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Abstract—In this paper, we present a new method based on
modification on single layer Legendre Neural Network(LeNN)
method to be Legendre Neural Network DDY2 (LeNNDDY2)
method to solve ordinary and partial differential equation. The
activation function on the hidden layer is changed by Legendre
polynomial expansion. The optimization method used in weight
and bias updates is the DDY2 conjugate gradient method. For
example problems, the numerical results have been compared
with the other methods and gotten better results.

Index Terms—differential equation, artificial neural network,
Legendre polynomial, DDY2 conjugate gradient

I. INTRODUCTION

D IFFERENTIAL equations are used as a powerful tool
in solving many problems in various fields of human

knowledge, such as physics, computer science, biology,
chemistry, mechanics, economics, etc. The real problem is
modeled into differential equations, then, by solving the
differential equation the answer is described. Usually, many
of these problems of the differential equation do not have
analytical solutions. thus, we need a method to approximate
the solution.

In this modern era, many researchers especially in the
numerical field, use a deep learning method to solve certain
problems like predict data or classify data in the form of
an approximation of some data. In this case, a function that
outputs will be formed expected by the existing problem-
solving. The famous deep learning is Artificial Neural Net-
work (ANN). Because the output of the ANN method is also
a function to approximate data then the ANN method can
be used to solve a first order partial differential equation.
In previous research, the ANN method was able to solve
a ordinary differential equation problems quite well. The
output of the ANN method in the form of an approximation,
the function is an excess of the ANN method compared
another method that only has the output of the point-by-point
approximation point.

A method to solve the first order ordinary differential
equation using Hopfield neural network models was intro-
duced by Lee and Kang[1]. Meade and Fernandez[2] solved
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linear and nonlinear ordinary differential equations using
feed forward neural network architecture and B-splines of
degree one. Lagaris et al.[3] used multi layer perceptron in
their network to solve both ordinary and partial differential
equation. In comparison with Jamme and Liu[4], Malek
and Shekari[5] presented the potential of the hybrid and
optimization technique to deal with differential equation of
lower order as well as higher order. Recently, the application
of Legendre neural network for solving differential equation
is presented by Mall and Cakraverty[6].

In the next section, we introduce the Legendre neural
network DDY2 method. In section 3, the proposed method
for solving first and second order differential equation is
introduced. The examples of ordinary differential equation
are initial value problem, boundary value problem and system
of the first ordinary differential equations. The examples
of partial differential equation are advection, Laplace and
Poisson equation. In section 4, we presented numerical
examples. Finally, the conclusion is outlined in Section 5.

II. LEGENDRE NEURAL NETWORK DDY2 METHOD

In this section, we have introduced a structure and learning
algorithm that has been used in LeNNDDY2 method.

A. Structure of Legendre Neural Network DDY2 method

Fig. 1. Structure of Legendre Neural Network DDY2

The structure of LeNNDDY2 model can be seen in Fig.1.
These structures consist of an input node, output node
and the hidden layer is transform to Legendre polynomials
expansion. Defined Ln(q) is Legendre polynomial, with n is
the order and q ∈ [−1, 1].

The first few Legendre polynomials are [7]

L0(q) = 1,

L1(q) = u

L2(q) =
1

2
(3q2 − 1).
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The higher order Legendre polynomials may be generated
by the following recursive formula

Ln+1(q) =
1

n+ 1
[(2n+ 1)uLn(q)− nLn−1(q)] . (1)

As input data we consider a vector x = (x1, x2, ..., xr) of
dimension r. The enhanced pattern is obtained by using the
Legendre polynomials

1, L1(w11x1 + u11), ..., Ln(wn1x1 + un1)
1, L1(w12x2 + u12), ..., Ln(wn2x2 + un2)

.

.

.
1, L1(w1hxh + u1h), ..., Ln(wnhxh + unr)


.

B. Learning algorithm of Legendre Neural Network DDY2

Error backpropagation learning algorithm is used for
updating the network parameters (weights and bias) of
Legendre Neural Network DDY2 (LeNNDDY2). As such,
the gradient of an error function concerning the network
parameter is determined. The linear function is considered
an activation function. The gradient conjugate DDY2 [8] is
used for learning to minimize the error function. The weights
and bias are initialized randomly and then the weights and
bias are updated as follows

Wk+1 = Wk + αkdk, (2)

where W is the parameters(weights and bias), αk is the step
length, and dk is the search direction defined by

dk =

{
−gk, k = 1,

−gk + βkdk−1, k ≥ 2,
(3)

where gk = ∇Ep(W ) is the gradient of Ep at Wk, and βk
is the parameter defined by

βk =


gTk

(
gk−

gT
k

dk−1

‖dk−1‖2
dk−1

)
dT
k−1

(gk−gk−1)+µgT
k
dk−1

, gTk dk−1 ≥ 0

0, other

. (4)

The value of αk can be determined using Secant method.

III. PROPOSED THE METHOD FOR ORDINARY AND
PARTIAL DIFFERENTIAL EQUATION

In this section, we describe the formulation of first and
second-order partial differential equations, especially on
advection, two dimensional Laplace equation and Poisson
Equation problem. The formulation in general form of the
differential equation (which represents ordinary as well as
partial differential equations) may be written as [2]

G(x, y(x),∇y(x),∇2y(x), ...,∇ky(x)) = 0, x ∈ D̄ ⊆ Rn
(5)

subject to some initial or boundary conditions, where y(x)
is the solution, G is the function that defines the structure of
the differential equation and ∇ is a differential operator. D̄
donates the discretized domain over a finite set of points in
Rn.

Let yt(x, p) denotes the trial solution with adjustable
parameters(weights)p, thus the problem is transformed into
the following minimization problem

Min
p

∑
xn∈D̄

(
G(xn, yt(xn, p),∇yt(xn, p), ...,∇kyt(xn, p)

)2
.

(6)
The trial solution yt(x, p) satisfies the initial or boundary

conditions and be written as the sum of two terms:

yt(x, p) = B(x) + F (x,N(x, p)) (7)

where A(x) satisfies initial boundary conditions and contains
no adjustable parameters. N(x, p) is the output of feed
forward neural network with parameters p and input x. The
second term F (x,N(x, p)) does not contribute to initial or
boundary conditions but this is used to a neural network
whose weights are adjustable to minimize the error function.

The formulations of the first and second order differential
equations are the following.

A. First order ODE

The firts order ODE may be represent as

dy

dx
= f(x, y), x ∈ [a, b] (8)

subject to y(a) = A.
The LeNNDDY2 trial solution is

yt(x, p) = A+ (x− a)N(x, p) (9)

where N(x, p) is output of LeNNDDY2 model defined by

N(x, p) =
n∑
j=0

ojvj , (10)

and
oj = Lj(wj+1x+ uj+1), j = 0, 1, ..., n. (11)

The error function is written as

Ep =
m∑
i=1

(
dyt(xi, p)

dxi
− f (xi, yt(xi, p))

)2

. (12)

Derivative of yt(x, p) with respect to x is given as

dyt(x, p)

dx
= N(x, p) + (x− a)

dN(x, p)

dx
. (13)

B. Second order ODE

Let us consider second order initial value problem as

d2y

dx2
= f

(
x, y,

dy

dx

)
, x ∈ [a, b] (14)

with initial condition y(a) = A, y′(a) = A′.
The LeNNDDY2 trial solution is

yt(x, p) = A0 +A1(x− a) + (x− a)2N(x, p). (15)

where N(x, p) is output of LeNNDDY2 model defined by
Eq. and Eq.

The error function is written as

Ep =
m∑
i=1

(
d2yt(xi, p)

dxi2
− f

(
xi, yt(xi, p),

dyt(xi, p)

dxi

))2

.

(16)
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From Eq. we get (by differentiating)

dyt(x, p)

dx
= A1 + 2(x− a)N(x, p) + (x− a)2 dN

dx
(17)

d2yt(x, p)

dx2
= 2N(x, p)+4(x−a)

dN

dx
+(x−a)2 d

2N

dx2
. (18)

Next, a second order boundary value problem may be
written as

d2y

dx2
= f

(
x, y,

dy

dx

)
, x ∈ [a, b] (19)

with boundary condition y(a) = A, y(b) = B.
Corresponding LeNNDDY2 trial solution for the above

boundary value problem is

yt(x, p) =
bA− aB
b− a

+
B −A
b− a

x+ (x− a)(x− b)N(x, p)

(20)
As such, the error function may be obtained as

Ep =
m∑
i=1

(
d2yt(xi, p)

dxi2
− f

(
xi, yt(xi, p),

dyt(xi, p)

dxi

))2

.

(21)
here
dyt
dx

=
B −A
b− a

+ (2x− a− b)N + (x− a)(x− b)dN
dx

. (22)

C. System of first ODEs

Here we consider the following system of initial value first
order differensial equations

dyr
dx

= fr(x, y1, ..., yl), x ∈ [a, b] , (23)

subject to yr(a) = Ar, r = 1, 2, ..., l.
Corresponding trial solution has the following form

ytr(x, pr) = Ar + (x− a)Nr(x, pr), (24)

for every r = 1, 2, ..., l.
For each r, Nr(x, pr) is the output of the Legendre Neural

Network DDY2 with parameter x and parameter pr difined
by

Nr(x, pr) =
n∑
j=0

ojrv(j+1)r. (25)

and
ojr = Lj(w(j+1)rxi + u(j+1)r) (26)

where j = 0, 1, ..., n and r = 1, 2, .., l.
Then the corresponding error function with adjustable

network parameters may be written as

Ep =
m∑
i=1

l∑
r=1

(
dytr(xi, pr)

dxi
−

f (xi, yt1(xi, p1), ..., ytl(xi, pl))

)2

(27)

From the Eq. we have

dytr(x, pr)

dx
= Nr(x, pr) + (x− a)

dNr(x, pr)

dx
(28)

for each r = 1, 2, ..., l.

D. First order partial differential equation

Let us consider first order partial differential equation

∂

∂x
ψ(x, y) +

∂

∂y
ψ(x, y) = 0, (29)

subject to ψ(0, y) = f0(y), ψ(1, y) = f1(y), ψ(x, 0) =
g0(x) and ψ(x, 1) = g1(x), where x ∈ [0, 1] , y ∈ [0, 1].
Corresponding trial solution has the following form

ψt(x, y) = B(x, y) + x(x− 1)y(y − 1)N(x, y, p), (30)

where B(x, y) is chosen so as to satisfy the boundary
condition and N(x, y, p) is output of LeNNDDY2 model
defined by

N(x, p) =
n∑
j=0

ojvj+1. (31)

and
oj = Lj(w(j+1)kxi + w(j+1)kyi + uj+1) (32)

for each j = 0, 1, ..., n. Then the error function to be
minimized is given by

Ep =
m∑
i=1

(
∂

∂x
ψt(xi, yi) +

∂

∂y
ψt(xi, yi)

)2

. (33)

E. Laplace equation

Let us consider two dimensional Laplace equation as
bellow

∂2

∂x2
ψ(x, y) +

∂2

∂y2
ψ(x, y) = 0, (34)

subject to ψ(0, y) = f0(y), ψ(1, y) = f1(y), ψ(x, 0) =
g0(x) and ψ(x, 1) = g1(x), where x ∈ [0, 1] , y ∈ [0, 1].
Corresponding trial solution has the following form

ψt(x, y) = B(x, y) + x(x− 1)y(y − 1)N(x, y, p), (35)

where B(x, y) is chosen so as to satisfy the boundary
condition and N(x, y, p) is output of LeNNDDY2 model
defined by

N(x, p) =
n∑
j=0

ojvj+1. (36)

and
oj = Lj(w(j+1)kxi + w(j+1)kyi + uj+1) (37)

for each j = 0, 1, ..., n. Then the error function to be
minimized is given by

Ep =
m∑
i=1

(
∂2

∂x2
ψt(xi, yi) +

∂2

∂y2
ψt(xi, yi)

)2

. (38)

F. Poisson equation

Here we consider the following two dimensional Poisson
equation

∂2

∂x2
ψ(x, y) +

∂2

∂y2
ψ(x, y) = f(x, y), (39)

subject to ψ(0, y) = f0(y), ψ(1, y) = f1(y), ψ(x, 0) =
g0(x) and ψ(x, 1) = g1(x), where x ∈ [0, 1] , y ∈ [0, 1].

Corresponding trial solution has the following form

ψt(x, y) = B(x, y) + x(x− 1)y(y − 1)N(x, y, p), (40)
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TABLE I
COMPARISON AMONG ANALYTICAL, LENNDDY2 AND LENN

RESULTS(EXAMPLE 1)

input analitik LeNN LeNN DDY2
0 1 1 1

0.1 0.87397 0.89900 0.88484
0.2 0.78904 0.81792 0.79985
0.3 0.73861 0.76030 0.74506
0.4 0.71924 0.72933 0.72049
0.5 0.72926 0.72779 0.72620
0.6 0.76794 0.75792 0.76221
0.7 0.83493 0.82140 0.82854
0.8 0.92993 0.91926 0.92524
0.9 1.05254 1.05180 1.05234
1.0 1.20218 1.21852 1.20986

where B(x, y) is chosen so as to satisfy the boundary
condition and N(x, y, p) is output of LeNNDDY2 model
defined by

N(x, p) =
n∑
j=0

ojvj+1. (41)

and
oj = Lj(w(j+1)kxi + w(j+1)kyi + uj+1) (42)

for each j = 0, 1, ..., n.
Then the error function tp be minimized is given by

Ep =
m∑
i=1

(
∂2

∂x2
ψt(xi, yi) +

∂2

∂y2
ψt(xi, yi)− f(xi, yi)

)2

.

(43)

IV. NUMERICAL EXAMPLE

In this section, we consider various example, such us a
initial value problem, a boundary value problem, a system of
coupled first order ordinary differential equation, a first order
partial differential equation and two dimensional Laplace
and Poisson equation problems. The example problems are
solved and computed with MATLAB.

Example 1. Let us consider the first order ordinary differ-
ential equation as follows:

dy

dx
+

(
x+

1 + 3x2

1 + x+ x3

)
y = x3 + 2x+

x2 + 3x4

1 + x+ x3

with initial conditions y(0) = 0 and x ∈ [0, 1]. The exact
solution is

y(x) =
e−x

2/2

1 + x+ x3
+ x2

Following the procedure of the present method, we write
the LeNNDDY2 trial solution

yt(x) = 1 + xN(x, p)

The network was trained using grid of ten equidis-
tance points in [0, 1]. Five wight and five bias in the first
five Legendre polynomials expansion also five wight be-
tween Legendre expantion and output layer are considered.
Comparison among analytical, Legendre Neural Network
DDY2(LeNNDDY2) and Legendre Neural Network(LeNN)
results has been shown in Table.I These comparison are also
depicted in Fig.2. Plot comparison between LeNNDDY2 er-
ror (analytical and LeNNDDY2) and LeNN error (analytical
and LeNN) is cited in Fig.3.

Fig. 2. Plot of Analytical, LeNN and LeNNDDY2 results (Example 1)

Fig. 3. Error plot between LeNN and Error LeNNDDY2 (Example 1)

Example 2. Let us consider the second order ordinary
differential equation problem as follow:

d2y

dx2
+

2

x

dy

dx
+ 4(2ey + ey/2) = 0

with initial condition y(0) = 0, y′(0) = 0 and x ∈ [0, 1]. The
exact solution is

y = −2 ln(1 + x2)

and the related LeNNDDY2 trial solution is written as

yt(x) = x2N(x, p).

We train the network for ten equidistant point in the
domain [0, 1] with first five Legendre polynomials ex-
pansion. Table II shows comparison among analytical,
LeNNDDY2 and LeNN result. The comparison among ana-
lytical, LeNNDDY2 and LeNN results are also depicted in
Fig.4. Fig.5 shows comparison between LeNNDDY2 error
and LeNN error.

Example 3. Here, we consider a second order boundary
value problem as follow:

d2y

dx2
+

1

5

dy

dx
+ y =

1

5
e−x/5 cos(x)

with boundary condition y(0) = 0 and y(1) = sin(1)e−0.2.
The exact solution of the problem is

y(x) = e−x/5 sin(x)
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TABLE II
COMPARISON AMONG ANALYTICAL, LENNDDY2 AND LENN

RESULTS(EXAMPLE 2)

input analitik LeNN LeNN DDY2
0 0 0 0

0.1 -0.01990 -0.01990 -0.02001
0.2 -0.07844 -0.07822 -0.07861
0.3 -0.17236 -0.17172 -0.17239
0.4 -0.29684 -0.29591 -0.29670
0.5 -0.44629 -0.44547 -0.44614
0.6 -0.61497 -0.61473 -0.61499
0.7 -0.79755 -0.79810 -0.2977
0.8 -0.98939 -0.99045 -0.98947
0.9 -1.18665 -1.18759 -1.18642
1.0 -1.38629 -1.38667 -1.38637

Fig. 4. Plot of Analytical, LeNN and LeNNDDY2 results (Example 2)

Fig. 5. Error plot between LeNN and LeNNDDY2 (Example 2)

and the trial solution is written as

yt(x) = x2N(x, p)

Now, the network is trained for ten equidistant point in
the domain [0, 1] with dive Legendre polynomial expansion.
Comparison among analytical, LeNNDDY2 and LeNN result
are given in Table III. Fig.6 shows comparison between
analytical, LeNNDDY2 and LeNN. Fig.7 shows comparison
between LeNNDDY2 error (analytical and LeNNDDY2) and
LeNN error(analytical and LeNN).

Example 4. Next, we take a system of coupled first order
ordinary differential equation

dy1

dx
= cos(x) + y2

1 + y2 − (1 + x2 + sin2(x))

TABLE III
COMPARISON AMONG ANALYTICAL, LENNDDY2 AND LENN

RESULTS(EXAMPLE 3)

input analitik LeNN LeNN DDY2
0 0 0 0

0.1 0.09786 0.09828 0.09784
0.2 0.19088 0.19081 0.19085
0.3 0.27831 0.27753 0.27828
0.4 0.35948 0.35829 0.35946
0.5 0.43380 0.43280 0.43380
0.6 0.50079 0.50060 0.50081
0.7 0.56006 0.56107 0.56008
0.8 0.61129 0.61337 0.61131
0.9 0.65429 0.65644 0.65430
1.0 0.68894 0.68894 0.68894

Fig. 6. Plot of Analytical, LeNN and LeNNDDY2 results (Example 3)

Fig. 7. Error plot between LeNN and LeNNDDY2 (Example 3)

dy2

dx
= 2x− (1 + x2) sin(x) + y1y2

with initial condition y1(0) = 0, y2(0) = 1 and x ∈ [0, 1].
Corresponding exact solution are

y1(x) = sin(x)

y2(x) = 1 + x2

In the case, the LeNNDDY2 trial solution are

yt1(x) = xN1(x, p1)

yt2(x) = 1 + xN2(x, p2)

We consider ten equidistant points in [0, 1] and the
result are compared between analytical, LeNNDDY2 and
LeNN results. Comparison among analytical, LeNNDDY2
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TABLE IV
COMPARISON AMONG ANALYTICAL, LENNDDY2 AND LENN y1

RESULTS(EXAMPLE 4)

input analitik LeNN LeNN DDY2
0 0 0 0

0.1 0.09983 0.09938 0.09912
0.2 0.19867 0.19858 0.19812
0.3 0.29552 0.29604 0.29551
0.4 0.38942 0.39034 0.38992
0.5 0.47943 0.48024 0.48014
0.6 0.56464 0.56481 0.56513
0.7 0.64422 0.64341 0.64413
0.8 0.71736 0.71581 0.71670
0.9 0.78333 0.78222 0.78275
1 0.84147 0.84337 0.84260

TABLE V
COMPARISON AMONG ANALYTICAL, LENNDDY2 AND LENN y2

RESULTS(EXAMPLE 4)

input analitik LeNN LeNN DDY2
1 1 1 1

0.1 1.10100 1.01421 1.01343
0.2 1.04000 1.04374 1.04279
0.3 1.09000 1.09137 1.09062
0.4 1.16000 1.15901 1.15867
0.5 1.25000 1.24784 1.24796
0.6 1.36000 1.35823 1.35876
0.7 1.49000 1.48987 1.49062
0.8 1.64000 1.64176 1.64240
0.9 1.81000 1.81227 1.81223
1 2 1.9992 1.99762

Fig. 8. Plot of Analitical, LeNN and LeNNDDY2 results (Example 4)

and LeNN results are given in Table IV and Table V
also depicted in Fig.8. Fig.9 and Fig.10 shows comparison
between LeNNDDY2 error and LeNN error.

Example 5. Consider the first order partial differential
equation problem

∇ψ(x, y) = 0, x, y ∈ [0, 1]

with initial and boundary condition

ψ(x, 0) = sinx,

ψ(0, y) = − sin y.

The analytic solution of the problem is

ψ(x, y) = sin(x− y).

Consider the initial and boundary condition, the trial solution
was constructed as

ψt(x, y) = xy sin(x)− yx sin(y) + xyN(x, y, p).

Fig. 9. Error plot between LeNN and LeNNDDY2 (Example 4)

Fig. 10. Error plot between LeNN and LeNNDDY2 (Example 4)

TABLE VI
ANALYTICAL RESULTS(EXAMPLE 5)

x
y 0 0.2 0.4 0.6 0.8 1
0 0 0.1987 0.3894 0.5646 0.7174 0.8415

0.2 -0.1987 0 0.1987 0.3894 0.5646 0.7174
0.4 -0.3894 -0.1987 0 0.1987 0.3894 0.5646
0.6 -0.5646 -0.3894 -0.1987 0 0.1987 0.3894
0.8 -0.7174 -0.5646 -0.3894 -0.1987 0 0.1987
1 -0.8415 -0.7174 -0.5646 -0.3894 -0.1987 0

TABLE VII
LENN RESULTS(EXAMPLE 5)

x
y 0 0.2 0.4 0.6 0.8 1
0 0 0.1987 0.3894 0.5646 0.7174 0.8415

0.2 -0.19871 0.0042 0.2266 0.4401 0.6327 0.7970
0.4 -0.3894 -0.2133 0.0098 0.2419 0.4645 0.6675
0.6 -0.5646 -0.4268 -0.2259 0.0020 0.2356 0.4635
0.8 -0.7174 -0.6205 -0.4544 -0.2470 -0.0185 0.2204
1 -0.8415 -0.7764 -0.6429 -0.4587 -0.2408 -0.0014

The network is trained here for eight equidistant points in
given domain. Result of analytical, LeNN and LeNNDDY2
shown at Table VI, Table VII and Table VIII also depicted
at Fig.11 , Fig.12 and Fig.13. Error of LeNN method and
LeNNDDY2 method is cited in Fig.14 and Fig.15.

Example 6. Consider a two dimensional Laplace equation
problem

∇2ψ(x, y) = 0, x, y ∈ [0, 1]
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TABLE VIII
LENNDDY2 RESULTS(EXAMPLE 5)

x
y 0 0.2 0.4 0.6 0.8 1
0 0 0.1987 0.3894 0.5646 0.7174 0.8415

0.2 -0.1987 0.0009 0.2029 0.3920 0.5627 0.7155
0.4 -0.3894 -0.2047 -0.0013 0.1977 0.3886 0.5649
0.6 -0.5646 -0.3893 -0.1937 0.0052 0.2308 0.3992
0.8 -0.7174 -0.5656 -0.3889 -0.1965 -0.0024 0.1844
1 -0.8415 -0.7137 -0.5665 -0.3920 -0.1958 -0.0001

Fig. 11. Plot of Analytical result (Example 5)

with boundary condition

ψ(x, y) = 0, ∀x ∈ {(x, y) ∈ D|x = 0, x = 1, y = 0}
ψ(x, y) = sinπx, ∀x ∈ {(x, y) ∈ D|y = 1}

where D = [0, 1]× [0, 1]. The analytical solution is

ψ(x, y) =
1

eπ − e−π
sinπx

(
eπy − e−πy

)
.

Using the boundary condition, the trial solution was con-
structed as

ψt(x, y) = y sinπx+ x(x− 1)y(y − 1)N(x, y, p).

The network is trained here for ten equidistant points in
given domain. Table IX, Table X and Table XI shown the
analytical, LeNN and LeNNDDY2 result. Fig.16, Fig.17 and
Fig.18 are depicted are analytical, LeNN and LeNNDDY2
results. Error between analytical results and LeNN result

Fig. 12. Plot of LeNN result (Example 5)

Fig. 13. Plot of LeNNDDY2 result (Example 5)

Fig. 14. Error plot of LeNN result (Example 5)

Fig. 15. Error plot of LeNNDDY2 result (Example 5)

are cited in Fig.19. Fig.20 cited plot of the error between
analytical result and LeNNDDY2 result.

TABLE IX
ANALYTICAL RESULTS(EXAMPLE 6)

x
y 0 0.2 0.4 0.6 0.8 1
0 0 0 0 0 0 0

0.2 0 0.0341 0.0552 0.0552 0.0341 0
0.4 0 0.0822 0.1330 0.1330 0.0822 0
0.6 0 0.1637 0.2649 0.2649 0.1637 0
0.8 0 0.3121 0.5050 0.5050 0.3121 0
1 0 0 0.5878 0.9511 0.9511 0
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TABLE X
LENN RESULTS(EXAMPLE 6)

x
y 0 0.2 0.4 0.6 0.8 1
0 0 0 0 0 0 0

0.2 0 0.0338 0.0548 0.0548 0.0338 0
0.4 0 0.0819 0.1327 0.1327 0.0819 0
0.6 0 0.1638 0.2652 0.2652 0.1638 0
0.8 0 0.3124 0.5057 0.5057 0.3124 0
1 0 0 0.5878 0.9511 0.9511 0

TABLE XI
LENNDDY2 RESULTS(EXAMPLE 6)

x
y 0 0.2 0.4 0.6 0.8 1
0 0 0 0 0 0 0

0.2 0 0.0341 0.0553 0.0553 0.0341 0
0.4 0 0.0822 0.1332 0.1332 0.0822 0
0.6 0 0.1636 0.2649 0.2649 0.1636 0
0.8 0 0.3121 0.5051 0.5051 0.3121 0
1 0 0 0.5878 0.9511 0.9511 0

Fig. 16. Plot of Analytical result (Example 6)

Fig. 17. Plot of LeNN result (Example 6)

Example 7. Consider a two dimensional Poisson equation
problem

∇2ψ(x, y) = e−x(x− 2 + y3 + 6y), x, y ∈ [0, 1]

Fig. 18. Plot of LeNNDDY2 result (Example 6)

Fig. 19. Error plot of LeNN result (Example 6)

with boundary condition

ψ(0, y) = y3,

ψ(1, y) = (1 + y3)e−1,

ψ(x, 0) = xe−x,

ψ(x, 1) = e−x(x+ 1).

Analytical solutions for the problem may be obtained as

ψ(x, y) = e−x(x+ y3).

Based on the procedure in the previous section, we write

Fig. 20. Error plot of LeNNDDY2 result (Example 5)
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the LeNNDDY2 trial solution for the problem is

ψt(x, y) = A(x, y) + x(1− x)y(1− y)N(x, y, p)

with the value of A(x, y) as follow

A(x, y) = (1− x)y3 + x(1 + y3)e−1

+(1− y)x(e−x − e−1)

y[(1 + x)e−x − (1− x− 2xe−1)].

The network is trained here for ten equidistant points in
given domain. The analytical, LeNNDDY2 and LeNN are
shown in Table XII, Table XIII and Table XIV. Comparison
between analytical, LeNNDDY2 and LeNN results are de-
picted in Fig.21,Fig.22 and Fig.23. Plot of the error function
is cited in Fig.24 and Fig.25.

TABLE XII
ANALYTICAL RESULTS(EXAMPLE 5)

y
x 0 0.2 0.4 0.6 0.8 1
0 0 0.1637 0.2681 0.3293 0.3595 0.3679

0.2 0.0080 0.1703 0.2735 0.3337 0.3631 0.3708
0.4 0.0640 0.2161 0.3110 0.3644 0.3882 0.3914
0.6 0.2160 0.3406 0.4129 0.4478 0.4565 0.4473
0.8 0.5120 0.5829 0.6113 0.6103 0.5895 0.5562
1 1 0.9825 0.9384 0.8781 0.8088 0.7358

TABLE XIII
LENN RESULTS(EXAMPLE 7)

y
x 0 0.2 0.4 0.6 0.8 1
0 0 0.1637 0.2681 0.3293 0.3595 0.3679

0.2 0.0080 0.1730 0.2779 0.3382 0.3666 0.3708
0.4 0.0640 0.2169 0.3129 0.3667 0.3907 0.3914
0.6 0.2160 0.3379 0.4099 0.4456 0.4561 0.4473
0.8 0.5120 0.5794 0.6068 0.6064 0.5878 0.5562
1 1 0.9825 0.9384 0.8781 0.8088 0.7358

TABLE XIV
LENNDDY2 RESULTS(EXAMPLE 7)

y
x 0 0.2 0.4 0.6 0.8 1
0 0 0.1637 0.2681 0.3293 0.3595 0.3679

0.2 0.0080 0.1704 0.2756 0.3374 0.3659 0.3708
0.4 0.0640 0.2142 0.3112 0.3673 0.3908 0.3914
0.6 0.2160 0.3369 0.4107 0.4485 0.4578 0.4473
0.8 0.5120 0.5797 0.6089 0.6100 0.5899 0.5562
1 1 0.9825 0.9384 0.8781 0.8088 0.7358

V. CONCLUSION

This paper presents a new approach to solve ordinary
and partial differential equation. The examples of the PDE
are advection, Laplace and Poisson equation. Here we have
considered single layer artificial neural network architecture.
In architecture, the hidden layer is replaced by Legendre
polynomial expansion. A gradient conjugate DDY2 is used to
minimize the error function of the backpropagation algorithm
to update the network parameters(weights and bias). Based
on some comparison examples in the previous section, the
proposed method has a better result with a smaller error
value.

Fig. 21. Plot of Analytical result (Example 7)

Fig. 22. Plot of LeNN result (Example 7)

Fig. 23. Plot of LeNNDDY2 result (Example 7)
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Fig. 24. Error plot of LeNN result (Example 7)

Fig. 25. Error plot of LeNNDDY2 result (Example 7)
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