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Abstract—Cholera is an infectious bacterial disease caused by
a bacterium named Vibrio Cholerae. Therefore, this research
aims to determine cholera’s dynamic analysis due to its rapid
spread, using educational preventive measures. The model
consists of four human subpopulations, namely susceptible,
educated, infected, and recovered, as well as the bacteria popu-
lation. The infection rate is assumed in the form of a saturated
incidence rate found in interactions between the educated and
bacteria population and the interactions between the susceptible
and bacteria population. Furthermore, the dynamical analysis
is performed by determining the equilibrium point, the ba-
sic reproduction number, and the stability. We also perform
sensitivity analysis of the parameters. The results showed that
the model has two equilibrium points, namely disease-free
and endemic. The disease-free equilibrium point always exists,
while endemic occurs when the basic reproduction number is
greater than one. In addition, the disease-free equilibrium point
is asymptotically stable when the basic reproduction number
is less than one. Meanwhile, the endemic equilibrium point
is asymptotically stable under certain conditions. Numerical
simulations showed that the results are consistent with the
analysis. Furthermore, educational measures have a significant
impact on controlling the spread of cholera.

Index Terms—dynamical analysis; cholera; education; satu-
ration.

I. INTRODUCTION

INFECTIOUS diseases are disorders caused by pathogenic
microorganisms, such as bacteria, parasites, or viruses and

transmitted from one person to another. One of the common
types of infectious diseases caused by bacteria is cholera,
which is defined as an acute diarrhea disease caused by
Vibrio Cholerae bacteria that enters the body through food or
drink consumed by the sufferers. When infecting a person,
this bacterium produces enterotoxin, which contributes to the
provision of diarrhea fluids [1]. In 2013, the World Health
Organization (WHO) reported 129,064 cases of cholera by
47 countries globally [2]. Furthermore, from 2016-2018 there
were 1,104,683 cases in several countries across the world
[3]. These data indicate that cholera is still a significant
health problem in several parts of the world. Therefore, based
on this reason, a mathematical model capable of describing
the dynamics of cholera’s spread to obtain optimal solutions
and strategies is needed.
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In recent years, some mathematical models in epidemic
have been developed by researcher [4], [5], [6], [7], [8]. In
2015, Edward and Nyerere [6] developed a cholera preven-
tion model by adding educational parameters to susceptible
populations. Meanwhile, Lemos-Paiao et al. [7] developed a
model used to determine the dynamics of this bacterium’s
spread using control measures in the form of treatment
in quarantined populations. The model was constructed
by adding the assumption of the immune loss level in
the recovered subpopulation, thereby making it susceptible
again. Furthermore, Tian et al. [8] developed a cholera
epidemic model consisting of five subpopulations, namely
susceptible, vaccinated, infected, recovered, and bacteria,
with the saturated transmission rate found in susceptible and
vaccinated subpopulations. In general, previous studies on
the cholera epidemic model with control measures do not
involve educated populations [9], [10], [11].

Therefore, this study modified the model developed by
Tian et al. in the early prevention measures of cholera
disease, namely education and control water sanitation mea-
sures, protecting it from being contaminated. Besides that,
modification is also carried out by adding the assumption
of the immune loss level in the recovered subpopulation,
thereby making it susceptible again.

This paper is organized as follows: The model formulation
is provided in Section 2. In Section 3, we discuss the model
analysis including the positivity, boundedness, equilibrium
points and sensitivity analysis of the parameters. The stability
of the model is presented in Section 4 followed by numerical
simulation to illustrate the analysis result. Finally, concluding
remarks of this paper are given in Section 6.

II. MODEL FORMULATION

This study discusses the cholera epidemic model using
educational, preventive measures.

The model consists of four human subpopulations, namely
susceptible (S), educated (E), infected (I), recovered (R),
and considered the bacteria population (B). The spread of
cholera is illustrated in the flowchart, as shown in Figure 1.
Based on the flowchart in Figure 1, the change rate model of
the cholera epidemic using educational, preventive measures
is as follows,

dS

dt
= Λ− β1BS

k +B
+ ωR− φS − µS,

dE

dt
= φS − β2BE

k +B
− µE,

dI

dt
=
β1BS

k +B
+
β2BE

k +B
− (γ + α+ µ)I,

dR

dt
= γI − (ω + µ)R,

dB

dt
= ξI − δB,

(1)
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Fig. 1. The compartment of cholera epidemic model with educational,
preventive measures

where the value β2 ≤ β1. The description of the parameters
that make up the system are given in the Table I. While the
parameters values for numerical simulation are provided in
Table II.

TABLE I
DESCRIPTION OF VARIABLES AND PARAMETERS

Symbol Parameters
S Susceptible subpopulations
E Educated subpopulations
I Infected subpopulations
R Recovered subpopulations
B Bacteria populations
Λ Human birth rate
µ The human natural death rate
β1 Interaction rate of susceptible subpopulations with bacteria

populations
β2 Interaction rate of educated subpopulations with bacteria

populations
k Constant saturation rate of the bacteria population
ω The loss rate of immunity
φ Educated rate
γ The recovery rate of naturally infected populations
α Death rate that caused by cholera infection
ξ The growth rate of bacteria
δ The natural death rate of bacteria

TABLE II
PARAMETERS VALUES FOR NUMERICAL SIMULATION

Symbol Value Source
Λ 0.54/ day Assumed
µ 0.0000548/ day [8]
β1 0.59/ day Assumed
β2 0.118/ day Assumed
k 106 cells/ml [8]
ω 0.109589/ day [7]
φ 0.01/ day Assumed
γ 0.004/ day [8]
α 0.0029/ day Assumed
ξ 20 cells/ml [8]
δ 0.33/ day [8]

III. THE MODEL ANALYSIS

In the following, we discuss the positivity, boundedness,
equilibrium point and sensitivity analysis of the solution of
system (1).

A. Positivity and Boundedness

We prove the positivity and boundedness based on Cui et
al. [12].

Theorem 1. The solution of S(t), E(t), I(t), R(t), and
B(t) of the model (1) are nonnegative for all t > 0 with the
non negative initial value.

Proof: System (1) can be written in the form of a matrix
as follows,

X ′ = M(X),

where X = (S,E, I,R,B)T ∈ R5 and M(X) is given by

M(X) =


M1(X)

M2(X)

M3(X)

M4(X)

M5(X)

 ,

=



Λ− β1BS

k +B
+ ωR− φS − µS

φS − β2BE

k +B
− µE

β1BS

k +B
+
β2BE

k +B
− (γ + α+ µ)I

γI − (ω + µ)R

ξI − δB


.

We have

dS(t)

dt

∣∣∣∣
S=0

= Λ + ωR ≥ 0,

dE(t)

dt

∣∣∣∣
E=0

= φS ≥ 0,

dI(t)

dt

∣∣∣∣
I=0

=
β1BS

k +B
+
β2BE

k +B
≥ 0,

dR(t)

dt

∣∣∣∣
R=0

= γI ≥ 0,

dB(t)

dt

∣∣∣∣
B=0

= ξI ≥ 0.

Therefore,

Mi|Xi(t)=0,xi∈R5
+
≥ 0, i = 1, 2, 3, 4, 5.

Based on Lemma 2 in [13], any solution of system (1) is
such that X(t) ∈ R5

+ for all t > 0. This completes the proof
of Theorem 1.

Theorem 2. All solution S(t), E(t), I(t), R(t), and B(t)
of system (1) are bounded.

Proof: System (1) is divided by two part, the human
population i.e. S(t), E(t), I(t), and R(t) and bacteria pop-
ulation i.e. B(t). From the first four equation of system (1),
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we have

d(S + E + I +R)

dt
= Λ− µS − µE − (α+ µ)I − µR,

= Λ− µ(S + E + I +R)− αI,
≤ Λ− µ(S + E + I +R),

then it follows that lim supt→∞(S+E+I+R) ≤ Λ

µ
. From

the first equation, we get

dS(t)

dt
≤ Λ + ωR− φS − µS,

≤ Λ +
ωΛ

µ
− (φ+ µ)S.

Thus
dS(t)

dt
≤ 0, as S(t) ≥ Λ(µ+ ω)

µ(φ+ µ)
.

From the second equation, we obtain

dE(t)

dt
φS − µE,

≤ φ
(

Λ

µ
− E

)
− µE,

≤ Λφ

µ
− (φ+ µ)E.

Thus
dE(t)

dt
≤ 0, as E(t) ≥ Λφ

µ (φ+ µ)
. Similarly, from the

fourth equation, we have

dR(t)

dt
= γI − (ω + µ)R,

≤ γ
(

Λ

µ
−R

)
− (ω + µ)R,

≤ γΛ

µ(γ + ω + µ)
−R.

Thus
dR(t)

dt
≤ 0, as R(t) ≥ γΛ

µ(γ + ω + µ)
. Finally, from

the last equation, we can get

dB(t)

dt
= ξI − δB,

≤ ξΛ

µ
− δB.

Hence,
dB(t)

dt
≤ 0, as B ≥ ξΛ

µδ
. Therefore, all solutions

S(t), E(t), I(t), R(t), and B(t) of system (1) are bounded.

Thus, the feasible region of the human population of
system (1) is

ΩH =

{
(S,E, I,R)

∣∣∣∣ S + E + I +R ≤ Λ

µ
,

0 ≤ S ≤ Λ(µ+ ω)

µ(φ+ µ)
, 0 ≤ E ≤ Λφ

µ(φ+ µ)
, I ≥ 0,

0 ≤ R ≤ γΛ

µ(γ + ω + µ)

}
,

and the feasible region of bacteria population for system (1)
is

ΩB =

{
B

∣∣∣∣ 0 ≤ B ≤ ξΛ

µδ

}
.

B. Equilibrium Point and Reproduction Number

The equilibrium point of system (1) is obtained when
dS

dt
=
dE

dt
=
dI

dt
=
dR

dt
=
dB

dt
= 0. System (1) has two

equilibrium points, namely disease-free (T 0) and endemic
(T ∗). The disease-free equilibrium point (T 0) is obtained
when I = 0 in the following form.

T 0 = (S0, E0, I0, R0, B0) =

(
Λ

φ+ µ
,

φΛ

µ(φ+ µ)
, 0, 0, 0

)
.

The epidemic model consists of a unique number, called
the basic reproduction number (R0), which determines the
possible occurrence of a disease’s outbreak [14]. The next-
generation matrix method [15] is used to determine the basic
reproduction number (R0).

Let X = (x1, x2)T is the number of compartments
containing new infections, then we have

x′i = Fi − Vi, i = 1, 2.

where F =

(
β1Bξ

k +B
+
β2BE

k +B
, 0

)T
and V = ((γ + α +

µ)I, δB−ξI)T . The Jacobian matrix of F and V with respect
to I and B at point T 0 are

DF (T 0) =

0
β1s

0

k
+
β2s

0

k
0 0

 ,
and

DV (T 0) =

[
γ + α+ µ 0

−ξ δ

]
.

Thus, R0, the spectral radius of (DF )(DV )−1 is R0 =
Λξ(µβ1 + φβ2)

µkδ(φ+ µ)(γ + α+ µ)
.

Next, the endemic equilibrium point (T ∗) is obtained when
I 6= 0, of the form

T ∗ = (S∗, E∗, I∗, R∗, B∗)

=

(
ΛA3A4

F
,
φΛA3A4

A2F
,

ΛA4GL

F
,
γΛGL

F
,
ξΛA4GL

Fδ

)
,

where

A1 = φ+ µ,A2 = β2L+ µ,A3 = γ + α+ µ,A4 = ω + µ,

G = β1 +
φβ2
A2

,

F =
A2A3A4(β1L+A1)−A2ωγLβ1 − ωγLφB2

A2
> 0,

L =
−b±

√
b2 − 4ac

2a
,

a = kδβ1β2A3A4 + Λξβ1β2A3A4 − ωγkδβ1β2 > 0

b = µkδA3A4 + kδβ2A1A3A4 + µΛδβ1A4 + Λβ2ξφA4

− µkδωγβ1 − kδωγβ2φ− Λβ1β2δA4 > 0

c = µkδA1A2A3(1−R0).

The existence of an endemic equilibrium point (T ∗) de-
pends on R0. If R0 < 1, then the endemic equilibrium point
does not exist because c > 0, it is obtained L < 0, therefore
the value of I∗, R∗, B∗ < 0. If R0 = 1, then the equilibrium
point T ∗ = T 0 that results in the endemic equilibrium point
(T ∗) do not exist. If R0 > 1, then c < 0, resulting in L > 0,
therefore all values of S∗, E∗, I∗, R∗, B∗ are positive and
the unique endemic equilibrium point exists.
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C. Sensitivity Analysis

The sensitivity analysis of the basic reproduction number
(R0) is done to determine which parameter that influences
the disease transmission. The most sensitive parameter can
be used as the key factor in controlling the disease.

Definition 1. ([16], [17]) The normalized forward sensi-
tivity index of R0 that depends differentiably on a parameter
ρ is defined by

ΨR0
ρ =

∂R0

∂ρ

ρ

R0
.

Some example for the normalized forward sensitivity index
of R0 with respect to the given parameter are obtained as

ΨR0

β1
=

β1µ

β1µ+ β2φ
> 0,

ΨR0

β2
=

β2φ

β1µ+ β2φ
> 0,

ΨR0
γ = − γ

γ + α+ µ
< 0,

ΨR0
α = − α

γ + α+ µ
< 0,

ΨR0

φ = − φ(β1 − β2)µ

(β1µ+ β2φ)(φ+ µ)
.

Based on parameter values as in Table II, we obtain the
sensitivity index of R0 which is given in Table III. The
parameters are ordered from the most sensitive to the least
sensitive. The sensitivity index of parameters Λ, ξ, β1, and
β2 are positive. This result indicates that increasing the
interaction rate of susceptible subpopulations with bacteria
population (β1) increases the reproduction number. On the
other hand, the sensitivity index of the parameter k, δ, µ, γ, α,
and φ are negative. This result indicates that increasing the
educated rate (φ) reduces the reproduction number. The most
sensitive parameters are Λ, ξ, k, and δ, which means that a
small change in these parameters can cause a major effect on
the disease transmission. The least sensitive parameters are
β1 and φ. An increase in the interaction rate of susceptible
subpopulations with bacteria population (β1), for instance,
does not have a significant effect on the disease transmission.

TABLE III
SENSITIVITY INDEX

Parameters Sensitivity Index
Λ 1

ξ 1

k −1

δ −1

µ −0.9867

β2 0.9733

γ −0.5751

α −0.4170

β1 0.0267

φ −0.0212

IV. STABILITY ANALYSIS

In this section, we discuss the local stability of disease-free
and endemic equilibrium.

Theorem 3. The disease-free equilibrium point T 0 is lo-
cally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof: The Jacobian matrix at T 0 is

J(T 0) =



−A1 0 0 ω −β1S0

k

φ −µ 0 0 −β2E0

k

0 0 −A3 0
β1S0

k
+
β2E0

k
0 0 γ −A4 0

0 0 ξ 0 −δ


.

Based on calculation with |J(T 0)−rI| = 0, the following
was obtained r1 = −A1, r2 = −µ, r4 = −A4, and r3, r5
that meets ∣∣∣∣∣∣−A3 − r3

β1Λ

A1k
+
β2Λφ

A1µk
ξ −δ −A5

∣∣∣∣∣∣ = 0.

Then, using the trace and determinant methods [18], r3, r5
are negative assuming

Λξ(µβ1 + β2φ)

µkδA1A3
< 1 or R0 < 1.

Consequently, the disease-free equilibrium point (T 0) is
locally asymptotically stable when R0 < 1 and otherwise
unstable.

Theorem 4. The endemic equilibrium point T ∗ is locally
asymtotically stable if and only if

1) b1b2 > b3,
2) b1b2b3 + b1b5 > b23 + b21b4,
3) b1b2b3b4+2b1b4b5+b2b3b5 > b21b

2
4+b1b

2
2b5+b23b4+b25,

4) b5 > 0.

Proof: The stability of endemic equilibrium point (T ∗)
is obtained by determining the eigenvalues of the Jacobian
matrix system (1) at T ∗. The Jacobian matrix at T ∗ is of the
form

J(T ∗) =


−β1L−A1 0 0 ω −J1

φ −β2L− µ 0 0 −J2
β1L β2L −A3 0 J1 + J2

0 0 γ −A4 0

0 0 ξ 0 −δ

 .

where
J1 =

β1kΛA3A4

F

(
k +

ΛξA4G

Fδ

)2 ,

and
J2 =

β2kφΛA3A4

A2F

(
k +

ΛξA4G

Fδ

)2 .

The characteristic equation of a matrix J(T ∗) is obtained by
solving |J(T ∗)− rI| = 0, that is∣∣∣∣∣∣∣∣∣∣∣∣

A 0 0

φ −β2L− µ− r 0 ω −J1
β1L β2L −A3 − r 0 −J2

0 0 γ −A4 − r 0

0 0 ξ 0 −δ − r

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,
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where A = −β1L−A1 − r.

r5 + b1r
4 + b2r

3 + b3r
2 + b4r + b5 = 0, (2)

where

b1 = δ + β2L+ µ+ β1L+A3 +A4 +A1,

b2 = δA4 + δA3 + δβ1L+ δA1 + δβ2L+ δµ

+A3A4 +A4β1L+A1A4 +A4β2L+A4µ

+A3β1L+A1A3 +A3β2L+A3µ+ β1β2L
2

+ β1Lµ+A1β2L+A1µ− ξ(J1 + J2),

b3 = δA3A4 + δA4β1L+ δA1A4 + δA4β2L+ δA4µ

+ δA3β1L+ δA1A3 + δA3β2L+ δA3µ+ δβ1β2L
2

+ δβ1Lµ+ δA1β2L+ δA1µ+A3A4β1L+A1A3A4

+A3A4β2L+A3A4µ+A4β1β2L
2 +A4β1Lµ

+A1A4β2L+A1A4µ+A3β1β2L
2 +A3β1Lµ

+A1A3β2L+A1A3µ− ξL(β1J1 + β2J2)− ωγβ1L
− ξ(J1 + J2)(β2L+A4 + µ+ β1L+A1),

b4 = A3A4β1β2L
2 + δA3β1β2L

2 + δA4β1β2L
2

+A1A3A4β2L+ δA1A3β2L+ δA1A4β2L

+ δA3A4β1L+A3A4β1Lµ+ δA3A4β2L

+ δA3β1Lµ+ δA4β1Lµ+ ξφβ2LJ1 + δA1A3A4

+ µA1A3A4 + δµA1A3 + δµA1A4 + δµA3A4

− L2β1β2ωγ −A1J1ξβ2L−A4J1ξβ2L−A4J2ξβ1L

− µJ2ξβ1L− β1Lδγω − β1Lµγω − γωφβ2L
−A1A4J1ξ −A1A4J2ξ −A1µJ1ξ −A1µJ2ξ

−A4µJ1ξ −A4µJ2ξ,

b5 = δA3A4β1β2L
2 +A4J1ξφβ2L+ δA1A3A4β2L

+ δA1A3A4µ+ δA3A4β1Lµ− δγωβ1β2L2

−A1A4J1ξβ2L− µA4J2ξβ1L− β1Lδγωµ
− β2Lγωφδ −A1A4J1ξµ−A1A4J2ξµ.

The stability of the endemic equilibrium point (T ∗) is
obtained using the Routh-Hurwitz criteria [19]. Based on
equation (2), the endemic equilibrium point T ∗ is asymp-
totically stable, if only if

1) b1b2 − b3 > 0,
2) b1b2b3 + b1b5 − b23 − b21b4 > 0,
3) b1b2b3b4+2b1b4b5+b2b3b5−b21b24−b1b22b5−b23b4−b25 >

0,
4) b5 > 0.

Thus, the proof is complete.

V. NUMERICAL SIMULATION

In this section, numerical simulation is used to illustrate
the main result in Sections III. These were conducted using
the Runge-Kutta 4th order method to show the cholera
epidemic model dynamics with preventive measures through
education and the parameter values in the following Table
II.

The stability simulation of the disease-free equilibrium
point is shown in Figure 2-6. The parameter values used
are presented in Table II, where β1 = 0.0943, β2 = 0.03,
and ξ = 5 obtained R0 = 0.6516 < 1. Based on
these parameter values, the disease-free equilibrium point is

T 0 = (53.7, 9800.3, 0, 0, 0). Figure 2-6 shows the solution
when R0 < 1 with three different initial values, namely

NA1 = (100, 6000, 80, 40, 125000),

NA2 = (50, 3000, 200, 15, 150000),

NA3 = (15, 500, 120, 80, 75000).

The results of this simulation show that with some initial
values, the solution leads to the disease-free equilibrium
point (T 0), this means that after a long time, no infected in-
dividual is found. The numerical simulation results obtained
support the analysis results in Section III, which states that
when R0 < 1 disease-free equilibrium (T 0) point is locally
asymptotically stable.

Fig. 2. Dynamic behavior of the disease free-equilibrium point for
susceptible subpopulation

Fig. 3. Dynamic behavior of the disease free-equilibrium point for educated
subpopulation

The result of stability simulation of the endemic equilib-
rium point is provided in Figure 7-11, while the parameter
values used are shown in Table II, with R0 = 10.3536 > 1.
Based on these parameter values, the disease-free equilibrium
point T 0 = (53.7, 9800.3, 0, 0, 0) and the endemic equi-
librium point T ∗ = (76, 603, 170, 6, 10306). Section III is
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Fig. 4. Dynamic behavior of the disease free-equilibrium point for infected
subpopulation

Fig. 5. Dynamic behavior of the disease free-equilibrium point for
recovered subpopulation

Fig. 6. Dynamic behavior of the disease free-equilibrium point for bacteria
population

explained that the roots of the characteristic equation (2) are
negative value when they meet the Routh-Hurwitz criteria.
Based on the parameter values in Table II, the Routh-Hurwitz
criteria values are as follows:

1) b1b2 − b3 = 0.0201 > 0,
2) b1b2b3 + b1b5 − b23 − b21b4 = 1.2722× 10−5 > 0,
3) b1b2b3b4+2b1b4b5+b2b3b5−b21b24−b1b22b5−b23b4−b25 =

7.3109× 10−12 > 0,
4) b5 = 2.0593× 10−9 > 0,

where

b1 = 0.4632,

b2 = 0.04473,

b3 = 6.4024× 10−4,

b4 = 7.2023× 10−7.

This shows that the Routh-Hurwitz criterion is fulfilled,
therefore, the endemic equilibrium point is locally asymp-
totically stable.

Fig. 7. Dynamic behavior of the endemic equilibrium point for susceptible
subpopulation

Fig. 8. Dynamic behavior of the endemic equilibrium point for educated
subpopulation
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Fig. 9. Dynamic behavior of the endemic equilibrium point for infected
subpopulation

Fig. 10. Dynamic behavior of the endemic equilibrium point for recovered
subpopulation

Fig. 11. Dynamic behavior of the endemic equilibrium point for bacteria
population

Figure 7-11 show the solution of cholera epidemic model,
using three different initial values, namely

NA1 = (250, 15, 80, 40, 275000),

NA2 = (400, 20, 160, 15, 150000),

NA3 = (25, 5, 120, 80, 75000).

This simulation shows that with some initial values, the
solution leads to an endemic equilibrium point (T ∗), which
means cholera is spreading in the populations. The numerical
simulation results obtained support the analysis results in
Section III, therefore, the endemic equilibrium point (T ∗)
is asymptotically stable when it meets the Routh-Hurwitz
criteria.

Fig. 12. Simulation of sensitivity analysis by varying δ, other parameters
are taken from Table II

Fig. 13. Simulation of sensitivity analysis by varying φ, other parameters
are taken from Table II

Some simulations representing the sensitivity analysis of
the parameters are illustrated in Figure 12 and Figure 13.
Here, we take two examples: δ as the most sensitive param-
eter and φ as the less sensitive parameter. The parameter
values are taken from Table II by varying δ or φ. Increasing
the parameter values δ from 0.33 to 0.3993 decreases the
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reproduction number, R0, from 10.3536 to 8.5567. Further-
more, increasing the parameter values φ from 0.01 to 0.0121
decreases the reproduction number, R0, from 10.3536 to
10.3155. Figure 12 shows varying the parameter δ causes
a significant effect in the disease transmission. However,
varying the parameter φ does not have a major change in
the transmission of the disease (see Figure 13). Although
the rate of educational, φ, is less sensitive, it still affects the
disease dynamic as described in Figure 14.

Figure 14 shows that when the value φ = 0, it means no
educational action is taken, the number of infected subpop-
ulations is 161 individuals at t = 200. However, when the
value φ = 0.01, it means that education is carried out at a rate
of 0.01. The number of infected subpopulations experiences
a decline of 120 individuals at t = 200. Therefore, the value
φ = 0.1, which means education is carried out at a rate of
0.1. The number of infected subpopulations experiences a
decline of 86 individuals at t = 200. This simulation shows
that educational, preventive measures significantly decrease
the number of infected subpopulations.

Fig. 14. Dynamic behavior of the infected subpopulation by varying φ,
other parameters are taken from Table II

VI. CONCLUSION

The cholera epidemic model with educational, preventive
measures has two equilibrium points: disease-free and en-
demic. Therefore, based on the analysis results, a disease-
free equilibrium point always exists, while endemic occurs
when the basic reproduction number is greater than one,
i.e. R0 > 1. The disease-free equilibrium point is locally
asymptotically stable if R0 < 1 and the endemic equilibrium
point is locally asymptotically stable under certain condi-
tions. From analysis sensitivity, we concluded that increasing
the value of the parameters Λ, ξ, β1, or β2, increases the
basic reproduction number, while increasing the value of
the parameters k, δ, µ, γ, α or φ, decreases the basic re-
production number. Numerical simulations performed show
that the results are consistent with the analysis. Furthermore,
educational measures have a significant impact in controlling
the spread of cholera.
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