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Abstract—In this paper, we have established a new fifth
order iterative method for finding multiple roots of nonlinear
univariate function with known multiplicity. Many researchers
have generated several order techniques, whenever the second
and the higher-order derivatives of the function exist in a
neighborhood of the root. But the cost of evaluating the second
derivative of the function is itself a cumbersome problem. The
proposed iteration technique does not require the evaluation
of second and higher-order derivatives. We used the weight
function approach to derive the proposed technique. The
convergence analysis of the proposed method is described
exhaustively to reveal the fifth order convergence. Programs
are developed in Mathematica 12.2 software to demonstrate
the efficacy of the proposed method over the existing method
on several numerical test functions. In addition, the presented
CPU-time also confirms the improved performance of the
proposed methods as compared to some standard iterative
methods in the literature.

Index Terms—Nonlinear equations, Iterative methods, Order
of convergence, Error.

I. INTRODUCTION

F INDING the roots of nonlinear equations are most
challenging problems in Numerical Analysis. But it has

many applications in engineering and scientific computations
[1]–[3]. Analytical methods to solve such equations are
rarely available and therefore, it is indispensable to obtain
approximate solutions based on iterative methods [1], [2],
[4]. The iterative method for finding roots of the following
nonlinear equation

Ψ(x) = 0 (1)

where Ψ : D ⊂ R→ R is a nonlinear differentiable univari-
ate function defined on an open interval D subset of the set
of real numbers R, is to begin with any initial approximation
of the root and generate a sequence of approximations of the
solution. The Newton-Raphson iterative methods for finding
simple roots of univariate function [5], [6] is defined as:

xn+1 = xn −
Ψ(xn)

Ψ′(xn)
(2)

It is a widely known quadratically convergent scheme to
obtain the simple roots of the non-linear equation but linearly
convergent for equation having multiple roots. Let r be
a multiple roots of Ψ(x) = 0 with multiplicity m, i.e.,
Ψ(j)(r) = 0, j = 0, 1, 2, ...,m − 1 and Ψ(m)(r) 6= 0. The
construction of new iterative methods for multiple roots is
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also one of the challenging problems in Numerical Analysis.
The modified Newton method for finding multiple roots is
written as [7]:

xn+1 = xn −m
Ψ(xn)

Ψ′(xn)
(3)

The iterative method given in equation (3) is quadratically
convergent for multiple roots [7]. Many researchers world-
wide have developed multipoint iterative methods based on
modifications of the Newton method for finding the root
of nonlinear equations [8]–[11]. In 2011, Zhou et. al. [3]
had also developed a new fourth-order method. Kim and
Geum [12] suggested a new method for finding multiple
roots. Soleymani and Babajee [13] proposed a fourth-order
method for finding multiple roots. In 2020, a family of
Chebyshev’s method was developed by M. Barrada et. al.
[14]. Barrada and Benkjouya had developed a third-order
family of Halley’s methods [15].
The third-order Chebyshev’s method (CM) for finding mul-
tiple roots is written as [6], [16]:

xn+1 = xn−
m(3−m)

2

Ψ(xn)

Ψ′(xn)
−m

2

2

Ψ(xn)2Ψ′′(xn)

Ψ′(xn)3
(4)

In 2012, Thukral [17] developed a fifth-order method (TM1),
which is written as follows:

yn = xn −m
Ψ(xn)

Ψ′(xn)

xn+1 = yn −m
(

1 +

(
Ψ(yn)

Ψ(xn)

) 2
m
)

Ψ(yn)

Ψ′(yn)
(5)

In 2013, Thukral [18] developed another fifth-order method
(TM2), which is written as follows:

yn = xn −m
Ψ(xn)

Ψ′(xn)

zn = xn −m
( 3∑
i=1

i

(
Ψ(yn)

Ψ(xn)

) i
m
)(

Ψ(xn)

Ψ′(xn)

)

xn+1 = zn −m
(

Ψ(zn)

Ψ(xn)

) 1
m
(

Ψ(xn)

Ψ′(xn)

)
(6)

In 2019, Bhel and Al-Hamadan [19] had developed the
following optimal fourth order method (BAM) for finding
multiple roots:

yn = xn −m
Ψ(xn)

Ψ′(xn)

zn = xn −m
Ψ(xn)

Ψ′(xn)

(
1− µ
1− 2µ

)
Q(µ) (7)

where µ = (Ψ(yn)/Ψ(xn))
1
m and Q(µ) is weight function.

Inspired by the recent remarkable activities in this direction,
we propose an elegant way to achieve a fifth-order iterative
method for finding multiple roots of nonlinear equations.
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In this paper, we have constructed the new fifth-order itera-
tive method with the first step different from the traditional
Newton step. This creates an entirely new approach for
finding multiple roots of nonlinear equations. The analysis
of convergence of newly proposed methods is studied to
reveal the fifth-order convergence. We have demonstrated
the performance of the newly proposed method on several
numerical examples. It is observed that the newly proposed
methods have better numerical results as compare to some
standard methods available in the literature.
The remaining portion of this paper is organized as fol-
lows: In section II, we have developed a new fifth-order
iterative method using the weight function approach and
Taylor’s expansion approach for finding multiple roots of
a nonlinear equation. The theoretical proof of convergence
is also provided in this section. In section III, we have
compared existing methods with the newly proposed methods
by taking several numerical examples to show the better
performance of the newly proposed fifth-order method in
solving the nonlinear equation (1). Some concluding remarks
are presented in section IV.

II. CONSTRUCTION OF NEW SCHEME AND
CONVERGENCE ANALYSIS

In this section, we introduce a new fifth order iteration
methods with multiplicity m ≥ 1 as follows:

yn = xn +m
Ψ(xn)

Ψ′(xn)

zn = xn −
m

2m
Ψ(yn)

Ψ′(xn)

xn+1 = zn −mW (h)
Ψ(zn)

Ψ′(zn)
(8)

where W (h) is real valued weight function with

h = 2m
Ψ(xn)

Ψ(yn)

Theorem 1: Let x = α be a multiple zero with multiplicity
m of a functions Ψ: R→ R in the region enclosing α. Then,
the iterative methods defined by equation (8) has fifth-order
convergence, if the following conditions are fulfilled:

W (1) = 1,W ′(1) = 0,W ′′(1) =
8

m2
− 4

m
Then, the newly proposed method in equation (8) satisfies
the following error equation:

θn+1 =
−C

96m4
θ5
n +O[θn]6 (9)

where

C = k2
1(m− 2)(96k2m(m− 3)

+ k2
1(72 +m(162 +m(mW ′′′(1)− 66))))

and θn = xn − α is the error at nth iteration.
Proof: Since x = α be a multiple root of Ψ(x) with

multiplicity m. Let us assume that θn = xn−α be the error
at the nth iteration. We expand Ψ(xn) and Ψ′(xn) in powers
of θn by Taylor’s series expansion as follows:

Ψ(xn) =
Ψ(m)(α)

m!
θmn

(
1 + θnk1 + θ2

nk2 + θ3
nk3 + θ4

nk4

+ θ5
nk5 + θ6

nk6 +O[θn]7
)

(10)

and

Ψ′(xn) =
Ψ(m)(α)

m!
θm−1
n

(
m+ (m+ 1)k1θn

+ (m+ 2)k2θ
2
n + (m+ 3)k3θ

3
n + (m+ 4)k4θ

4
n

+ (m+ 5)k5θ
5
n + (m+ 6)k6θ

6
n +O[θn]7

)
(11)

where ki = m!
(m+i)!

Ψ(m+i)(α)
Ψ(m)(α)

, i = 1, 2, 3, ..., 6 respectively.

yn − α = 2θn −
k1θ

2
n

m
+

(k2
1(1 +m)− 2k2m)θ3

n

m2

+
(k1k2m(4 + 3m)− 3k3m

2 − k3
1(1 +m)2)θ4

n

m3

+

(
k4

1(1 +m)3 + 2k1k3m
2(3 + 2m)

m4

−2k2
1k2m(1 +m)(3 + 2m))

m4

+
2m2(−2k4m+ k2

2(2 +m))

m4

)
θ5
n

+

(
k4

1k2m(1 +m)2(8 + 5m)− k5
1(1 +m)4

m5

+
k1m

2(k4m(8 + 5m)− k2
2(2 +m)(6 + 5m))

m5

−k2
1K3m(1 +m)(9 + 5m)

m5

+
m2(k2k3(12 + 5m)− 5k5m)

m5

)
θ6
n +O[θn]7

(12)

Now, we ought to expand Ψ(yn) by using the Taylor Series
expansion in powers of θn as follows:

Ψ(yn) = θmn
Ψ(m)(α)

m!

(
2m + 3× 2(m−1)k1θn

+
2(m−3)(24k2m− k2

1(5 + 3m))θ2
n

m

+
2(m−4)(312k3m

2 − 24k1k2m(9 + 4m)

3m2

+
k3

1(m+ 2)(23m+ 17)

3m2
θ3
n

+
γθ4
n

m3
+O[θn]5

)
(13)

where γ = 2(m−7)(−544k1k3m
2(3+m)−64m2(−28k4m+

k2
2(13 + 5m)) +16k2

1k2m(58 + 5m(17 + 5m)) − k4
1(98 +

m(303 +m(290 + 77m)))).
By utilizing the equation (11) and (13) in the second step of
equation (8), we get

zn − α = k1(−1

2
+

1

m
)θ2
n +

(m− 1)

8m2

(
k2

1(8 + 7m)

− 16k2m

)
θ3
n +

1

48m3

(
(24k3(6− 11m)m2

+ 24k1k2m(−8 + 9m(1 +m)))

+ k3
1(48 +m(8−m(111 + 65m)))

)
θ4
n

+
δθ5
n

384m4
+O[θn]6 (14)
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where δ = (−192k2
1k2m(1 + m)(−12 + m(26 + 17m)) +

96k1k3m
2(−24+m(63+41m))+192m2(2k4(4−13m)m+

k2
2(−8 +m(17 + 9m))) + k4

1(−384 +m(−154 +m(1733 +
m(2278 + 751m)))))
With the help of the Taylor’s Series expansion Ψ(z) can be
express as follows:

Ψ(z) = θ2m
n

Ψ(m)(α)

m!

(
D

− D(m− 1)(k2
1(8 + 7m)− 16k2m)

4(k1(−2 +m))
θn

+
Dυ1θ

2
n

96k2
1(m− 2)2m

+
Dυ2θ

3
n

384k3
1(m− 2)2m2

+
Dυ3θ

4
n

92160k4
1(m− 2)3m3

+O[θn]5
)

(15)

where

D = km1

(
1

m
− 1

2

)m
υ1 = 768k2

2(m− 1)3m2 + 96k1k3(m− 2)m2(11m− 6)

− 96k2
1k2m(8 +m(−9 +m(−12 +m(−4 + 7m))))

+ k4
1(576 +m(−464 +m(−347 +m(−499

+m(155 + 147m)))))

υ2 = 4096k3
2(m− 1)4m3

+ 1536k1k2k3(m− 1)2m3(11m− 6)

− 96k3
1k3m

2(48 +m(m(m(77m− 26)− 101)− 158)

− 384k2
1m

3(−2k4(−2 +m)(−4 + 13m)

+ k2
2(8 +m(−29 +m(−7 + 2m(−2 + 7m)))))

+ 16k4
1k2m(384 +m(−368 +m(−1367

+m(−738 +m(68 +m(386 + 147m))))))

− k6
1(2048 +m(424 +m(−5872 +m(−6531

+m(−1896 +m(1412 + 7m(232 + 49m)))))))

υ3 = (983040k4
2(−3 +m)(−1 +m)5m4

+ 737280k1k
2
2k3(−2 +m)(−1 +m)3m4(11m− 6)

− 15360k2
1(−1 +m)m4(−3k2

3(6− 11m)2(m− 2)

− 48k2k4(−2 +m)(−1 +m)(−4 + 13m)

+ 8k3
2(m− 1)(8 +m(−53 +m(−9 + 14(m− 1)m))))

− 92160k3
1(−2 +m)m4(−c5(−2 +m)(−10 + 57m)

+ k2k3(24 +m(−183 +m(−12 +m(−4 + 77m)))))

+ 960k5
1k3(−2 +m)m2(2304

+m(−7392 +m(−14978 +m(−6235 +m(2081

+m(4267 + 1617m))))))− 960k6
1k2m(−3840

+m(3784 +m(28752 +m(20517

+m(−4255 +m(−14961 +m(−6472

+ 7m(99 +m(225 + 49m)))))))))

+ 7680k4
1m

2(−6k4(−2 +m)m(32

+m(−236 +m(−97 +m(−18 + 91m))))

+ k2
2(−192 +m(272 +m(2867 +m(1741 +m(−1294

+m(−1295 +m(−394 +m(176 + 147m)))))))))

+ k8
1(−921600 +m(−327168 +m(4726048

+m(7099968 +m(2392485

+m(−2745672 +m(−3002403 +m(−799128

+ 5m(75811 + 147m(352 + 49m)))))))))))

Using Taylor’s expansion, we get

Ψ′(z) = θ2m
n

Ψ(m)(α)

m!

(
k1

(
1
m −

1
2

)m−1
m

θ2
n

+

(
k1

(
1
m −

1
2 )
)m

(m− 1)2m(k2
2(8 + 7m)− 16k2m)

2k2
1(m− 2)2θn

+O[θ3
n]

)
(16)

By inserting the equations (15) and (16) in third step of
equation (8), we have

θn+1 =
k1(−2 +m)(−1 +W (1))θ2

m

2m

+
µ1θ

3
n

8m2
+
µ2θ

4
n

48m2
+

µ3θ
5
n

384m3
+O[θn]6 (17)

where

µ1 = (−1 +m)(−16k2m+ k2
1(8 + 7m))(−1 +W (1))

+ 2k2
1(−2 +m)mW ′(1)

µ2 = 24k3m
2(−6 + 11m)(−1 +W (1))

+ 24k1k2m(−(−8 + 9m(1 +m))(−1 +W (1))

+ 2(3− 2m)mW ′(1))

+ k3
1(48 +m(8− 56W (1)− 54W ′(1)

+m(−111− 65m+ 123W (1) + 65mW (1)− 36W ′(1)

+ 48mW (1) + 3(−2 +m)W ′′(1))))

µ3 = 96k1k3m
2(−(−24

+m(63 + 41m))(−1 +W (1)) + 2(14− 11m)mW (1))

+ 192m2(−(2k4(4− 13m)m

+ k2
2(−8 +m(17 + 9m)))(−1 +W (1))

− 8k2
2(−1 +m)mW (1))

+ 96k2
1k2m(−8(−3 +W (1))

+m(4W (1)− 28− 39W (1) +m(−86− 34m+ 94W (1)

+ 34mW (1)− 11W (1) + 38mW (1)

+ (−5 + 3m)W ′
′
(1))))

+ k4
1(−384(1 +W (1))

+m(−154 + 634W (1) + 512W ′(1)

+m(1733− 1109W (1) + 1474W (1)

+ 168W ′′(1) +m(2278− 2614W (1)

− 344W ′(1) + 150W ′′(1)

+ 8W (3)(1)−m(−751 + 751W (1) + 1090W ′(1)

+ 150W ′′(1) + 4W (3)(1))))))

Putting the conditions W (1) = 1, W ′(1) = 0 and W ′′(1) =
8
m2 − 4

m of Theorem 1 in equation (17), we get

θn+1 =
−C

96m4
θ5
n +O[θn]6 (18)

where

C = k2
1(m− 2)(96k2m(m− 3)

+ k2
1(72 +m(162 +m(mW (3)(1)− 66))))

From the error equation (18), we can conclude that new
proposed iterative method is of fifth-order. This complete
the proof.
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Particular Cases on Weight Function
We have several choices of weight function from the

conditions on Theorem 1. We are considering the following
particular cases:
• Case 1: The quadratic form of weight function satis-

fying the condition of Theorem 1 can be represented
as:

W (h) = 1− 2

m
+

4

m3
+ (

4

m
− 8

m2
)h+ (

4

m2
− 2

m
)h2

(19)
where

h = 2m
Ψ(x)

Ψ(y)

After substituting W (h) from equation (19) into equa-
tion (8), we get the following fifth order method:
NPM1:

yn = xn +m
Ψ(xn)

Ψ′(xn)

zn = xn −
m

2m
Ψ(yn)

Ψ′(xn)

xn+1 = zn −m
(

1− 2

m
+

4

m3
+ (

4

m
− 8

m2
)h

+(
4

m2
− 2

m
)h2

)
Ψ(zn)

Ψ′(zn)
(20)

• Case 2: The second suggested form of the weight
function satisfying the conditions of Theorem 1 is given
by:

W (h) = 1 +
4(h3 − 3h+ 2)

3m2
− 2(h3 − 3h+ 2)

3m
(21)

The corresponding new proposed iterative method using
equation (21) is given by:
NPM2:

yn = xn +m
Ψ(xn)

Ψ′(xn)

zn = xn −
m

2m
Ψ(yn)

Ψ′(xn)

xn+1 = zn −m
(

1 +
4(h3 − 3h+ 2)

3m2

−2(h3 − 3h+ 2)

3m

)
Ψ(zn)

Ψ′(zn)
(22)

• Case 3: The third suggested form of W (h) satisfying
the conditions of Theorem 1 is given by:

W (h) = 1 +
4(h− 1)2(2h+ 1)

3m2
− 2(h− 1)22h+ 1

3m
(23)

The new iterative method of fifth order obtained by
using equation (23) in equation (8) is given by:
NPM3:

yn = xn +m
Ψ(xn)

Ψ′(xn)

zn = xn −
m

2m
Ψ(yn)

Ψ′(xn)

xn+1 = zn −m
(

1 +
4(h− 1)2(2h+ 1)

3m2

−2(h− 1)22h+ 1

3m

)
Ψ(zn)

Ψ′(zn)
(24)

III. NUMERICAL COMPARISON

In this section, we provide the performance of newly
proposed methods NPM1 (20), NPM2 (22) and NPM3 (24)
to solve some test problems. We have used the well-known
second-order Newton Method (NM) (3), the third-order
Chebyshev’s method (CM) (4), the fourth-order Belh and Al-
Hamdan [19] method (BAM) (7) for multiple roots, Thukral’s
[17] fifth-order method (TM1) (5) developed in 2012, and
Thukral’s [18] fifth-order method (TM2) (6) developed in
2013, to analyze the results of newly proposed methods.
The list of considered test functions with their roots (α),
multiplicity (m) of the roots and the initial guesses (x0)
in the neighborhood of the roots are furnished in Table I.
The results are summarized for methods in Table II to Table
VIII after completion of four full iterations (n = 4) for the
test functions Ψ1(x) to Ψ7(x) respectively. In Table II to
Table VIII, we have presented the absolute residual error
of the corresponding functions (i.e |Ψ(xn)|), error in the
consecutive iterations | xn − xn−1 |. Approximate roots
obtained after completion of 4 iterations are also presented
in Table II to Table VIII. We presented the computational
order of convergence (COC) in Table II to Table VIII after
completion of 4-iteration for each test function. The COC is
calculated by the following formula [6]:

COC =
log | (xn+1−xn)

(xn−xn−1) |

log | (xn−xn−1)
(xn−1−xn−2) |

We have also given CPU running time for methods in
Tables II to VIII. The elapsed CPU-time are computed by
selecting | f(xn) |≤ 10−1500 as the stopping condition.
Note that CPU running time is not unique and depends
entirely on the computer’s specification, but here we present
an average of three performances to ensure the robustness
of the methods. The star (?) represents the points where the
method is divergent. The results have been carried out with
Mathematica 12.2 software on a CPU 2.30 GHz with 4GB
of RAM running on the windows 10 on Intel(R) Core(TM)
i3-8145U. The numerical result presented in Tables II to
Tables VIII suggested that the proposed methods give a better
estimate of multiple roots as compared to other existing
methods.

IV. CONCLUSION

We have introduced a new fifth order iterative method
for finding multiple roots of non-linear equations that do
not require the computation of second or higher derivatives.
Convergence analysis proves that the new method preserves
the fifth order of convergence. We can easily obtain several
new method by considering different weight functions in our
scheme (8). After extensive numerical experimentation, we
found that our methods have lower residual errors, lower
error in two consecutive iteration and stable computational
order of convergence as compared to other well known
methods. The elapsed CPU-time confirms the highly effi-
cient nature of the proposed methods as compared with the
existing methods of same nature. The results obtained are
interesting and encouraging. Thus the new methods would
be valuable alternative for solving non-linear equations.
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Table I
TEST FUNCTION WITH THEIR INITIAL GUESSES (x0), ROOTS (α) AND MULTIPLICITY (m)

Test Function Ψ(x) Initial Guesses (x0) Roots (α) Multiplicity (m)
Ψ1(x) = (e−x2+x+3 − x+ 2)9 3.0 2.4905398276083051 9

Ψ2(x) = (sin(2cosx)− 1− x2 − esinx3
)3 −0.60 −0.784895987661212 3

Ψ3(x) = (
√
x− 1

x
− 1)7 2.3 2.1478990357047874 7

Ψ4(x) = (4 + 3sinx− 2x2)5 1.90 1.8547101425633862 5

Ψ5(x) = (e−x − 2sinx)5 3.0 3.1195012582902072 5

Ψ6(x) = (log(x2 + 3x+ 5)− 2x+ 7)8 5.2 5.4690123359101421 8

Ψ7(x) =
(x−2)4

(x−1)2+1
1.99 2.00 4

Table II
CONVERGENCE BEHAVIOUR OF VARIOUS ITERATIVE METHODS AFTER FOUR FULL ITERATION ON Ψ1(x)

Method | Ψ1(xn) | | xn − xn−1 | xn COC CPU Time (sec)
NM 1.6118× 10−38 0.0042964 2.4905184205199095 1.9418 0.29522
CM ? ? ? ? ?

BAM 0.34204 0.23099 2.9509917749038942 0.5026 2.92013
TM1 6.0880× 10−550 3.8094× 10−16 2.4905398276083051 4.0000 0.37768

TM2 ? ? ? ? ?

NPM1 1.3493× 10−1929 4.14569× 10−44 2.4905398276083051 5.0000 0.17601
NPM2 3.8623× 10−1462 9.69771× 10−34 2.4905398276083051 5.0000 0.24871
NPM3 1.1979× 10−1210 3.62985× 10−28 2.4905398276083051 5.0000 0.26239

Table III
CONVERGENCE BEHAVIOUR OF VARIOUS ITERATIVE METHODS AFTER FOUR FULL ITERATION ON Ψ2(x)

Method | Ψ2(xn) | | xn − xn−1 | xn COC CPU Time (sec)
NM 5.5373× 10−36 9.2526× 10−7 −0.78489598766184054 1.9993 0.90442
CM 6.5734× 10−125 9.7745× 10−15 −0.78489598766121254 3.0000 2.72026

BAM 1.0413× 10−53 7.8107× 10−10 −0.78489598766121253 2.0000 1.37674
TM1 2.8554× 10−569 4.0717× 10−48 −0.78489598766121254 4.0000 1.33434
TM2 3.4010× 10−34 1.8379× 10−6 −0.78489598766368997 1.9990 2.64414

NPM1 4.4312× 10−1152 2.2181× 10−77 −0.78489598766121254 5.0000 0.18628
NPM2 9.1785× 10−1093 1.8854× 10−73 −0.78489598766121254 5.0000 0.90422
NPM3 9.6502× 10−1047 2.1094× 10−70 −0.78489598766121254 5.0000 0.88324

Table IV
CONVERGENCE BEHAVIOUR OF VARIOUS ITERATIVE METHODS AFTER FOUR FULL ITERATION ON Ψ3(x)

Method | Ψ3(xn) | | xn − xn−1 | xn COC CPU Time (sec)
NM 1.5922× 10−14 0.026353 2.1671468885892880 0.9859 0.03692
CM 3.5328× 10−16 0.013481 2.1368124108266634 1.0026 2.12999

BAM 4.9369× 10−24 0.0035838 2.1487385207132503 0.9989 0.13112
TM1 1.5455× 10−2590 1.0447× 10−92 2.1478990357047874 4.0000 0.08776
TM2 7.9725× 10−13 0.015248 2.1146779036122280 1.0010 0.32087

NPM1 4.3220× 10−2467 6.8132× 10−71 2.1478990357047874 5.0000 0.03541
NPM2 1.7645× 10−4644 3.8512× 10−133 2.1478990357047874 5.0000 0.03512
NPM3 3.6953× 10−2042 8.1647× 10−59 2.1478990357047874 5.0000 0.03191

Table V
CONVERGENCE BEHAVIOUR OF VARIOUS ITERATIVE METHODS AFTER FOUR FULL ITERATION ON Ψ4(x)

Method | Ψ4(xn) | | xn − xn−1 | xn COC CPU Time (sec)
NM 6.6065× 10−133 3.2638× 10−14 1.8547101425633862 2.0000 0.19552
CM 1.9430× 10−12 0.0022004 1.8552605165568522 0.99417 8.85616

BAM 5.9941× 10−2211 3.5090× 10−111 1.8547101425633862 4.0000 0.47856
TM1 6.5504× 10−2234 2.4938× 10−112 1.8547101425633862 4.0000 0.19611
TM2 6.5207× 10−133 3.2595× 10−14 1.8547101425633862 2.0000 0.37127

NPM1 6.1597× 10−4595 1.3568× 10−184 1.8547101425633862 5.0000 0.18646
NPM2 5.7905× 10−4551 7.5751× 10−183 1.8547101425633862 5.0000 0.18951
NPM3 4.7121× 10−4512 2.6621× 10−181 1.8547101425633862 5.0000 0.18779
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Table VI
CONVERGENCE BEHAVIOUR OF VARIOUS ITERATIVE METHODS AFTER FOUR FULL ITERATION ON Ψ5(x)

Method | Ψ5(xn) | | xn − xn−1 | xn COC CPU Time (sec)
NM 2.6827× 10−178 8.3224× 10−18 3.1195012582902072 2.0000 0.39374
CM ? ? ? ? ?

BAM 5.1030× 10−290 4.0603× 10−29 3.1195012582902072 4.0000 0.58213
TM1 6.1902× 10−3139 1.7835× 10−156 3.1195012582902134 4.0000 0.42446
TM2 2.6800× 10−178 08.3216× 10−18 3.1133352197958358 2.0000 0.83365

NPM1 7.0828× 10−4417 8.9088× 10−177 3.1195012582902072 5.0000 0.34443
NPM2 8.3831× 10−4413 1.2962× 10−176 3.1195012582902072 5.0000 0.32443
NPM3 8.6717× 10−4409 1.8758× 10−176 3.1195012582902072 5.0000 0.32745

Table VII
CONVERGENCE BEHAVIOUR OF VARIOUS ITERATIVE METHODS AFTER FOUR FULL ITERATION ON Ψ6(x)

Method | Ψ6(xn) | | xn − xn−1 | xn COC CPU Time (sec)
NM 4.1145× 10−310 3.4926× 10−19 5.4690123359101421 2.0000 0.13664
CM 0.00045342 0.21612 5.2474958311885309 0.9984 19.8773

BAM 8.6163× 10−2287 5.7893× 10−71 5.4690123359101421 4.0000 0.13465
TM1 .2765× 10−5282 2.3947× 10−164 5.4690123359101421 4.0000 0.19679
TM2 5.3897× 10−8 0.028053 5.3975433953855991 0.9999 0.28534

NPM1 2.8437× 10−9579 3.8726× 10−239 5.4690123359101421 5.0000 0.09425
NPM2 9.3836× 10−9557 1.4050× 10−238 5.4690123359101421 5.0000 0.09345
NPM3 3.8982× 10−9535 4.8413× 10−238 5.4690123359101421 5.0000 0.08692

Table VIII
CONVERGENCE BEHAVIOUR OF VARIOUS ITERATIVE METHODS AFTER FOUR FULL ITERATION ON Ψ7(x)

Method | Ψ7(xn) | | xn − xn−1 | xn COC CPU Time (sec)
NM 3.4668× 10−165 6.0416× 10−21 2.0000000000000000 2.0000 0.02913
CM 7.8630× 10−18 0.00033998 1.9999370280226280 1.0003 0.76482

BAM 6.3614× 10−2795 8.5618× 10−175 2.0000000000000000 4.0000 0.02447
TM1 1.4691× 10−2663 1.1048× 10−166 2.0000000000000000 4.0000 0.06258
TM2 3.7442× 10−14 0.00057150 1.9994769529708866 1.0001 0.06108

NPM1 4.7734× 10−6208 1.0845× 10−310 2.0000000000000000 5.0000 0.02344
NPM2 3.7982× 10−6154 5.1621× 10−308 2.0000000000000000 5.0000 0.02321
NPM3 3.2930× 10−6109 8.8148× 10−306 2.0000000000000000 5.0000 0.02873
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