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Abstract—The problem of determining the range and the 

radial velocity of space crafts in the middle and deep space by 

a monostatic radar is considered. The tested determination 

method is based on the calculations concerning the relayed 

signal reception moment and its delay relative to both the 

emission moment and the Doppler shift of the carrier 

frequency from the emitted signal frequency (active mode). 

The results of the determination of the radial velocity only by 

calculating the Doppler shift of the onboard generator carrier 

frequency (passive mode) are also examined. The analysis of 

the space-time relationships during the curvilinear movement 

of the radar in an inertial geocentric system is conducted and 

it allows testing the radar as an autonomous measuring device 

that measures the range to the spacecraft in a certain 

coordinate system and then matches the measurement result 

with the estimated time suggested by this system. It is shown 

that practically the same result is obtained in the station 

coordinate system for the mean time between the signal 

emission and the reception relative to the calculated point that 

does not coincide with the radar location but changes its 

position with the measured signal delay depending on the time 

of the day and time of the year. It is established that when the 

range and the velocity in the station coordinate system (active 

operation mode) are measured simultaneously, the radial 

velocity is calculated relative to the target point, while the 

measured value depends on the angular direction set for the 

spacecraft. In the passive mode of operation (one-sided 

emission), to calculate the direction and the components of the 

velocity vector accurately, one needs a knowledge of the 

spacecraft coordinates and the scalar of orbital velocity. 

 

Index Terms— Space-time relationships, spacecraft, range, 

velocity, monostatic radar 
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I. INTRODUCTION 

Today, the problem of a deep space exploration is becoming 

more and more relevant [1]-[3]. A necessary condition for 

its solution is a reliable navigation and ballistic support of 

the long-range spacecraft flights [4]. To measure the 

current navigation parameters of spacecraft movement, 

laser and radar facilities are used presently. The modern 

procedure for analyzing space-time relationships in radar 

measurements of spacecraft motion parameters is based on 

the use of the basic principles of the theory of relativity [5]-

[9]. Within the limits of near space, as a rule, the 

methodology of the special theory of relativity is sufficient 

[6]-[9]. However, for middle and deep space [10], it may be 

necessary to use the methodology of the general theory of 

relativity [5], [6]. 

The basic provision of the special theory of relativity is 

the principle of relativity. Under this, it is important to 

define an inertial system as a system that moves freely in 

the absence of any external influences (gravitational fields, 

accelerating forces, etc.). The general theory of relativity 

considers the mutual motion of systems that cannot be 

considered inertial. The practical conclusions of this theory 

relate to the motion with constant acceleration in a 

gravitational field or under the action of another 

accelerating force. An example of such a motion is a 

circular motion with a constant angular velocity (constant 

tangential acceleration) under the action of gravitational 

forces or due to a rigid mechanical connection between the 

two systems. 

As it is well known [5], [6], in two inertial systems 

moving with relative velocity v, the coordinate systems 

 ZYX ,,  and  ZYX  ,,  can be introduced so that their 

axes X and X   are parallel to the vector v. The time origin, 

that is 0t , in each of the systems can be conditionally 

attributed to the moment when the planes  ZY ,  and 

 ZY ,  coincide. In this case, the principle of relativity 

concerning the space and time relationships can be 

formulated in the form of two postulates [6]: 

1) the velocity of light in free space is unchanged in each 

of the systems; 

2) the time t  of an event at the point  zyx  ,,  in one of 

the systems is related to the time t and the coordinates 

 zyx ,,  of the other system by the Lorentz transformations: 
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In (1), the notations are the following: v is the scalar of 

system relative motion velocity; c is the velocity of light in 

free space; cv ; 0y , 0z  is the position of the point 

 0,0,0O  zyx  in the coordinate system  ZYX ,, . 

 The movement of real physical objects within the solar 

system cannot be considered inertial in the general case 

[11], [12]. Therefore, the possibility of applying the Lorentz 

transformations as approximate relations should be 

carefully evaluated in each of the cases separately. The 

system  ZYX ,,  should be considered inertial if its motion 

in the coordinates of another known inertial system is 

uniform and rectilinear. When approximating the motion of 

certain systems, the system related to the Sun should be 

referred to as the known inertial one, because accounting 

for any external influences on this system it is still 

impossible. 

The real measurement results in a monostatic radar 

system are the arrival time rt  of the relayed signal, its 

delay dt  relative to the emission moment pt  and the 

Doppler shift df  of the carrier frequency from the emitted 

signal frequency 0f  [13], [14]. 

Thus, two approaches to the solution of the tasks of the 

radar measurements can be considered: 

1) the radar provides the values of rt , dt , df  (with 

available corrections for the state of the propagation path), 

while the interpretation of the measurement results for the 

estimation of the spacecraft motion parameters is carried 

out at the stage of data processing; 

2) the radar is considered as an autonomous measuring 

device that provides the values of the range and the radial 

velocity in a certain coordinate system and at a certain time. 

The first approach is currently widely used for measuring 

the motion parameters in the near and middle space. It has 

been developed both in several monographs and practical 

approaches for processing trajectory measurement data 

[15]-[17]. 

In this paper, the second approach is tested, as it appears 

to be more natural in the context of formulating the tasks of 

radar trajectory control devices and providing the 

requirements for their efficiency. 

II. THE SPACE-TIME RELATIONS UNDER CURVILINEAR 

MOTION IN AN INERTIAL SYSTEM 

To begin with, one presents the motion of some system 

 ZYX  ,,O  in the inertial reference system  ZYX ,,O . 

The law of motion of the point O  that is the origin of 

coordinates of the system O  is considered specified in the 

form of the radius vector  tr  and the velocity vector  tv  

(Fig. 1). 

As the movement of the point O  in the coordinate 

system O is known, the one-to-one relationships can be 

determined between the readings of the clock set at the 

origin of coordinates of the system O (point O) and the one 

at the point O , and thus no resorting to the methods of the 

general theory of relativity is required. For example, this 

relation can be implemented by observing the clock at the 

point O  from the point O on the television channel and 

taking into account the delay that is known at each time 

moment. 

In order to determine this relation, one studies the 

successive positions of the point O  separated by a 

sufficiently small interval t . This makes it possible to 

substitute the real law of motion by the approximate 

polygonal function with the nodes at the points it . Then, 

within each partial interval t , the system O  can be 

considered as an inertial one, and thus the interval t  in 

this system corresponds to the interval 

 

21 ii tt  ,        ctii v .  

 

Thus, the moment nt  in the coordinate system O 

corresponds to the moment 

 





n

i

in ttt
0

2
0 1   

 

at the point O , where 0t  is the fixed time shift (value of t  

at 0t ). 

Moving to the limit, while 0t , one gets: 

 

  

t

ctt

0

22

0 d1 v . (2) 

 

In particular, in a circular motion with a constant angular 

velocity, the scalar of linear velocity remains unchanged: 

 

Fig. 1.  The movement of the system O' in the inertial system O. 
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  const vtv  and 

 

2
0 1  ttt ,      cv . (3) 

 

It must be emphasized that in a non-inertial system at 

different fixed points in space, the flow of time may not be 

the same. Further, the value of t  denotes the clock at the 

origin of the coordinates of the system O  (that is, at the 

point O ). 

It is presupposed that the event A occurs in the system 

O  at the moment ct . The direction of the X  , Y  , Z   

axes in the system O  is set based on the terms of the task. 

The coordinates of the point of the event in this system are 

denoted as x , y , z . Our task now is determining the 

parameters ct , x, y, z of the same event in the system O. 

Thus one should consider the auxiliary coordinate system 

 ZYX 
~

,
~

,
~~

O  obtained by rotating the X 
~

, Y 
~

, Z 
~

 axes so 

that the X 
~

 axis coincides with the direction of the current 

velocity vector  tv  corresponding to the moment ct , while 

the Y 
~

, Z 
~

 axes together with X 
~

 axis form a right-handed 

coordinate system (Fig. 1). The coordinates of the point of 

the event in the system O
~

 are denoted as x ~ , y~ , z ~ . 

It is also useful to introduce an auxiliary system O
~

, the 

coordinate axes of which are obtained by rotating the axes 

of the system O with a parallel transfer of the origin of 

coordinates to the point O
~
  corresponding to the moment 

ct  so that the systems O
~

 and O
~

 coincide at this moment. 

To pass from the system O
~

 to the system O
~

, one should 

conditionally assume that, when they coincide, the time in 

each of the systems is equal to zero, that is, 0
~~
00  tt . It is 

obvious that the moment of the event A in the system O
~

 is 

also zero: 

 

0
~~
0  ttc , (4) 

 

and the current time t
~

 in the system O
~

 differs from the 

current time t in the system O by the t  value 

corresponding to the moment ct  in the system O . 

In this case, as it follows from (1), for the system O
~

 one 

can obtain: 

1) the time of the event 

 

   tcxtvtc
22 1~~

 ,         ttv v ; (5) 

 

2) the space coordinates 

 

 txx 21~~  ,      yy  ~~ ,      zz  ~~ . (6) 

 

In the system O, the moment of the event is 

 

ttt cc
~~

 , (7) 

 

while the spatial coordinates x, y, z can be determined by 

the common formulas for transforming Cartesian 

coordinates. 

It is assumed now that the moment of the event ct  and 

the coordinates of the point  zyx ,,  are specified in the 

system O. Then one defines the same parameters ct , x , 

y , z  of the event in the system O . The solution to the 

problem may require focusing on the diagram presented in 

Fig. 2, where it is now necessary to carry out the transition 

from the known values x~ , y~ , z~  to the desired ones that 

are x , y , z . It should be noted that, in this case, the 

condition (4) must be satisfied, i.e. when recalculating the 

value ct
~

 in terms of the value ct 
~

, one should get zero: 

 

   01~~~ 22  cxtvtt cc  or   0~~ 2  cxtvtc . (8) 

 

There, according to (7), 

 

ttt cc 
~

. (9) 

 

Thus, to reduce the solution to the diagram presented in 

Fig. 2, it is necessary to choose the appropriate value of t  

that determines all the parameters of the relation (8). 

In general case, the value of t  cannot be analytically 

found from the condition (8). For this purpose, the iteration 

algorithm can be applied, for example, as follows. First, 

taking into account (9), the condition (8) can be presented 

in the form: 

 

      02  ctxtvtttI c .  

 

At the initial iteration step ( 0n ), it is assumed that 

 

Fig. 2.  The descriptive diagram for determining the relationships between 

the parameters of the event A in the systems O and O'. 
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ctt  . The order of calculations at the n-th step is 

presented as 

 

   

     .ˆ,ddˆ

,0~ˆ

ˆ

2
11

nnnttnn

nncn

tttttItIt

ctxtvtt

n







 (10) 

 

The iterations continue until the required accuracy is 

achieved (for example, until the step at which the value of 

nt  becomes commensurate with the computer accuracy). 

It should be noted that iterative calculations are feasible to 

use when all the functional relations included in (10) can be 

expressed analytically. 

The order of calculations after choosing the value of t  is 

 

    
.~~,~~

,1
~~~ 2

zzyy

tttvxx c




 (11) 

 

The  zyx  ,,  coordinates of the point of the event in the 

system O  are determined by the angular rotation of the 

system O
~

 axes, and the moment of the event ct  

corresponds to the moment t  in the system O. 

As an example, one now introduce a circular motion with 

the constant angular velocity Ω around the Z axis in the 

0zz   plane of the system O (Fig. 2). There, for simplicity 

of relations, it is assumed that the systems O  and O
~

 

coincide, so that, instead of x ~ , y~ , zz ~~  , one can 

directly examine the x , y , z  coordinates. Then, 

assuming that in (3) 00 t , the current time relation in the 

systems O and O  can be obtained in the form of 

21  tt , where cv , Rv  , and R is the radius 

of rotation. 

When setting the parameters ct , x , y , z  of the event 

A in the system O , for the corresponding parameters in 

the systems O
~

, O one gets: 

 

21  ctt .  

 

The angle of sight of the point O  in the system O at the 

moment t  is 

 

21  ctt . (12) 

 

Moreover, under (5), (6), the following relations hold: 

 

22 1
~

 cxvtc ,   
21~  xx ,   yy ~ ,   zz ~ .  

 

When passing from the system O
~

 to the system O, 

taking into account (11), one can write 

 

   

  .1
~

,~

,cos~sin~,sin~cos~

22
0 



cxvttttzzz

RyxyRyxx

ccc

 (13) 

 

The inverse transformation of the coordinates of the 

event A from the system O to the system O  in the 

considered case can be carried out by the iteration method. 

Here the condition (8), taking into account that constv , 

can be written as 

 

0~ 2  cxvttc . (14) 

 

After application of (12), it follows from (13) that 

 

  

t

ctt

0

22

0 d1 v . (15) 

 

Then, by substituting (15) into (14), one gets the equation 

for t  taking the form 

 

    0sincos 2  ctytxvtttI c . (16) 

 

The equation (16) does not have an analytical solution, 

but it can be solved by the iteration method. As above, at 

the first iteration step ( 0n ) it should be assumed that 

ctt  . Then the calculations produced at the n-th step are: 

 

  2
11 sincosˆ ctytxvtt nncn   ,  

 
  1ˆcosˆsin

sincosˆ

2

2






ctytxv

ctytxvtt
t

nn

nnn
n ,     nnn ttt  ˆ ,  

 

and the further course of transformations is: 

 

Rtytxy  cossin~ ,      nnc ttt  ˆ~
,  

  21
~~  ctvxx ,      yy ~ ,      

21  tt .  

 

III. THE RANGE MEASUREMENT 

A. The General Provisions 

The three coordinate systems are considered: the 

heliocentric (inertial) system gO , the geocentric 

(conditionally “frozen”) system eO , and the coordinate 

system of the station sO  on the Earth's surface. 

The origin of coordinates of the system gO  coincides 

with the center of the Sun, the gX , gY  axes of coordinates 

are within the ecliptic plane. The eZ  axis of the system eO  

is directed from the center of the Earth to the north pole, 

while the eX  axis is perpendicular to eZ  within the 

ecliptic plane (and, besides, the gX  axis is chosen parallel 

to the eX  axis) and the eY  axis forms a right-handed 
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coordinate system with the eX  and eZ  axes. The sZ  axis 

of the system sO  is directed from the center of the Earth to 

the point where the station is located, while the sX  axis is 

collinear with the current vector of the station rotation 

around the Earth's axis, and the sY  axis adds the system to 

the right-handed one. 

The notations that should be introduced here are: e , 

eR  are the angular velocity and the radius of rotation of the 

Earth around the Sun; s , sR  are the angular velocity and 

the radius of rotation of the station around the Earth axis. 

The radar range measurement includes determining the 

probe signal delay and registration of the measurement 

result at a certain moment in time. According to the 

problem statement defined in Section 1, the measured value 

of the range and the moment of the time registration of the 

result should refer to the station coordinate system. And the 

procedure for recalculating the measurement results for 

other systems should be determined. 

The station located on the Earth's surface is in a complex 

three-dimensional motion in the inertial heliocentric system 

gO . It should be noted that the moment of emission, the 

moment of reception as well as the spatial coordinates of 

the station are different in each of the three systems sO , 

eO , gO . The problem of measuring the range and the time 

registration in the system sO  can be solved through the 

examination of the electromagnetic wave propagation in a 

non-inertial system. This propagation appears anisotropic 

by its direction, and that causes the radio beam refraction in 

such a system. Therefore, it is more convenient to use 

another method. 

If one recalculates the moments of emission and 

reception of the signal by the station and the spatial 

coordinates of the station at these moments for the selected 

inertial system, then the task solution in this system is not 

difficult. This is because under the assumed isotropic 

propagation medium the wave propagates isotropically at 

the group velocity gv . Otherwise, one can use the value of 

the velocity of light in free space c for the case when the 

influence of the real propagation medium is taken into 

account by introducing an appropriate correction for the 

delay. The inverse recalculation of the results obtained in 

the inertial system into the station coordinate system 

finalizes the task solution. 

It is obvious that in any inertial system, in which the 

movement of the station is specified, the coordinates of the 

points of emission and reception do not necessarily coincide 

and the delay interval defines the total range passed by the 

radio beam to the spacecraft and back. In this case, the 

geometrical locus of the points of the possible spatial 

position of the spacecraft is an ellipsoid with focuses at the 

points of emission and reception, and each point of the 

ellipsoid corresponds to its moment of time registration (the 

moment of “contact” between the spacecraft and the probe 

beam). Recalculation of the results for the station 

coordinate system determines a new geometrical locus of 

points in this system and, in general, new points of time 

registration. 

 

B. Inertial Earth’s Motion 

To start with, one addresses the problem of measuring the 

range, assuming the system eO  to be inertial. And besides, 

the heliocentric system gO  may not be considered. The 

radius of rotation of the point of station location near the 

Earth's axis sR  is determined by its latitude θ as follows: 

 cosls RR , where lR  is the local Earth's radius. If the 

moment of coincidence of the directions of the axes sX , 

eX  in both systems is taken as zero, then the motion of the 

station in the system eO  can be specified by the relations 

(Fig. 3): 

 

esses tRx  sin ,  esses tRy  cos ,   sinles Rz . (17) 

 

It is assumed that the moment of reception of the 

response signal sr tt 2  and the delay sd tt   are 

measured in the system eO , so that the moment of 

emission is sssp tttt  21 . The emission and reception 

occur at the same point sO  ( 0sx , 0sy , 0sz ). The 

next step is to determine the spatial coordinates of the 

points of emission and reception and the corresponding 

time moments in the system eO . According to the 

procedure presented in Section 2, in the system eO  one 

gets 

 

2
11 1  se tt , 2

22 1  se tt , 21  se tt , (18) 

 

where cv  and ssRv  . 

 

Fig. 3.  The heliocentric coordinate system Oe and the coordinate system of 

station Os on the Earth's surface. 
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Introducing the angles of sight of the emission and 

reception points 1  and 2 , according to (17), in the plane 

ese zz   one can write: 

 

.,cos

,cos,sin,sin

2122

112211

eseese

sesese

zzzRy

RyRxRx




 (19) 

 

Under cvg  , the total range is determined as follows 

 

etcr  . (20) 

 

Thus, the ellipsoid determining the possible position of the 

spacecraft in space has the focuses at the points 

corresponding to the coordinates (19), the center at the 

point 

 

  2210 eee xxx  ,      2210 eee yyy  ,    ese zz 0 ,  

 

and semi-major and semi-minor axes 

 

2ra  ,         2sin2 222
ess tRrb  . (21) 

 

The moment of time registration corresponding to the 

point of the ellipsoid with the coordinates ex , ey , ez  is 

determined by the relation: 

 

      czzyyxxtt eeeeeeeeo
2

1
2

1
2

11  .  

 

The transfer of the time registration moment eot  and the 

spatial coordinates ex , ey , ez  from the system eO  to the 

system sO  is carried out for each point of the ellipsoid 

according to the procedure similar to the one presented in 

Section 2. This recalculation provides a sphere with the 

radius b  and the center shifted from the origin. Each point 

of this sphere corresponds to its own moment of time 

registration sot . Thus, it is generally impossible to 

determine the range from the station to the spacecraft at a 

certain point in time by the measurement results, since, 

depending on the angles of sight of the spacecraft, these 

values are different at the same moments of emission st1  

and reception st2 . 

In order to demonstrate the materiality of the noted 

condition, an example of measurement setting for the 

following parameters is suggested: 

– the local radius 6372lR  km (mean Earth’s radius), 

– the period of Earth's rotation 24sT  hours (86400 s), 

– the latitude of the station location 56  (latitude of 

Moscow), 

– the station rotation radius  cosls RR , 

– the range from the Earth’s center to the plane of 

rotation  sinles Rz , 

– the moments of emission and reception 10001 st  s, 

10002 st  s, 

– the group propagation velocity 
5103  cvg  km/s. 

The results of calculating the range soR  are presented in 

Fig. 4a in the form of graphs depending on the azimuth at 

the fixed elevation angles δ. Curve 1 corresponds to 0 , 

curve 2 – to  2 , curve 3 – to  . In Fig. 4b, the 

moments of registration of measurement results sot  

corresponding to the same angular directions are shown. 

It follows from Figs. 4 that, if the changes in the moment 

of registration in different directions can be considered 

insignificant, then the variations in the radial range reach 

about 17 km. To determine the real range, the angular 

target designation is required with an accuracy of tenths of 

an angular minute. However, it is possible to specify the 

point m against which both the radial range and the 

moment of registration of the measurement data do not 

depend on the angular direction at the set moments of 

emission and reception. Then one introduces the system 

mO  moving in the system eO  uniformly and rectilinearly 

 
a) 

 
b) 

Fig. 4.  The dependences of both the variations of the measured distance Rso 

between the station and the spacecraft (a) and the moments of registration of 

the measurement results tso upon the spacecraft azimuth (b) (the inertial 

motion of the Earth): 1 – δ = 0; 2 – δ = π/2 - Θ; 3 – δ = Θ. 
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and intersecting the points of emission 1 and reception 2 at 

times et1 , et2  (Fig. 3). It is obvious that its velocity in the 

system eO  with the space-time coordinates (18), (19) is 

 

  eessm ttRv  2sin2 .  

 

Recalculation of both the points of the ellipsoid that 

determines the possible position of the spacecraft in the 

system eO  and the corresponding moments of registration 

for the system mO  provides, according to (21), the sphere 

with the radius 

 

   2sin2 222
essem tRtcbR   (22) 

 

and the moment of registration mot  which is constant for 

each point of the sphere. 

All the values included in (22) are determined by the 

time of reception st2  and the signal delay st  measured at 

the station location that is described by the expressions 

(18), (19). Thus, the measurement result at the station 

determines the range mR  at the moment mot  relative to the 

point m located in the plane of rotation  ee YX ,  and at the 

distance 

 

  2cos1 essm tRd    

 

from the station in the direction of the axis of rotation. 

The procedure for calculating the range measurement 

results by the observation data st2  (moment of reception) 

and st  (delay) at the station, in the general case, should 

be as follows: 

– determination of the moment of registration of the 

measured value of the range as 

  22 212 ssssmo ttttt  ; 

– determination of the coordinates of the point of 

registration of the range smx , smy , smz  in the station 

system sO  according to the algorithm described by the 

expressions: 

 

 cosls RR ,      cRss ,      
21  se tt ,  

  2
12 1222  sses tt ,   0smx ,  

   sincos1ssm Ry ,        coscos1ssm Rz ;  

 

– calculation of the measured range value according to 

(22):    222
sin2 sem RtcR . 

 

C. Circular Earth’s Motion 

It is assumed now that the center of the Earth makes a 

circular motion around the Sun with constant angular 

velocity 315360002e  rad/s and radius 8105.1 eR  

km, while the axis of its own rotation moves parallel. Here 

the heliocentric system gO  should be considered as 

inertial, and the procedure presented in Section 2 can be 

used in the calculations for an arbitrary curvilinear motion 

(in this case, such a motion is the motion of the coordinate 

system of the station sO ). 

For further analysis, first of all, it is necessary to describe 

the law of motion of the station in the system gO . The 

movement of the station around the Earth's axis should still 

be specified in the system gO  following (17). For the 

generality of consideration, one can additionally introduce 

the phase s  of the station position at the moment et . 

Then the relations (17) take the form 

 

 sesses tRx  sin ,      sesses tRy  cos ,  

 sinles Rz .  

 

It is also convenient to introduce the auxiliary coordinate 

system eO , for which the eX   axis coincides with the eX  

axis of the system eO  while the eZ   axis is perpendicular to 

the ecliptic plane. If the angle of deviation of the Earth's 

axis from the normal to the ecliptic plane is denoted by ψ, 

then the coordinates of the station in the system eO  are 

 

 sesses tRx  sin ,  

   sinsincoscos lsesses RtRy ,  

   cossinsincos lsesses RtRz .  

 

It is assumed that the time in the systems eO  and eO  is 

the same. 

The motion of the center of the Earth in the system gO  

can be written as 

 

 egeege tRx  sin ,  egeege tRy  sin , 0gez ,  

 

where e  is the phase of the Earth's position at the 

moment 0gt . 

The task of recalculating the movement of the station 

from the system eO  to the system gO  corresponds to the 

example of circular motion in the inertial system described 

in Section 2. In this case, “event” should be considered as 

the location of the station at a certain point in space and at 

a certain moment in time for each of the systems. The 

relation between the current times in the systems eO  ( eO ) 

and gO  is determined by the ratio: 

 

21 ege tt  ,  

 

where cvee  , eee Rv   is the linear velocity of the 

Earth around the Sun. 

Following the procedure described in the Section 2, one 
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gets: 

1) the angle of sight of the center of the Earth in the 

system gO  at the time est  fixing the position of the station 

in the system eO  is 

 

eeeset  21 ; (23) 

2) the station coordinates in the auxiliary system eO
~

 (in 

Section 2, such the system is O
~

) are 

 

;~,cossin~
,sincos~

eseseseses

eseses

zzyxy

yxx




 (24) 

 

3) the time in the auxiliary system gO
~

 (in Section 2, 

such the system is O
~

) is 

 

22 1~~
eesegs cxvt  ; (25) 

 

4) the station coordinates in the system gO
~

 are 

 

21~~
eesgs xx  ,      esgs yy  ~~ ,      esgs zz  ~~ ; (26) 

 

5) the time in the system gO  is 

 

gseesgs ttt
~

1 2  ; (27) 

 

6) the station coordinates in the system gO  are 

 

 
  .~,cos~sin~

,sin~cos~

gsgsegsgsgs

egsgsgs

zzRyxy

Ryxx




 (28) 

 

Thus, sequential recalculation 

ggeee OOOOO 
~~

 makes it possible to relate the 

coordinates of the station esx , esy , esz  at the time est  of 

the geocentric system eO  with the coordinates of the 

station gsx , gsy , gsz  at the time gst  of the heliocentric 

system gO . 

The next step is to determine the relation between the 

current time st  at the station, that is, in the system sO , 

and the current time gt  in the heliocentric system gO . 

According to (2), calculating the time dependence of the 

scalar of the station motion vector in the system gO  is 

required for it. Using the sequential transitions (23), (24), 

(26), (28), the coordinates gsx , gsy , gsz  can be directly 

expressed in terms of the time est  in the system eO . In 

turn, the relation between est  and gst  is specified by the 

expression (27). Then, for the components of the velocity of 

the station movement xv , yv , zv  in the system gO , one 

can write: 
 

,
d

d

d

d

d

d

,
d

d

d

d

d

d
,

d

d

d

d

d

d

gs

es

es

gs

gs

gs
z

gs

es

es

gs

gs

gs
y

gs

es

es

gs

gs

gs
x

t

t

t

z

t

z
v

t

t

t

y

t

y
v

t

t

t

x

t

x
v





 (29) 

and the scalar of the velocity vector is 
222
zyxgs vvvv  . 

The derivatives (29) can be easily calculated and are 

therefore omitted here. 

The relations provided allow making point calculations 

of the station motion parameters in the system gO  at a 

specified time point est  in the system eO . However, for the 

calculations to be effective, the expression of these 

parameters is directly required as a function of the current 

time gt  in the system gO . To do this, relevant 

approximations of the dependences  ggs tx ,  ggs ty , 

 ggs tz ,  gx tv ,  gy tv ,  gz tv  can be used. They can be 

obtained by the et  point values within the required time 

interval, for example, using power polynomials. It should 

be noted that for the convenience of integration in (2) the 

approximation of the expression 

      2222
11 ctvcttJ ggsggg  v  is required. In 

so doing, the dependence  gs tt  and the inverse dependence 

 sg tt  can be also obtained. 

If all the necessary relations are presented analytically, 

then, following the general procedure presented in Section 

2, the times of signal emission st1  and reception st2  by the 

station can be recalculated in the corresponding times gt1 , 

gt2  of the system gO . Both of these events occur at the 

same point of the system eO , namely, at its origin. In the 

system gO , the points of emission and reception are 

determined by the radius vectors  ggsg t11 rr  , 

 ggsg t22 rr   based on the analytical approximations which 

are obtained within the required time interval. 

As in the case of the inertial motion of the Earth 

(Subsection 3.B), the data obtained determines the 

geometrical locus of points of the possible position of the 

spacecraft in the system gO . This locus is an ellipsoid of 

revolution with focuses on the points of emission and 

reception and the total range   gggg tcttcr  12 . Semi-

major and semi-minor axes, similarly to (21), are 

determined by the expressions 2gra  , 

   22
22 gg rrb  , where gr  is the range between 

the points of emission and reception in the system gO . 

And the moments of time registration of ellipsoid points are 
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      czzyyxxtt ggoggoggoggo
2

1
2

1
2

11  ,  

 

where gox , goy , goz   are the coordinates of the points of 

the ellipsoid. 

Similarly to Subsection 3.B, the conditional system mO  

can be introduced that moves along the semi-major axis of 

the ellipsoid with the velocity gggm trv   and 

sequentially coincides at the corresponding times with the 

points of emission and reception. For this system, at the 

moment   2210 ggg ttt   of coincidence of its origin with 

the center of the ellipsoid   2210 ggg rrr  , the 

geometrical locus of points of the possible position of the 

spacecraft is a sphere with the radius bRm   and the fixed 

moment of registration of the measurement results mot . It 

determines the coordinate system in which the range is 

calculated based on the moments of emission and reception 

measured by the station. 

The coordinates of the center of the ellipsoid (point m) 

can be recalculated into the coordinate system of the station 

sO  according to the procedure presented in Section 2 

(where “event” refers to the coincidence of the origin of 

coordinates of the system mO  with the center of the 

ellipsoid of the system gO  at the time gt0 ). Calculations 

demonstrate that, at the same time moments st1 , st2 , these 

coordinates depend on both the time of day and the time of 

year. 

In Figs. 5, there are shown examples of such a 

calculation in the form of parametric graphs of the 

coordinates smx , smy  (Fig. 5a) and smx , smz  (Fig. 5b) of 

the point m in the station system for the delay of 

2000 dt  s. The parameter is the current daily time st . 

The points mark the noon ones. On the X, Y curves, the 

time passing corresponds to the counter-clockwise 

direction, while on the X, Z curves – to the clockwise 

direction. 

The graphs are plotted based on the location of the 

station at the latitude of Moscow for different times of the 

year. Blue lines correspond to the middle of winter, black 

lines – to spring or autumn (equinox), and red lines – to the 

middle of summer. As one can see from Figs. 5, the initial 

point of reference of the range by the measured delay is 

significantly shifted depending on the time of day and time 

of year. It results from the change in the law of motion of 

the station in the inertial heliocentric system. 

Although, in general, the system sO  does not coincide 

with the system mO , however, the calculations under the 

conditions specified above demonstrate that the difference 

between the times of registration of the range measurement 

result mR  and the value   2210 sss ttt   does not exceed 

about 1 μs in all cases. At the same time, the change in the 

value of mR  is not reliably determined. 

further course of transformations is: 

IV. THE RANGE MEASUREMENT 

A. Preliminaries 

Concerning the problem of estimating the velocity of a 

spacecraft by a monostatic radar, the objective result of 

observation is the current value of the carrier frequency of 

the received signal. In so doing, the space-time relations in 

the radio channel should provide an appropriate 

interpretation of the measurement results, commonly 

referred to as Doppler shift. It is obvious that in this case, 

the result of radio observation can provide only one of the 

components of the motion vector. As a rule, this term refers 

to a radial component, i.e. the projection of the velocity 

vector on the radial direction relative to the station. 

Determination of the radial component of the velocity 

vector by the measurement data of the Doppler shift is 

unambiguous for the inertial motion of the station. 

However, it is necessary to clarify the interpretation of the 

measurement results for the conditions of radio observation 

in middle and deep space, when the moments of emission 

and reception are separated by time intervals, during which 

the non-inertia of the system related to the station can be 

 
a) 

 
b) 

Fig. 5.  The parametric graphs of the coordinates xsm, ysm (a) and xsm, zsm (b) 

of the point m in the station coordinate system under the delay Δtd = 2000 s 

(the circular motion of the Earth): 1 – winter; 2 – equinox; 3 – summer. 
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significantly felt. 

Below, one of the possible interpretations of the relation 

between the measured value of the frequency of the signal 

received by the station and the components of the spacecraft 

velocity is provided. 

 

B. Repeated Doppler Shift in an Inertial System in 

Retransmitting (Active Mode) 

It is suggested that the spacecraft arbitrarily moves in an 

inertial system with a certain law of range variation  tr . 

The station is located at the origin of the coordinates of the 

system and emits a harmonic signal with the frequency 0  

so that the phase of the emitted signal is   tt 00  . The 

signal phase at the point of the current position of the 

spacecraft is 

 

       ttttt 10101  , (30) 

 

where     ctrt 1  is the current signal delay. 

If when retransmitting the frequency is transformed 

according to the ratio nmq  , then the retransmitted 

signal possesses a phase (to within a constant shift) 

   tqt 11  . In turn, the phase of the signal received by 

the station is     ttt 212  , where  t2  is 

determined by the relation 

 

     cttrt 22  . (31) 

 

Thus, the signal received by the station has the phase 

 

       cttrttqt 2202  .  

 

The phase derivative (instantaneous frequency) is 

 

          
       . 1

1

220

22202

ctttvcq

ctttvttqt

r

r




 (32) 

 

In (32),  tvr  is the spacecraft radial velocity (range 

derivative);  t2  is the retransmission delay derivative. 

From (31), it can be written 

        ctttvt r 222 1  , and from here one gets 

 

        ttvcttvt rr 222  . (33) 

 

Thus, after substituting (33) into (32), one produces 

 

 
  
  ttvc

ttvc
qt

r

r

2

2
02




 . (34) 

 

According to (34), the value of the received frequency at 

time t is determined by the radial velocity of the spacecraft 

at the time of retransmission  tttr 2 . Thus, when 

measuring the radial velocity, it is necessary to know the 

range to the spacecraft at the time of retransmission (31). 

The required accuracy of knowing the range (delay in the 

retransmission channel) depends on the expected value of 

the radial acceleration. 

 

C. Doppler Shift in the Inertial System with One-Sided 

Emission (Passive Mode) 

The measurement of the radial velocity with one-sided 

emission by the spacecraft is hampered by inaccurate 

knowledge of the initial frequency of the onboard signal. 

However, in some cases, while retaining the parameters of 

the spacecraft's free motion (state vector) over significant 

time intervals, the influence of frequency deviations from 

the nominal value can be significantly reduced by refining 

the state vector. Such a study has been carried out, in 

particular, during the experiments with the spacecraft 

“Granat” [18]. Therefore, consideration of space-time 

relations for this case is of practical interest. 

When the signal emission is one-sided, it is necessary to 

consider two independent systems: the inertial system O, in 

the center of which the receiving station is located, and the 

system O  that is non-inertial one in the general case and 

is related to the spacecraft. 

The relation between the current time t  in the system 

O  and the current time t in the system O specified by the 

relation (2) one denotes as  tt  . In so doing, the 

current phase of the onboard harmonic signal   tt  00  

in the system O takes the form       ttt  001 . 

Similarly to (30), the phase at the receiving point (origin 

O) is        ttttt 20212   while the 

instantaneous frequency is 

       tttt 2202 1  , where     ttt dd . 

It follows from (2) that 

      22

22 1 ctttt  v , where  tv  is the 

scalar of the spacecraft relative velocity vector at time t. 

Therefore, according to (33), one gets 

 

 
  

  ttvc

cttc
t

r 2

22

20

2

1






v
. (35) 

 

As it can be seen from (35), the measurement of the 

radial velocity in this mode presupposes the assignment of 

the scalar of the spacecraft orbital velocity. The last 

multiplier in the numerator of (35) captures the so-called 

“transverse Doppler effect” (frequency shift at   0tvr ). 

Formally neglecting this term can lead to significant errors. 

However, under conditions of inaccurate knowledge of the 

frequency 0  in separate measurement sessions, it should 

be considered acceptable to refer to the frequency deviation 

from the nominal value. It is also obvious that the value of 

the spacecraft range (delay  t2  in the emission channel) 

should be obtained using other data. 
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D. Doppler Shift in an Active Mode of Operation with 

the Circular Motion of the Earth 

Now it is time to consider the motion of two objects in some 

inertial system (for example, a heliocentric one) such as a 

measuring station and a spacecraft. As the specified 

conditions, one takes the two-dimensional function 

 21,r  determining the range between the point of 

spacecraft position at the moment 1  and the point of 

station position at the moment 2 . It should be noted that 

in Subsections 4.B, 4.C this function degenerates into the 

one-dimensional one since the position of the station is 

assumed to be unchanged and it is the origin of the 

coordinates of the system. And besides, the function 

 21,r  can be related to the time function 

 

    cr 2121 ,,  . (36) 

 

If a harmonic signal with the frequency 0  is emitted in 

the system sO  related to the station so that the signal phase 

is 

 

  ss tt 00  , (37) 

 

then in the heliocentric system gO  it corresponds to the 

frequency 

 

   gs tt  00
~ , (38) 

 

where     ggg ttt dd , and the function  gt  

establishes the relation between the current times st  and 

gt : 

 

 gs tt  . (39) 

 

It should be noted that there is a relation between the 

laws of change in the signal phase at the points of emission, 

retransmission and reception, taking into account the 

current values of the signal delay  t1 ,  t2  in the request 

and retransmission paths, but now in the heliocentric 

system, where the current time notation t is temporarily 

used instead of gt . 

When calculating  t1 , one should take t1 , 

 tt 12   for the current moment t. Accordingly, when 

calculating  t2  it can be written  tt 21  , t2 . 

Therefore, taking into account (36) 

 

    tttt 11 ,  ,          tttt ,22  . (40) 

 

The next step is to determine the signal phases  t1  and 

 t2  at the points of retransmission and reception. Taking 

into account (36)-(40), for  t1  and  t2  it can be written 

 

    ttt 101
~  ,          ttt 212  . (41) 

 

From here, the current derivative of the phase at the 

receiving point is determined as 

 

       tttt 2212 1~  ,  

 

while according to (41) 

 

    tt 101 1~  .  

 

To simplify the subsequent expressions, one denotes 

 

 
 

b

a
t
t

ba tt



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2
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1

,
, ,     

 

b

a
t
t

ba tt







2

12

21
2

,
, .  

 

As in each case, the arguments 1 , 2  (36) in (40) are 

the functions of the current time t, one should introduce 

    ttt dd 11  ,     ttt dd 22  . And besides, taking 

into account (40), one can write 

 

           
        .1,,

,,

11211

2121111

ttttttt

ttttttttt




  

 

From here, it follows that 

 

 
     

  ttt

tttttt
t

12

1211
1

,1

,,




 .  

 

Similarly, one can get 

 

 
     

  ttt

tttttt
t

,1

,,

21

2221
2




 .  

 

The notations here are the following: tt 2  is the reception 

time,  ttt 20   is the retransmission time, 

   tttt 211   is the request time. Then, finally, one 

can obtain 

 

 
 
 

 
 102

202

201

101
01022

,1

,1

,1

,1~,,~

tt

tt

tt

tt
ttt








 . (42) 

 

Otherwise, the expression (42) can be written as 

 

 
 
 

 
 10

20
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01022

,

,

,

,~,,~

ttvc

ttvc

ttvc

ttvc
ttt

s

s

a

a








 . (43) 

 

In (43), the notations are:  10 ,ttva  is the radial velocity of 

the spacecraft at the time of retransmission 0t  relative to 

the point of the station position at the time of emission 1t ; 

 20,ttva  is the radial velocity of the spacecraft at the time 

of retransmission 0t  relative to the point of the station 
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position at the time of reception 2t ;  10,ttvs  is the radial 

velocity of the station at the time of emission 1t  relative to 

the point of the spacecraft position at the time of 

retransmission 0t ;  20,ttvs  is the radial velocity of the 

station at the time of reception 2t  relative to the point of 

the spacecraft position at the time of retransmission 0t . 

It should be noted that all the functions and variables are 

considered in the heliocentric system gO . Therefore, the 

current times of reception and emission in the systems sO , 

gO  are related by the relations (39), that is, 

 

 sg tt 1
1

1
 ,       sg tt 2

1
2

 , (44) 

 

while the frequency  st22  measured at the station 

corresponds to the frequency      gsg ttt 22222
~  . And, 

accordingly, for the time of emission one gets 

   gg tt 1010
~  . 

 

E. Determination of the Velocity Vector Components 

during the Circular Motion of the Earth 

According to (43), the frequency of the received signal is 

determined by four parameters of the station and spacecraft 

motion in the system gO . These parameters can be 

transformed into a more convenient characteristic of the 

spacecraft motion in the system gO  that is the projection of 

the velocity vector onto a certain direction determined by 

three direction cosines or, otherwise, a certain component 

of the velocity vector. 

If one introduces the ratio of the frequencies of the 

signals emitted and received by the station as 

  022  stk , then the relation (43) can be written in the 

form 
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
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 .  

 

As the movement of the station in the system gO  is 

known, the values  ggs ttv 10 , ,  ggs ttv 20 ,  can be calculated 

for a specified position of the spacecraft 

 agagagag zyx ,,r . To calculate the values  gga ttv 10 , , 

 gga ttv 20 , , one uses the following ratio: 

 

 
 
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ggs
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,
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,
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
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





 . (45) 

 

The values  gga ttv 10 , ,  gga ttv 20 ,  are the projections of 

the vector  zgygxgag vvv ,,v  of the spacecraft velocity to 

the direction “station-spacecraft” at the appropriate times. 

The unit vectors of these directions are denoted as 

   111101 ,,, zyxgg nnntt n ,    222202 ,,, zyxgg nnntt n . 

Thus, 

    11110110 ,, zzgyygxxgggaggga nvnvnvttttv  nv , 

  

    22220220 ,, zzgyygxxgggaggga nvnvnvttttv  nv .  

 

In this case, by applying (45), one can obtain 

 

     

 . 1

121212

Kc

nKnvnKnvnKnv zzzgyyygxxxg




 (46) 

 

Denoting 

 

     212
2

12
2

12 zzyyxxg nKnnKnnKnM    

 

and dividing both sides of (46) by gM , one gets 

 

  ggzggyggxg MKcnvmvlv  1 . (47) 

 

The left side of the relation (47) is the component of the 

velocity vector of the spacecraft with the direction cosines 

  gxxg MnKnl 12  ,   gyyg MnKnm 12  , 

  gzzg MnKnn 12  , while the measured value of the 

frequency  st22  determining this component belongs to 

the right side of (47). In vector form, the expression (47) 

can be represented as follows 

 

ggg V
vn . (48) 

 

In further calculations, one implies the joint 

measurement of the range and the velocity, so that the times 

of emission st1  and reception st2  are fixed directly at the 

station and, according to (44), can be recalculated into the 

values gt1 , gt2  in the system  ggg tt 21 ,O . 

The retransmission time gt0  and the unit vectors 1n , 2n  

are specified by choosing a point on the surface of the 

ellipsoid, which determines the possible positions of the 

spacecraft at the fixed times of emission and reception (see 

Section 3). It should be noted that 

 

          ggsggoggsggogg tttttt 1010101 , rrrrn  , 

  

          ggsggoggsggogg tttttt 2020102 , rrrrn  ,  

 

where  tgor ,  tgsr  are the radius vectors of the spacecraft 

and the station at the corresponding times. 

To recalculate the measured components of the velocity 

vector from the system gO  to other systems, it is necessary 
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to introduce general relations for transforming velocities in 

inertial systems. From the Lorentz transformation (1), it 

follows that 
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 (49) 

 

Using other notation, the expression (49) can be written 

in the form 

 

21 cvv

vv
v

x

x
x




 , 

2

2

1

1

cvv
vv

x

yy



 , 

2

2

1

1

cvv
vv

x

zz



 . (50) 

 

It should be noted that in (49), (50), the relative velocity v 

is an algebraic value, i.e. it can take both positive and 

negative values. 

It is time to recalculate the direction of the measured 

component of the velocity vector and its value in its relation 

to the system mO  (see Subsection 3.C). 

Sequential recalculation should be based on the relation 

(47). Expressing the orthogonal components of the velocity 

vector of the reference system in terms of the same 

components of the transformed system, one can obtain a 

new relation, the corresponding normalization of which 

will determine the direction cosines of the measured 

component in this system (left side) and its value (right 

side). 

The order of conversion into the system mO  should be as 

follows: 

1) recalculating the relation (47) into the system geO  

related to the ellipsoid of the spacecraft's possible positions 

and obtained by the angular rotation and parallel 

translation of the coordinate axes of the system gO  in the 

following way: 

 

gegeg vNv
 ,  

 

where geN  is the angular coordinate transformation 

matrix, gev  is the vector of the measured velocity 

component in the system geO , while 

 

ggege V
vn ,      ggege nNn  ; (51) 

 

2) recalculating the relation (50) into the system mO  

applying (49), (51) and taking into account that the velocity 

of the system geO  relative to the system mO  is negative: 
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mmm V
vn ,      mgm MVV  , (52) 
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c
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Calculations using the formulas (48), (51), (52) show 

that the velocity component measured in the system mO  is 

radial, i.e. its direction coincides with the line of sight of 

the spacecraft from the origin of the coordinates of the 

 
a) 

 
b) 

Fig. 6.  The dependences of the change in the results of measuring the radial 

velocity upon the direction to the spacecraft in the coordinate systems Om 

(a) and Os (b) (the circular motion of the Earth, active mode): 1 – noon; 2 – 

evening; 3 – midnight; 4 – morning. 
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system. However, the value of this component depends on 

the chosen direction. This is because in the inertial system 

mO , the points of emission and reception, although they 

are located at the origin of coordinates, have derivatives by 

the time as the station is moving in this system, and the 

projections of movement on different radial directions 

differ. 

In Fig. 6a, the graphs of the change in the measurement 

result are shown for the conditions specified in Section 3, 

Subsection B in the absence of the Doppler shift of the 

frequency measured at the station ( 1k ).The argument of 

the graph is the angle in some section of the ellipsoid of the 

system gO  passing through its semi-major axis. The 

season is mid-summer. The numbers indicate the following: 

1 (blue curve) – noon; 2 (green curve) – evening; 3 (red 

curve) – midnight; 4 (black curve) – morning. 

It can be seen from the presented graphs that the 

measured value of the radial velocity varies within 

cm/s45 . This implies that the direction from the emitting 

point onto the spacecraft during the measurements at the 

time mot  should be taken into account. 

The recalculation of the measured velocity component 

into the system sO  related to the measuring station should 

be carried out based on the general procedure described in 

Section 2 for arbitrary curvilinear motion in the inertial 

system. For the times t  calculated by this procedure, the 

relations (48), (51), (52) can be used in the same way as 

while transforming the measured component of the velocity 

vector in inertial systems, according to the scheme 

ssgg OOOO 
~~

. The calculation results produced in 

the system sO  are shown in Fig. 6b. It is noteworthy that 

these calculations have been carried out under the same 

conditions as the ones  which results are presented in Fig. 

6a. 

In the system sO , the measured value of the velocity 

component already changes within scm68 . In addition, 

it appears to be not radial with respect to the point of the 

station position, but remains practically radial with respect 

to the point m in the coordinate system sO . 

F. Measurement of the Velocity Component in the 

Passive Mode of Operation during the Circular Motion of 

the Earth 

Now one can consider the task of measuring the velocity 

while one-sided signal emission from the spacecraft is 

implemented. It is assumed that the function  21,  (36) 

is still pre-defined. 

In this case, in the system gO  two points in time should 

be considered: the moment of signal reception by the station 

2t  and the moment of emission from the spacecraft 

 2220 ttt  . The moment of reception that takes place 

in the system gO  is calculated directly by the moment of 

measuring the frequency of the signal received at the 

station. 

To determine the moment of emission, it is necessary to 

solve the nonlinear equation of the form 

    tttt 22 ,   in view of the delay  t2  in the 

transmission path. 

The relation between the current time at  at the emitting 

spacecraft and the current time gt  in the system gO  can be 

specified by the relation  gaa tt  . In the subsequent 

relations, the current time in the system gO , just as in 

Subsection 4.D, is denoted by t. Thus, the phase of the 

emitted harmonic signal with the frequency 0  is 

   tt a 01 , while the phase  t2  and the 

instantaneous frequency  t2
~  of the signal received by the 

station are        ttttt a 2022   and 

       tttt a 2202 1~  . 

Similarly to Section 4.C, 

      22

22 1 ctttt aa  v , where   tta 2v  

is the scalar of the spacecraft velocity vector in the system 

gO . In turn, using the notations introduced in Section 4.D, 

the derivate  t2  allows the representation 
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From here, it can be written 
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where  20 ,ttva  is the radial velocity of the spacecraft at the 

time of emission 0t  relative to the point of the station 

position at the time of reception 2t ;  20 ,ttvs  is the radial 

velocity of the station at the time of reception 2t  relative to 

the position of the spacecraft at the time of emission 0t . 

The frequency of the received signal in the system gO  is 

related to the frequency  st22  measured at the station by 

the relation      gsg ttt 22222
~  , where 

    22

22 1 ctvt gag  . Then, taking into account (53), 

one can write: 
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while the value of the measured component of the velocity 
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vector can be presented as     KKcttva  1, 20 . 

The angular direction of the component coincides with 

the direction from the point of the station position at the 

time of reception gt2  to the point of the spacecraft position 

at the time of emission gt0 . Recalculation of the 

measurement results into the station system sO  can be 

carried out in the same way as in Subsection 4.E. 

As an example, the calculation results are provided 

below for a fixed value of the delay in the emission path 

s10002   determining the geometrical locus of points of 

the possible position of the spacecraft in the system gO  in 

the form of a sphere with a radius of about km103 8 . 

In Fig. 7, the change is shown in the measured 

component of the spacecraft velocity relative to the station 

in the central section of the sphere parallel to the XY plane 

of the system gO , while Doppler shift is zero and the 

orbital velocity of the spacecraft is skm20v . The graph 

argument is the angle of sight of the spacecraft in the cross-

section of the sphere from the point of the station location 

in the system gO . The measurement time corresponds to 

the middle of winter. The numbers denote the times of day 

during measurements: 1 (blue curve) – noon; 2 (green 

curve) – evening; 3 (red curve) – midnight; 4 (black curve) 

– morning. 

As it follows from the presented graphs, the result of 

measuring the velocity vector component at zero frequency 

shift measured at the station significantly depends upon the 

angle of sight of the spacecraft. The direction of the 

measured component does not coincide with the radial one 

and, as calculations show, the deviation from the radial 

direction reaches about rad10 4 . 

In Fig. 8, for the same angular directions, there are 

plotted the graphs of changes in the times of registration of 

the measurement results that also demonstrate a significant 

dependence of these times upon the direction to the 

spacecraft. 

Thus, the performed consideration shows that in order to 

accurately measure the velocity vector component in the 

passive mode of operation, the knowledge of the spacecraft 

coordinates is even more necessary. And besides, the one-

sided emission method requires data on the orbital velocity 

module of the spacecraft. 

V. CONCLUSION 

The conducted analysis of the space-time relations for the 

curvilinear motion of the station in the inertial heliocentric 

system allows considering the radar as an autonomous 

measuring instrument that provides the measurement of the 

range to the spacecraft in the certain coordinate system mO  

and the assignment of the measurement result to the 

calculated time mot  in this system. 

Almost the same result is obtained in the coordinate 

system sO  related to the station for the mean time between 

the emission and reception of the signal relative to the 

calculated point m which does not coincide with the origin 

(the station location point) and changes its position with a 

measured signal delay of several kilometers depending on 

the time of day and time of the year. 

With the simultaneous measurement of the range and the 

velocity (active operation mode) in the system mO , the 

radial component of the spacecraft velocity vector is 

determined. Its value depends upon the angle of sight of the 

spacecraft at the same Doppler shift measured at the 

station. In the station coordinate system, the radial velocity 

relative to point m is measured, and the measured value 

also depends upon the angular direction of the spacecraft. 

In the passive mode of operation (one-sided emission), to 

accurately measure the direction and value of the velocity 

vector component, the knowledge of the coordinates and the 

scalar of the orbital velocity module of the spacecraft are 

required. 

The transition to an inertial heliocentric system allows 

recalculating the measurement result to any specified 

 
Fig. 7.  The dependences of the variations of the measured component of the 

spacecraft velocity upon the angle of sight of the spacecraft (the circular 

motion of the Earth, passive mode): 1 – noon; 2 – evening; 3 – midnight; 4 

– morning. 

 
Fig. 8.  The dependence of the variations of the moments of registration  

upon the angle of sight of the spacecraft (the circular motion of the Earth, 

passive mode). 
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reference system. 

It should also be noted that in all the cases of the above 

analysis of space-time relations, time is considered as an 

objective category. However, in reality, time samples are 

produced by one or another “clock” and, since physical 

processes in non-inertial systems proceed, generally 

speaking, differently than in the inertial ones, the readings 

of various “clocks” (quartz, molecular) may differ. 
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