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Abstract — The theoretical research on the DEA (data 

envelopment analysis) cross-efficiency evaluation mainly 

focused on how to select one unique set of inputs and outputs 

weights among multiple sets of optimal weights for each 

decision making unit (DMU), but payed little attention to how 

to aggregate efficiencies in cross-efficiency matrix. The 

commonly used aggregation method is to aggregate them with 

equal weights without considering their difference. This paper 

deals with how to aggregate efficiencies in cross-efficiency 

matrix reasonably and proposes the use of expert scoring 

method to aggregate them. This method views n  efficiency 

values of each DMU in cross-efficiency matrix as its efficiency 

scores determined by different experts. Due to the distinction 

of different experts on the education background and work 

experience and other aspects, their efficiency scores to DMUs 

should be treated differently and allocated variant weights in 

the final overall assessment. The weight allocated to efficiency 

scores determined by one given expert is determined by its 

dissimilarity level to other experts. If the dissimilarity level of 

one given expert to other ones is huge, his authority will be 

questioned and it will be reasonable to allocate small weight to 

his efficiency scores. Finally, the numerical examples examine 

the validity of the proposed method. 

Index Terms—DEA Cross-efficiency evaluation, 

Cross-efficiency aggregation, Expert scoring method 

I. INTRODUCTION 

EA cross-efficiency evaluation proposed by Sexton 

et al. [1] can discriminate decision making units 

(DMUs) effectively. Unlike a DEA traditional model which 
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is a self-appraisal model, DEA cross-efficiency model 

adopts both peer-evaluation and self-evaluation. DEA 

cross-efficiency evaluation will provide each DMU one 

self-evaluated efficiency value generated by itself favorable 

weights and 1n −  peer-evaluated efficiency values 

produced by the favorable weights of other DMUs. Then all 

these n  efficiency values for each DMU can be averaged 

into a value. In most cases, the DMUs can obtain unique 

rank orders through the final values. Due to its powerful 

discrimination ability, it has been widely applied in DMUs 

rank and selection issues such as the rank and choice of 

R&D projects [2] and so on. 

However, each DMU probably has multiple optimal 

weights in a DEA traditional model and non-uniqueness of 

optimal weights damages the use of DEA cross-efficiency. 

To solve this problem, Sexton et al. [1] introduced 

secondary goal model. Inspired by this idea, many 

secondary goal models have been proposed to determine 

the weights uniquely for each DMU. The selection criteria 

of secondary goal models are different. The rank models [3, 

4] consider that the DMUs will pay more attention to their 

rank orders than their individual scores. The 

weight-balanced model [5] focused on how to reduce the 

number of zero weights in inputs and outputs weights. 

Interested readers can acquire more secondary goal models 

in Wang and Chin [6], Wang, Chin and Jiang [7], Wang, 

Chin, and Luo [8], Liang et al. [9], Lim [10]. Among all the 

secondary goal models, the aggressive and benevolent 

models proposed by Doyle and Green [11] are most 

commonly used. When DMU uses aggressive model to 

select the unique set of inputs and outputs weights among 

multiple sets of optimal weights, the selected weights are 

hostile to other DMUs and minimize their average 

cross-efficiency value. The benevolent model adopts 

opposite selection strategy.  

In DEA cross-efficiency evaluation research, how to 

determine the weights uniquely has been given 

considerable attention, but how to aggregate efficiencies in 
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cross-efficiency matrix has been given little attention. The 

widely used method is to aggregate them with equal 

weights. Although this way is easy to calculate, it ignores 

the difference among efficiencies and that will result in the 

final aggregation result to be unreasonable [12]. Our 

literature review reveals that only few scholars adopt 

non-equal weight methods to aggregate them. Wu et al. 

[13-16] considered that average cross-efficiency 

determined by equal weights encounters a significant 

shortcoming that it is not a Pareto solution. To overcome 

this flaw, they determine the aggregation weights through 

the nucleolus solution and Shapley values in cooperative 

game and Shannon entropy. Except for the abstract reason 

that average cross-efficiency is not a Pareto solution, Wu’s 

methods did not provide any concrete reasons to illustrate 

why we need to use non-equal weights to aggregate them 

[12]. Lianlian Song and Fan Liu [17] discovery that the 

aggregation weights generated by Shannon entropy [16] 

will break Zeleny’s rule that if the scores of all evaluated 

objects on one given attribute are very similar, then such an 

attribute will be not important for decision maker because it 

cannot make some significant contribution to make a 

decision. So, it is reasonable to allocate a small weight to 

this attribute when making a decision [18]. To address this 

issue, they propose a variance coefficient method based on 

the Shannon entropy [17] for cross-efficiency aggregation. 

However, it still does not give a concrete reason to illustrate 

why using non-equal weights to aggregate efficiencies in 

cross-efficiency matrix. Wang and Chin [19] proposed the 

use of order weighted averaging (OWA) operator weights 

for cross-efficiency aggregation, which introduced the 

decision maker’s optimism level to allocate the weights 

between self-evaluated and peer-evaluated efficiencies. The 

shortfalls of this method are that aggregation weights are 

determined by the DM’s optimism level (characterized by 

orness degree ), and different DM’s optimism level will 

lead to different results [16]. Moreover, it is difficult to 

measure the actual optimism level (orness degree value) of 

decision maker. YM Wang and S Wang [12] view the 

n efficiencies in cross-efficiency matrix for each DMU as 

results to be evaluated by n  sets of inputs and outputs 

weights determined by n  DMUs. They stated that n  sets 

of inputs and outputs weights are from different points of 

view, so the cross-efficiencies generated by them should be 

allocated variant weights. Based on this idea, they propose 

three approaches which are weighted least-square 

dissimilarity approach, weighted least-square deviation 

approach, dissimilarity and deviation integrated approach 

[12] respectively for cross-efficiency aggregation. However, 

the n  sets of inputs and outputs weights are selected by 

the same secondary goal model such as aggressive 

formulation or benevolent formulation. Each secondary 

goal model has fixed modeling idea, for example 

aggressive formulation’s view is to minimize the average 

cross-efficiency value of other DMUs while keeping 

efficiency of DMU under evaluation at its CCR efficiency 

level. So n  sets of inputs and outputs weights selected by 

the same secondary goal model are from the same 

viewpoint. That means the modeling idea of approaches 

proposed by YM Wang and S Wang [12] is not reasonable. 

Moreover, the three approaches usually generate different 

aggregation results and at same time they are very similar 

on modeling idea and other aspects. Each approach does 

not have distinct advantages to other ones resulting in that 

the three approaches have a significant drawback that it is 

not convenient for decision maker to use.  

To overcome these flaws, we propose the use of expert 

scoring method for cross-efficiency aggregation. This 

method views the target DMUs in cross-efficiency matrix 

as external experts, so the efficiencies of each DMU in 

cross-efficiency matrix will be viewed as efficiency scores 

of each DMU determined by experts. Since the distinction 

of different experts on education background and work 

experience and other aspects, their efficiency scores to 

DMUs should be treated differently and allocated different 

weights. We use Euclidean distance in cluster analysis to 

measure the dissimilarity level of each expert to other 

experts. The weight allocated to efficiency scores of one 

given expert to DMUs is determined by his dissimilarity 

level to other experts. If the dissimilarity level of one given 

expert to other experts is huge, his authority will be 

questioned and it will be reasonable to allocate a small 

weight for his efficiency scores. 

The remainder of paper is arranged as follows: The 

introduction to DEA cross-efficiency evaluation is shown in 

Section 2. Section 3 presents the details of the use of the 

expert scoring method for cross-efficiency aggregation. 

Section 4 uses two illustrative examples to present the 

potential applications of expert scoring method in 

cross-efficiency aggregation. Section 5 makes a conclusion 
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of the paper. 

II.  CROSS-EFFICIENCY EVALUATION AND AGGREGATION 

We suppose that n  DMUs are needed to be evaluated 

and each DMU consumes m inputs to produce s outputs. 

The inputs and outputs values of ( 1, , )jDMU j n=  are 

denoted by ( 1, , )ijx i m=
 

and ( 1, , )rjy r s=  . The 

efficiency value of 
kDMU  under CCR model (a DEA 

traditional model) can be measured by the following model 

[1]: 
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Where  1 ,k nDMU DMU DMU is the decision 

making unit ( DMU ) under evaluation, ( 1, , )ikv i m= and 

( 1, , )rku r s=  denote the inputs and outputs weights. If 

( 1, , )rku r s =  and (i 1, , )ikv m =  are the optimal 

weights solution to the above CCR model, the 

corresponding 
1

s

kk rk rkr
u y  

=
= will be treated as the CCR 

efficiency value of 
kDMU .  If kk 

 is equal to 1, the 

kDMU  is CCR efficient; Otherwise, it will be non-CCR 

efficient. 
1 1

/
s m

jk rk rj ik ijr i
u y v x  

= =
=   is treated to be 

cross-efficiency of jDMU using the optimal weights of 

kDMU , 1, , ,j n j k=  . 

Each DMU can obtain its CCR-efficiency and one set of 

optimal weights by CCR model (1). Under n  sets of 

weights, there will be n  efficiency values including 1 

self-evaluated efficiency value and 1n −  peer-evaluated 

efficiency values for each DMU , which form a 

cross-efficiency matrix shown in table I. They are usually 

aggregated by equal weights to generate average 

cross-efficiency (ACE) value for each DMU, and usually 

DMUs can be fully ranked through ACE. However, ACE 

ignores the difference among efficiencies, to avoid it we 

need to use non-equal weights for cross-efficiency 

aggregation. Each DMU will obtain a weighted average 

cross-efficiency (WACE) score calculated by the following 

model (2): 

1
, 1, , , (2)

n

i k ikk
w i n 

=
= =

where 
1, , nw w are different weights which can be used to 

aggregate efficiencies in cross-efficiency matrix, satisfying 

0( 1, , )kw k n and 
1

1
n

kk
w . 

We notice that each DMU maybe have multiple sets of 

optimal weights in CCR model that will damage the use of 

cross-efficiency evaluation. To handle this problem, Sexton 

et al. [1] introduced the use of secondary goal model to 

select one unique set of weights among multiple optimal 

weights solutions. Inspired by this idea, many secondary 

goal models have been proposed. Among them, the 

following aggressive and benevolent formulations (3) 

suggested by Doyle and Green [11] are most widely used. 

Model (3) is aggressive formulation which minimizes the 

average cross-efficiency value of other DMUs while 

keeping CCR-efficiency of DMU under evaluation 

unchanged, whereas model (4) is known as benevolent 

formulation which aims to maximize the average 

cross-efficiency value of other DMUs. In practice, the 

aggressive formulation usually selects a set of inputs and 

outputs weights which includes too many zero weights, 

resulting in much inputs and outputs information to be 

ignored when calculating cross-efficiencies. To avoid this, 

we will use the cross-efficiency matrix determined by 

benevolent formulation to aggregate, but the proposed 

aggregation method is also applicable to aggregate 

efficiencies determined by other models. 

III. CROSS-EFFICIENCY AGGREGATION USING EXPERT 

SCORING METHOD 

1 1
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TABLE I  

 CROSS-EFFICIENCY MATRIX AND WACE 

DMUs 
Target DMUs Weighted Average 

Cross-Efficiency (WACE) 1 2  n  

1 11  
12   1n  

11

n

k kk
w 

=  

2 21  
22   

2n  
21

n

k kk
w 

=  

      

n  1n  
2n   

nn  
1

n

k nkk
w 

=  

There are two main issues to deal with before using 

expert scoring method to determine the weights for ultimate 

cross efficiency. One is to determine the external experts in 

cross efficiency matrix. The other one is to determine the 

weights of efficiency scores of different experts. 

3.1 The determination of external experts. If we view 

target DMUs in cross-efficiency matrix shown in table I as 

external experts, the n  efficiencies of each DMU in cross 

efficiency matrix will be viewed as its efficiency scores 

determined by n  external experts shown in table II. Since 

the difference of experts on education background and 

work experience and so on, quite obviously their efficiency 

scores to DMUs should be treated differently and allocated 

different weights. So, the proposed aggregation approach 

provides the concrete reason why efficiencies in 

cross-efficiency matrix should be allocated different 

weights when aggregating them.  

3.2 The weights allocated to efficiency scores of different 

experts. We view the efficiency scores of one expert to 

different DMUs as characteristic attributes values of one 

given expert shown in table III. To measure the 

dissimilarity level of one given expert to other ones, we 

refer to the methods which measure the spatial distance in 

coordinate system. The widely used methods are Euclidean 

distance, Manhattan distance, Chebyshev distance, Minko- 

TABLE II 

EFFICIENCY SCORES MATRIX OF n  DMUS DETERMINED BY 

EXTERNAL EXPERTS 

DMUs 
Experts 

1 2  n  

1 11  
12   1n  

2 21  
22   

2n  

     

n  1n  
2n   

nn  

wski distance. Euclidean distance measures the straight-line 

distance in coordinate system. It can be measured by the 

following formulation: 

1
2 2

1

n

ij ik jkk
d x x , where 

( ,1 , )ikx k n and ( 1, , )jkx k n denote the 

characteristic attributes values of 
ix  and 

jx . Unlike the 

Euclidean distance, Manhattan distance measures the 

broken-line distance in coordinate system. It can be 

calculated by the following formulation: 

1

n

ij ik jkk
d x x . Chebyshev distance is also called 

“chessboard distance”. It can be measured by the following 

formulation: 
n

ij ik jk
k=1

d Max x x . The formulation of 

Minkowski distance is defined as: 

1

1

qn q

ij ik jkk
d x x . Clearly if q  is equal to 2, the 

Minkowski distance will be equal to Euclidean distance. 

Among the above methods which can measure the spatial 

distance in coordinate system, the Euclidean distance is 

most commonly used. Here, we use average Euclidean 

distance to measure the dissimilarity level of one given 

expert to other ones. The calculation formula is shown as: 

( )( , ) 1
p q

G iji G j G
D p q lk d

 
=   , where l  and k  are 

the number of individuals in pG  and qG respectively. The 

Euclidean distance matrix of n  experts is shown in table 

IV. From table IV, we can gain the average Euclidean 

distance 
kd  of one given expert k  to other experts. We 
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can gain 
kd  through the following formula: 

1
1 , (1, , ), .

n

k kii
d d n k n i k  If the 

dissimilarity level of one given expert to other ones is huge, 

the authority and ability of one given expert will be 

questioned and it is reasonable to allocate small weight to 

his efficiency scores to DMUs. Inspired by this idea and 

satisfying 
1

1
n

kk
w (

kw denotes the weight allocated to 

efficiency scores of expert k  to DMUs), the 
kw  should 

be equal to ( ) ( )
1

1 1
n

k kk
d d n

=
− −  where 

kd  

represents dissimilarity level of expert k  to other experts. 

IV. MERICAL EXAMPLES 

In this section, we use one numerical examples to 

illustrate the potential application of expert scoring method 

in cross-efficiency aggregation. 

TABLE III 

CHARACTERISTIC ATTRIBUTES VALUES OF EXPERTS 

Attributes 
Experts 

1 2  n  

1 11  
12   1n  

2 21  
22   

2n  

     

n  1n  
2n   

nn  

TABLE IV  

EUCLIDEAN DISTANCE MATRIX OF EXPERTS 

Experts 
Experts 

1 2  n  

1 11d  
12d   

1nd  

2 21d  
22d   

2nd  

     

n  1nd  
2nd   

nnd  

Example: Five DMUs are needed to evaluate where two 

inputs are consumed to produce one normalized output [12]. 

Their inputs and outputs data and CCR-efficiency values 

are show in table V [12]. It clearly shows that CCR model 

cannot fully rank DMUs. DEA cross-efficiency evaluation 

can solve this problem effectively and provide a unique 

rank order for each DMU. The inputs and outputs weights 

of each DMU determined by benevolent model (4) are 

shown in table VI [12]. The corresponding cross-efficiency 

matrix and average cross-efficiency for each DMU are 

shown in table VII [12]. Based on ACE results, DMU2 

performs best. The table VIII shows the cross-efficiencies 

aggregation results determined by OWA. The different 

optimism level of DM will lead to different weights. They 

clearly show that different optimism level of DM (decision 

maker) leads to different results. Moreover, it is difficult to 

measure actual optimism level of DM. The aggregation 

results by dissimilarity, deviation and integrated approaches 

are shown in table IX-XI[12]. Although they provide same 

rank orders for DMUs, the efficiency aggregation results 

are not unique. Moreover, each of the three approaches 

does not have distinct advantages to other ones resulting in 

choice dilemma among them for DM.  

TABLE V 

INPUTS AND OUTPUTS DATA AND CCR EFFICIENCIES OF 5 

DMUS 

DMUs Input1 Input2 Output 
CCR 

Efficiency 

1 2 12 1 1 

2 2 8 1 1 

3 5 5 1 1 

4 10 4 1 1 

5 10 6 1 0.75 

TABLE VI 

INPUTS AND OUTPUT WEIGHTS OF EACH DMU VIA 

BENEVOLENT FORMULATION 

DMUs Input1 Input2 Output 

1 0.0370 0 0.0741 

2 0.0185 0.0185 0.1852 

3 0.0185 0.0185 0.1852 

4 0.0057 0.0287 0.1724 

5 0.0061 0.0305 0.1829 

If we view the target DMUs in cross-efficiency matrix as 

external experts, the efficiencies of each DMU will be 

treated as its efficiency scores determined by experts. Then 

it shows that only first expert evaluates DMU2 to be better 

than DMU3 and gives a very lower efficiency score to 

DMU4 and DMU5. The efficiency scores determined by the 

first expert are very different from other experts. Allocating 

the equal weights to efficiency scores of different experts is 
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not reasonable. Next, we use expert scoring method to 

generate relative importance weights. Table XII shows the 

efficiency scores matrix transformed by cross-efficiency 

matrix shown in table VII. We view the efficiency scores of 

one given expert to DMUs as its characteristic attributes 

values. The standardized characteristic attributes values of 

different experts are shown table XIII. Through the data 

shown in table XIII, the Euclidean distance matrix among 

different experts shown in table XIV can be calculated. The 

average Euclidean distance of one expert to other ones can 

reflect and measure his dissimilarity level to other ones. 

From table XIV, we can obtain that the dissimilarity level 

of different experts to other ones are 4.3410, 2.0740, 2.0740, 

2.4566 and 2.4566 respectively. It clearly shows that the 

dissimilarity level of the first expert to other ones is 

maximal that accords to previous intuitive judgment. Via 

the formulation ( ) ( )
1

1 1
n

k kk
d d n

=
− −  where 

kd  

represents dissimilarity level of expert k  to other experts, 

we can obtain the weights allocated to efficiency scores of 

different experts. They are 0.1690, 0.2113, 0.2113, 0.2042 

and 0.2042 respectively. The weight allocated to efficiency 

scores of first expert is minimum that is consistent with 

previous intuitive analysis. The final aggregation results 

calculated by the weights are shown in table XV. Different 

from ACE result, DMU3 performs better than DMU2 in 

table XV. This rank result is reasonable since only target 

DMU1 (first expert) in table VII evaluated DMU2 to 

perform better than DMU3. At the same time, the proposed 

method produces unique aggregation weights and results. 

While using it, it does not need to measure the optimism 

level of decision maker (DM). Moreover, the proposed 

method will not make choice dilemma for DM and it is 

convenient for DM to use it. 

V. CONCLUSIONS 

This paper focused on cross-efficiency aggregation 

process. This paper focused on cross-efficiency aggregation 

process. We propose the use of expert scoring method for 

cross-efficiency aggregation considering the difference 

among efficiencies in cross-efficiency matrix. 

Compared with existing non-equal aggregation 

approaches, the proposed model has clear modeling 

mechanism and provides the concrete reasons why 

cross-efficiency should be allocated different weights for 

aggregation. Meanwhile, using the proposed method it does 

not need to measure the optimism level of DM and the 

proposed approach produces the unique aggregation results. 

At the same time, it will not make choice dilemma for DM.

TABLE VII 

BENEVOLENT CROSS-EFFICIENCY MATRIX AND AVERAGE CROSS-EFFICIENCY RESULTS 

DMUs 
Target DMUs Average 

Cross-Efficiency 
Rank 

1 2 3 4 5 

1 1.0000 0.7143 0.7143 0.4839 0.4839 0.6793 4 

2 1.0000 1.0000 1.0000 0.7143 0.7143 0.8857 1 

3 0.4000 1.0000 1.0000 1.0000 1.0000 0.8800 2 

4 0.2000 0.7143 0.7143 1.0000 1.0000 0.7257 3 

5 0.2000 0.6250 0.6250 0.7500 0.7500 0.5900 5 

  TABLE VIII 

CROSS-EFFICIENCY AGGREGATION RESULTS BY OWA OPERATOR WEIGHTS 

DMUs 
Optimism Level of the DM 

=1 =0.9 =0.8 =0.7 =0.6 =0.5 

1 1.0000(1) 0.8875(4) 0.8365(4) 0.7803(4) 0.7298(4) 0.6793(4) 

2 1.0000(1) 1.0000(1) 0.9886(2) 0.9543(2) 0.9200(2) 0.8857(1) 

3 1.0000(1) 1.0000(1) 1.0000(1) 0.9760(1) 0.9280(1) 0.8800(2) 

4 1.0000(1) 0.9904(3) 0.9371(3) 0.8766(3) 0.8011(3) 0.7257(3) 

5 0.7500(5) 0.7458(5) 0.7225(5) 0.6880(5) 0.6390(5) 0.5900(5) 
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TABLE IX 

AGGREGATION RESULTS THROUGH DISSIMILARITY APPROACH 

DMUs 

Target DMUs 

WACE Rank 1 2 3 4 5 

0.0219 0.3639 0.3639 0.1252 0.1252 

1 1.0000 0.7143 0.7143 0.4839 0.4839 0.6629 4 

2 1.0000 1.0000 1.0000 0.7143 0.7143 0.9285 2 

3 0.4000 1.0000 1.0000 1.0000 1.0000 0.9869 1 

4 0.2000 0.7143 0.7143 1.0000 1.0000 0.7746 3 

5 0.2000 0.6250 0.6250 0.7500 0.7500 0.6470 5 

TABLE X 

AGGREGATION RESULTS THROUGH DEVIATION APPROACH 

DMUs 

Target DMUs 

WACE Rank 1 2 3 4 5 

0.0434 0.3259 0.3159 0.1624 0.1624 

1 1.0000 0.7143 0.7143 0.4839 0.4839 0.6519 4 

2 1.0000 1.0000 1.0000 0.7143 0.7143 0.9072 2 

3 0.4000 1.0000 1.0000 1.0000 1.0000 0.9740 1 

4 0.2000 0.7143 0.7143 1.0000 1.0000 0.7848 3 

5 0.2000 0.6250 0.6250 0.7500 0.7500 0.6472 5 

TABLE XI 

 AGGREGATION RESULTS THROUGH INTEGRATED APPROACH  

DMUs 

Target DMUs 

WACE Rank 1 2 3 4 5 

0.0361 0.3280 0.3280 0.1539 0.1539 

1 1.0000 0.7143 0.7143 0.4839 0.4839 0.6537 4 

2 1.0000 1.0000 1.0000 0.7143 0.7143 0.9121 2 

3 0.4000 1.0000 1.0000 1.0000 1.0000 0.9784 1 

4 0.2000 0.7143 0.7143 1.0000 1.0000 0.7837 3 

5 0.2000 0.6250 0.6250 0.7500 0.7500 0.6481 5 

TABLE XII 

 EFFICIENCY SCORES MATRIX 

Experts 

DMUs 

1 2 3 4 5 

1 1.0000 1.0000 0.4000 0.2000 0.2000 

2 0.7143 1.0000 1.0000 0.7143 0.6250 

3 0.7143 1.0000 1.0000 0.7143 0.6250 

4 0.4839 0.7143 1.0000 1.0000 0.7500 

5 0.4839 0.7143 1.0000 1.0000 0.7500 
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TABLE XIII 

 THE STANDARDIZED CHARACTERISTIC ATTRIBUTES VALUES OF EXPERTS 

Experts 

Characteristic Attributes 

1x  
2x  

3x  
4x  

5x  

1 1.5050 0.7303 -1.7889 -1.6089 -1.7196 

2 0.1643 0.7303 0.4472 -0.0350 0.1543 

3 0.1643 0.7303 0.4472 -0.0350 0.1543 

4 -0.9168 -1.0955 0.4472 0.8394 0.7055 

5 -0.9168 -1.0955 0.4472 0.8394 0.7055 

TABLE XIV 

 EUCLIDEAN DISTANCE MATRIX 

Experts 

Experts 

1 2 3 4 5 

1 0.0000 3.5760 3.5760 5.1060 5.1060 

2 3.5760 0.0000 0.0000 2.3600 2.3600 

3 3.5760 0.0000 0.0000 2.3600 2.3600 

4 5.1060 2.3600 2.3600 0.0000 0.0000 

5 5.1060 2.3600 2.3600 0.0000 0.0000 

TABLE XV 

AGGREGATION RESULTS VIA EXPERT SCORING METHOD 

DMUs 
Target DMUs (Experts) 

WACE Rank 
1 2 3 4 5 

1 1.0000 0.7143 0.7143 0.4839 0.4839 0.6685 4 

2 1.0000 1.0000 1.0000 0.7143 0.7143 0.8833 2 

3 0.4000 1.0000 1.0000 1.0000 1.0000 0.8986 1 

4 0.2000 0.7143 0.7143 1.0000 1.0000 0.7440 3 

5 0.2000 0.6250 0.6250 0.7500 0.7500 0.6042 5 
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