “Valgrind: A framework for
heavyweight dynamic binary instrumentation,” in Proceedings
of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’07. New
York, NY, USA: ACM, 2007, pp. 89–100. [Online]. Available:
http://doi.acm.org/10.1145/1250734.1250746

[21] M. Zhang and R. Sekar, “Control flow integrity for cots binaries.” in
USENIX Security Symposium, 2013, pp. 337–352.

[22] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity.” in NDSS ’15, vol. 26, 2015, pp. 27–
30.

[23] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking modern
defenses.” in USENIX Security Symposium, 2014, pp. 385–399.

[24] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection.” in USENIX Security Symposium, vol. 14, 2014, pp. 401–
416.

[25] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in Security and Privacy
(SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 575–589.

[26] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “Ccfi:
cryptographically enforced control flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 941–951.

[27] B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings
of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’14. New
York, NY, USA: ACM, 2014, pp. 577–587. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594295

[28] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows
using intel processor trace,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2017, pp. 585–598.

[29] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan, “Transparent
and efficient cfi enforcement with intel processor trace,” in High
Performance Computer Architecture (HPCA), 2017 IEEE International
Symposium on. IEEE, 2017, pp. 529–540.

[30] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent rop
exploit mitigation using indirect branch tracing.” in USENIX Security
Symposium, 2013, pp. 447–462.

[31] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications,” in S&P ’15.
IEEE, 2015, pp. 745–762.

[32] A. Prakash, X. Hu, and H. Yin, “vfguard: Strict protection for virtual
function calls in cots c++ binaries,” in NDSS ’15, 2015.

Engineering Letters, 29:3, EL_29_3_16

Volume 29, Issue 3: September 2021

__

