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Abstract—In this paper, the quasi-optimal and optimal 

algorithms are considered for discriminating the pulse signals 

by arrival time in the presence of the fast Gaussian 

modulating interference and additive Gaussian white noise. 

The case is examined when the time positions of the 

discriminable signals are a priori unknown and they take 

values from different clock intervals, so that such signals do 

not overlap in time. For the introduced algorithms, the 

analytical expressions are obtained for both the first two 

moments of the decision statistics and the probabilities of 

errors occurring while discriminating the signals by arrival 

time. By statistical simulation methods, one confirms the good 

agreement of these expressions with the corresponding 

experimental data presenting a wide range of values of the 

parameters of both the useful signals and the modulating 

interference. The comparison of the performance of the quasi-

optimal and optimal algorithms in terms of the discrimination 

error probability is also carried out. It is established that the 

optimal algorithm can provide a significant gain in the 

discrimination quality. 

 

Index Terms—Pulse signal, modulating interference, 

Gaussian process, maximum likelihood method, 

discrimination algorithm, decision statistic, local Markov 

approximation method, average error probability 

 

I. INTRODUCTION 

In radio engineering systems, to transmit discrete and 

continuous information, a sequence of rectangular pulses is 

applied as a carrying oscillation [1]-[4]. For continuous 

information transmission in such systems, time-pulse 

carrier modulation is often used by which the time positions 

of the separate sequencing pulses are changed (modulated) 

within the specified clock intervals according to the 

transmitted message. Simultaneously, discrete (digital) 
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information can be transmitted using positional modulation 

by which the transmitted pulse carrying discrete 

information is located within one of the several 

predetermined clock intervals. In this case, the task of 

receiving (demodulating) a discrete component of a 

discrete-continuous message is reduced to determining the 

clock intervals within which the transmitted signals are 

localized. At the same time, reception (demodulation) of 

the continuous component of the message is reduced to 

measuring the arrival time (time position) of the received 

signals relative to the beginning of the clock intervals 

within which these signals are localized. 

In practice, the information signal reception and 

processing is usually performed against additive broadband 

noise that is always present in real radio-physical 

information transmission systems and masks the received 

signals. In addition, there may be a modulating 

(multiplicative) interference that occurs in the channels of 

information transmission and leads to random changes 

(modulation) of the parameters of the received signals (its 

amplitude, phase, etc.). In this case, under the influence of 

a modulating interference, the received signal waveform is 

distorted and becomes random. This leads to errors in 

receiving and demodulating the information signals and, 

therefore, to decreasing the reliability of the received 

information. 

In this paper, the problem is considered of receiving a 

discrete (digital) message component transmitted by means 

of a pulse carrier positional modulation. Such a task is 

reduced to discriminating the signals by their localization 

within different clock intervals. In this case, the specific 

signal time position within each clock interval is 

insignificant (it is a spurious parameter) and may be a 

priori unknown. 

 

II. THE PROBLEM STATEMENT 

One starts with considering the problem of discriminating 

the two pulses by arrival time. It is then presupposed that 

the received signals  jj ts 0, , 2,1j  are distorted by a 

modulating interference. As an adequate model of such 

signals, one uses a model of the form [3]-[6] 
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where 0a  is the signal amplitude in the absence of a 

modulating interference; 0  is the signal duration; j0 , 

2,1j  are the arrival times of the signals corresponding to 

their midpoints;  t0  is the dimensionless stationary 

random process with a zero mathematical expectation and a 

unit dispersion, based on it, the law of a signal amplitude 

modulation resulting from the influence of a modulating 

interference is set; k is the modulation factor determining 

the amplitude modulation depth;   1I x  under 21x , 

and   0I x  under 21x  present the function 

determining the rectangular signal (1) waveform in the 

absence of a modulating interference (i.e., in the case when 

0k ). 

Now it is suggested that the time positions j0 , 2,1j  

of the signals  jj ts 0,  (1) are a priori unknown, but they 

do not coincide and their values are from the set non-

overlapping intervals  211101 ,  and  221202 , , 

where 1221  . In addition, the signals  011 ,ts  and 

 022 ,ts  (1) are considered as non-overlapping in time for 

all the possible values of  211101 , ,  221202 , . 

In other words, the intervals  2111,TT  and  2212,TT  of a 

time localization of the signals  011 ,ts  and  022 ,ts  do 

not overlap, so that the following condition is satisfied: 

 

1221 TT   or 12021  , (2) 

 

where 201111 T , 202121 T , 

201112 T , 202222 T . Then the signals (1) 

are orthogonal, i.e.,     0d ,, 022011 



ttsts . 

The stationary random process  t0  describing the 

modulating interference is considered as the Gaussian one 

that is valid in many cases because the central limit 

theorem of probability theory holds [4]-[6]. Then, for the 

full statistical description of the random process  t0 , it is 

sufficient to specify its spectral density  0G  [4]-[6] that 

can be represented in a general form as follows 

 

     000 2  gG . (3) 

 

Here the notations are:    



0

2
0

2
00 maxd GG  is 

the effective spectral density width,   00 max2 G  is an 

intensity of the random process  t0 , while the function 

 xg  describes the shape of the spectral density (3) and is 

normalized so that   1d 
0

2 


xxg ,   1max xg . As the 

random process  t0  (1) dispersion is equal to 1, then, 

taking into account (3), the following relation is satisfied: 

 

 00 2 , (4) 

 

where  



0

d xxg  is the parameter defined by the shape 

of the spectral density (3) of the modulating interference 

 t0 . 

In this case, one assumes that the distortions of the shape 

of the signals (1) caused by the modulating interference 

 t0  are “fast”, so that the correlation time 02 c  of 

the modulating interference  t0  is much less than the 

signal (1) duration 0 , i.e. the condition 

 

120000  c  (5) 

 

is fulfilled. From (5), it follows that 100  , i.e. the 

modulating interference  t0  influence leads to a 

significant spectrum spreading of the signals (1). 

In order to simplify the procedure for synthesizing the 

discrimination algorithm, it is convenient to represent the 

signal (1) distorted by the modulating interference as the 

sum      jmjjjjj tststs 0000 ,,,  , 2,1j , where 
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is the undistorted signal (1) component coinciding with the 

rectangular pulse having the amplitude 0a  and the duration 

0 , while 
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is the distorted signal (1) component that is a segment of 

the stationary centered Gaussian random process 

   tkat 00   with the dispersion 22
0

2 ka  and the 

spectral density 

 

     0
2GG . (8) 

 

It should be noted that, according to (3), the 

representation      02  gG  is also applicable, 

where   2max2 0
22

0  kaG  is the intensity of the 

random process  t . 

Let the signals  jj ts 0,  (1) are observed against the 

additive Gaussian white noise  tn  with the spectral density 

  20NGN  , while the additive noise  tn  and the 

modulating interference  t0  are statistically independent. 
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White noise is an adequate model of a broadband 

fluctuation noise, including the internal thermal noise of 

electronic devices [4]-[7]. The white noise model is widely 

used in practice to describe the real noise whose spectral 

density is constant or varies little within the bandwidth of 

the receiver [4]-[7]. 

Thus, the additive mix 

 

     tntstx jj  0, ,    21,TTt ,   2,1j  (9) 

of a one of the two signals  jj ts 0,  (1) and the white 

noise  tn  arrives to the receiver input, but it is not known 

a priori which one of the signals,  011 ,ts  or  022 ,ts , is 

present in the realization of the observed data (9). Here 

 21,TT  is the observation interval that includes the time 

localization intervals  2111,TT  and  2212,TT  of the signals 

(1). 

In view of the latter, the problem of discriminating the 

signals distorted by a modulating interference can be 

formulated as follows. Based on the received realization 

 tx  (9) and available prior information on the signal and 

noise properties, it is necessary to determine which of the 

signals,  011 ,ts  or  022 ,ts , is present at the receiver 

input. In other words, it is necessary to determine within 

which of the time intervals –  2111,TT  and  2212,TT  – the 

received signal (1) is present. 

Now one can proceed to a direct study of the algorithms 

for discriminating the signals (1) distorted by a modulating 

interference and examine the performance characteristics of 

these algorithms. 

III. THE QUASI-OPTIMAL DISCRIMINATION ALGORITHM 

A. The Synthesis of the Discrimination Algorithm 

In practice, the synthesis of signal discrimination devices 

is often carried out without taking into account a 

modulating interference, i.e., in the synthesis it is 

presupposed that the modulating interference is absent. 

This allows us to simplify the structure of the synthesized 

discrimination algorithm and to reduce hardware and 

computational costs of its practical implementation. 

However, the resulting discrimination algorithm is no 

longer optimal in the presence of a modulating interference. 

This algorithm is called a quasi-optimal one. 

Thus one considers a symmetric signal system built on 

the assumption that the prior probabilities 1p  and 2p  of 

receiving each of the two signals  011 ,ts  and  022 ,ts  

are the same and equal to 2121  pp . In addition, the 

energies of the undistorted signals (6) are then also the 

same and equal to 

 

0
2
0 aE . (10) 

 

Therefore, in order to synthesize the quasi-optimal 

discrimination algorithm, the maximum likelihood (ML) 

method [5]-[7] is applied. 

According to the ML method and under the assumption 

that the modulating interference is absent ( 0k ), in order 

to discriminate the signals (6) it is necessary to generate the 

functionals [5], [7] 
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jjjj , 2,1j  (11) 

 

as the functions of all the possible values  jjj 21 ,  of 

the time positions of the signals. It should be noted that 

each of the functionals –  jjM  , 2,1j  (11) – is the 

logarithm of the functional of the likelihood ratio (FLR) 

specified (up to an insignificant constant term) for the case 

of receiving the undistorted signal  jj ts 00 ,  (6) against 

the white noise  tn  [5], [7]. 

Based on the functionals  jjM   (11), one can 

determine the values 

 

 jjj MM  sup*
,   jjj 21 , ,  2,1j  (12) 

 

of the absolute maxima of these functionals within the 

limits of the corresponding prior intervals  jjj 21 , , 

and then one compares them with each other. If *
2

*
1 MM  , 

then the decision is made in favor of the 1H  hypothesis on 

the presence of the 1-st signal  011 ,ts  in the observed 

data  tx  (9). If *
2

*
1 MM  , then the decision is made in 

favor of 2H  hypothesis on the presence of the 2-nd signal 

 022 ,ts . Thus, the quasi-optimal algorithm for 

discriminating the signals (1), taking into account the 

expressions (11), (12), can be represented in the form 

 

1
*
2

*
1 HMM  ,      2

*
2

*
1 HMM  . (13) 

 

The block diagram of the quasi-optimal discrimination 

device corresponding to the algorithm (10)-(12) is shown in 

Fig. 1. Here the nonations are: I is an integrator, DL is the 

line for the delay time 0 , SUB is the substractor, PD is the 

peak detector, and RS is the resolver. 

The discrimination device presented in Fig. 1 operates in 

the following way. The realization  tx  is fed to the input 

of the integrator I. At the integrator output, the signal 

    
t

ttxtJ
0

d  is generated, while at the SUB output – 

 

Fig. 1.  Block diagram of the quasi-optimal discrimination device. 
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the signal        0
0

d   
tJtJttxtM

t

t
. The peak 

detector PD determines the magnitude of the absolute 

maximum of the signal  tM  within the time interval 

 21011 ,TT   and takes it as the *
1M  value. Then the peak 

detector determines the magnitude of the absolute 

maximum of the signal  tM  within the time interval 

 22012 ,TT   and takes it as the *
2M  value. Then, the RS 

resolver performs a comparison between the values of *
1M  

and *
2M . If *

2
*
1 MM  , then the decision is made in favor 

of the 1H  hypothesis on the presence of the 1-st signal 

 011 ,ts . And, vice versa, if *
2

*
1 MM  , then the decision 

is made in favor of the 2H  hypothesis on the presence of 

the 2-nd signal  022 ,ts . 

One can pass now to the evaluation of the performance of 

the algorithm (13) for discriminating the signals  jj ts 0,  

(1) distorted by a modulating interference and observed 

against the additive white noise  tn . It is obvious that the 

performance of the algorithm (13) is determined by the 

statistical properties of the functionals (determining 

decision statistics)  jjM   (11). Therefore, to start with, 

one should study their probabilistic characteristics. 

B. The Characteristics of the Determining Decision 

Statistics of the Discrimination Algorithm 

As both the modulating interference  t0  and the 

additive noise  tn  are Gaussian random processes, by 

definition, the process  tx  is the Gaussian one too. 

Therefore, the functionals  jjM   (11) being the linear 

transformations of the observed data  tx  are also Gaussian 

random processes. Thus, for a full statistical description of 

the random processes  jjM  , it is sufficiently to specify 

their mathematical expectations and correlation functions 

[6], [7]. 

Then     ljjjjl HMS  , 2,1j , 2,1l  are the 

regular component (mathematical expectation) of the 

functional  jjM   (11) in the case when the lH  

hypothesis on the presence of the signal  ll ts 0,  (1) in the 

observed data  tx  is valid. Here   means averaging in 

terms of all the possible realizations  tx  with the fixed 

signal and noise parameters. Averaging the functionals 

 jjM   (11) over all the realizations  tx  under the fixed 

lH  hypotheses leads to   0 jjlS  for lj   and 

 

   001,0max  jjSjjj AS ,   2
0zAS  . (14) 

 

Here the value of 
2
0z  is determined as 

 

00
2
00

2
0 22 NaNEz  , (15) 

 

that is, it is equal to the ratio between the energy E (10) of 

the undistorted component (6) of the signals (1) and the 

spectral density 20N  of the additive noise  tn . 

The notations are the following: 

      ljjjjjjl HMMN  , 2,1j , 2,1l  are the 

random component of the functional  jjM   (11) when the 

lH  hypothesis on the presence of the signal  ll ts 0,  (1) in 

the observed data  tx  is correct. The random components 

 jjlN   are the Gaussian random processes under 

  0 jjlN . When fulfilling (5), similarly to [7], [8], the 

correlation functions of the random components are equal 

to 

 

   

     
 

 , ,,0max

,,0min1,0max

1,0max,

,   , 1,0max,

002001

002001

22
012

2
21

012
2

21









jjjj

jjjj

NSjjNjjjj

jjNjjjl

K

ljK

 (16) 

 

where 2
0

2 zN  ,   01 0
2
0

2 gqzS  ,     00 020  Gg  is 

the normalized magnitude of the spectral density of the 

modulating interference at the frequency 0 , and 

 

00
22

000 NkaNq   (17) 

 

is the ratio between the intensity 2  of the distorted 

component (7) of the signals (1) and the spectral density 

20N  of additive noise  tn . 

According to (14), (16), the signal-to-noise ratio (SNR) 
2z  at the output of the quasi-optimal discrimination device 

is equal to [5]-[7] 

 

      01, 0
2
0000

22 gqzKSz jjjjjjj  , (18) 

 

where 
2
0z  is defined using (15), and 0q  – using (17). 

C. The Characteristics of the Discrimination Algorithm 

The performance of the signal discrimination algorithm is 

characterized by the average discrimination error 

probability EP  [5]-[7]. The average error probability EP  

for the quasi-optimal discrimination algorithm (13) can be 

represented as 122211 PpPpPE  . Here the notations are: 

1p  and 2p  are the prior probabilities of receiving the 

signals  011 ,ts  and  022 ,ts , respectively; 21P  is the 

probability of making the decision in favor of the 2H  

hypothesis on the reception of the 2-nd signal  022 ,ts  

provided that the 1H  hypothesis on the presence of the 1-st 
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signal  011 ,ts  is correct; and 12P  is the probability of 

making the decision in favor of the 1H  hypothesis on the 

reception of the 1-st signal  011 ,ts  provided that the 2H  

hypothesis on the presence of the 2-nd signal  022 ,ts  is 

correct. The probabilities 21P  and 12P  are the conditional 

discrimination error probabilities under the 1H  or 2H  

hypotheses being correct, respectively. 

One can now obtain the expressions for the conditional 

error probabilities 21P , 12P . It should be noted that for the 

quasi-optimal algorithm (13), these probabilities are 

defined as  1
*
1

*
221 HMMPP  ,  2

*
2

*
112 HMMPP  , 

where  BAP  means the probability of an event A, while 

the B hypothesis is correct. If the condition (2) is satisfied, 

then for all the possible values of  21111 , , 

 22122 ,  the functionals  11 M ,  22 M  (11) are 

the integrals from the realization of observed data  tx  (9) 

over the non-overlapping intervals. Then, when fulfilling 

(5), the random processes  11 M  and  22 M  (11) at the 

intervals  21111 ,  and  22122 ,  are 

statistically independent. Consequently, the values *
1M  and 

*
2M  (12) of the absolute maxima of these processes are 

statistically independent too. Then the conditional error 

probabilities for the quasi-optimal discrimination algorithm 

(13) can be represented as [6]-[8] 

 

   




 xFxFP 211121 d ,    




 xFxFP 122212 d , (19) 

 

where    ljjl HxMPxF  *
, 2,1j , 2,1l  are the 

distribution functions of the values 
*
jM  (12) of the absolute 

maxima of the random processes  jjM  , while the lH  

hypothesis on the reception of the l-th signal  ll ts 0,  is 

correct. 

The next step is to find the expressions for the 

distribution functions  xFjl , 2,1j , 2,1l . One takes 

into account that the random processes  jjM   (11) are 

the Gaussian ones characterized by the conditional 

mathematical expectations  jjlS   (14) and the correlation 

functions  jjjlK 21 ,  (16). The general expressions for 

the distribution functions of the absolute maxima of the 

Gaussian random processes within the arbitrary definitional 

domains cannot be found even in the case of the stationary 

processes [6], [8], [9]. In this regard, following [6]-[8], one 

implies that the SNR 2z  (18) is big enough, so that the 

condition 

 

12 z  (20) 

 

is satisfied. Then, similarly to [6], [7], it can be shown that 

to calculate the conditional error probabilities 21P , 12P  (19) 

while fulfilling (20), it is sufficient to use the 

approximations of the subintegral functions  xFjl  that are 

asymptotically exact under increasing x. Such 

approximations can be obtained similarly to [7], by 

applying the results from [8], [10]. 

For this, similarly to [7], one assumes that the lengths 

11211   and 12222   of the prior intervals 

 2111,  and  2212 ,  of the unknown time positions of 

the signals (1) are the same, i.e. 21  . And, following 

[6]-[8], one concludes that the length of 21   of the 

prior intervals  2111, ,  2212 ,  is much longer than 

the duration 0  of the signals, i.e. 

 

    10122201121 m . (21) 

 

The condition (21) means that the uncertainty about the 

time positions of the signals (1) is much greater than the 

duration of these signals. Then, using the results from [8], 

[10] and taking into account the expressions (14), (16), 

similarly to [7], one obtains 
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and     


x
ttx 2d 2exp 2 . 

By substituting (22)-(24) into (19), the conditional error 

probabilities 21P  and 12P  can be found and they are equal: 

1221 PP  . The next step is to take into account that 

121  pp  and that the average error probability is 

determined as 1221 PPPE  . After applying the obtained 

expressions for the probabilities 1221 PP   and carrying out 

the corresponding analytical transformations, for the 

average error probability EP  of the quasi-optimal 

discrimination algorithm (13) one gets: 
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   221 mQPE  , (25) 
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where 2z  and m are defined based on (18) and (21), 

respectively. It must be emphasized that the expression (25) 

is asymptotically exact and its accuracy increases with 2z  

and m. 

Now one studies the error probability EP  (25) for the 

quasi-optimal algorithm (13). In Fig. 2a, by dashed lines, 

one presents the dependences of the average error 

probability EP  upon the ratio 0q  under 20m ,   10 g  

and under the different fixed values 0z . There, the curve 1 

corresponds to 50 z , 2 – 70 z , 3 – 80 z , 4 – 90 z , 

5 – 100 z . In Fig. 2b, by dashed lines, one can see the 

similar dependences of the error probability EP  upon the 

ratio 0z  under 20m ,   10 g  and under the different 

fixed values 0q . In this case, the curve 1 corresponds to 

5.00 q , 2 – 10 q , 3 – 5.10 q , 4 – 20 q , 5 – 

5.20 q . And also, for comparison, the dotted line is 

presented here demonstrarting the dependence of the 

probability EP  upon the ratio 0z  under 00 q , i.e. when a 

modulating interference is absent. 

Then one suggests that when the value of the fixed noise 

power is 20N , the value 
2
0z  (15) determines the energy of 

the undistorted component (6) while the value 0q  (17) 

defines the intensity of the distorted component (7) of the 

signal (1). And the value 0q  increases with the intensity of 

the modulating interference (modulation factor k). 

From Figs. 2, it follows that the error probability EP  for 

the quasi-optimal discrimination algorithm (13) decreases 

with increasing 0z , that is, when the energy of the 

undistorted component (6) of the signal (1) increases. The 

influence of the modulating interference (the case when 

00 q ) leads to the average error probability EP  

increasing in comparison with the case when 00 q  (i.e., a 

modulating interference is absent). At the same time, the 

error probability EP  increases with the modulating 

interference intensity (i.e., under increasing 0q  ratio), and 

the greater is the undistorted signal component energy (i.e., 

the higher is the value of 0z ), the greater are the values of 

the probability EP . 

In order to decrease the discrimination error probability 

EP  when the modulating interference causes distortions, 

the optimal discrimination algorithm discussed below can 

be applied. 

IV. THE OPTIMAL DISCRIMINATION ALGORITHM 

A. The Synthesis of the Discrimination Algorithm 

One of the reasons for a decreasing performance of the 

quasi-optimal algorithm (13) under the influence of a 

modulating interference is that it is designed to 

discriminate the signals (6) undistorted by a modulating 

interference. Thus, one should consider now the 

discrimination algorithm designed to receive the signals (1) 

distorted by a modulating interference. This algorithm can 

be called an optimal one. 

In order to synthesize the optimal discrimination 

algorithm, one applies the ML method [5]-[7]. Contrary to 

the case of the quasi-optimal algorithm synthesis (13), in 

 
a) 

 
b) 

Fig. 2. The average discrimination error probability for the quasi-optimal 

algorithm. 

Engineering Letters, 29:3, EL_29_3_31

Volume 29, Issue 3: September 2021

 
______________________________________________________________________________________ 



 

the synthesis of the optimal algorithm it is assumed that the 

signals  jj ts 0,  (1) distorted by a modulating interference 

are to be discriminated. 

According to the ML method, based on the received 

realization of the observed data  tx  (9), for each of the 

signals  jj ts 0, , 2,1j  it is necessary to generate the 

FLR logarithm  jjL   as the function of the possible 

values of  jjj 21 ,  of the unknown signal time 

positions. If the inequality (5) is satisfied then, just to an 

accuracy of an insignificant constant summand, one obtains 

[6], [10] 
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In (26),      



 tdtthtxty    is the output signal of the 

filter with the transfer function  H , which is the Fourier 

transform from the pulse response  th , satisfying the 

condition [6], [10] 
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where  G  (8) is the spectral density of the random 

process  t  (7) determining the distorted component (7) of 

the signals (1),  xg  is defined using (3), and 0q  – using 

(17). It should be noted that the condition (27) specifies 

only the modulus  H  of the transfer function  H , i.e. 

the filter amplitude-frequency characteristic. And there is 

no restriction on the phase of the transfer function  H  

(filter phase-frequency characteristic), so it can be chosen 

arbitrarily, following the criterion of a simplicity of the 

filter implementation. 

Further, according to the ML method [5]-[7], it is 

necessary to generate the values 

 

 jjj LL  sup*
,   jjj 21 , ,  2,1j  (28) 

 

of the absolute maxima of the functionals  jjL   (26) 

within the corresponding intervals  jjj 21 ,  and 

then to compare them with each other. If *
2

*
1 LL  , then the 

decision is made in favor of the 1H  hypothesis on the 

presence of the 1-st signal  011 ,ts  in the observed data 

 tx . And, vice versa, if *
2

*
1 LL  , then the decision is made 

in favor of the 2H  hypothesis on the presence of the 2-nd 

signal  022 ,ts . Thus, the optimal algorithm for 

discriminating the signals (1), taking into account the 

expressions (26)-(28), can be represented as 

 

1
*
2

*
1 HLL  ,      2

*
2

*
1 HLL  . (29) 

 

The block diagram of the optimal discrimination device 

corresponding to the algorithm (28) is shown in Fig. 3. 

Here the notations are: F is a linear filter with transfer 

function  H  satisfying to the condition (26); SQ is the 

squarer; A is a linear amplifier with the gain 

  014~ 00 gqa  ; SUM is the summator; I is an 

integrator, DL is the line for the delay time 0 ; SUB is the 

substractor; PD is the peak detector; and RS is the resolver. 

The discrimination device presented in Fig. 3 operates in 

the following way. The received realization  tx  is fed to 

the inputs of the linear filter F and the amplifier A. Then, 

at different outputs the specific signals are generated: at the 

summator SUM output – the signal      txtytv  2 ; at 

the integrator output – the signal     
t

ttvtJ
0

d ; and at 

the substractor SUB output – the signal     


t

t
ttvtL

0

d . 

The peak detector PD determines the magnitude of the 

absolute maximum of the signal  tL  within the time 

interval  21011 ,TT   and takes it as the *
1L  value. Then 

the peak detector determines the magnitude of the absolute 

maximum of the signal  tL  within the time interval 

 22012 ,TT   and takes it as the 
*
2L  value. The RS resolver 

performs a comparison between the values of *
1L  and 

*
2L . If 

*
2

*
1 LL  , then the decision is made in favor of the 1H  

hypothesis on the presence of the 1-st signal  011 ,ts . In 

turn, if *
2

*
1 LL  , then the decision is made in favor of the 

2H  hypothesis on the presence of the 2-nd signal 

 022 ,ts . 

Now one can analyze the performance of the optimal 

algorithm (29) when discriminating the signals  jj ts 0,  

(1) distorted by a modulating interference and observed 

against the additive white noise  tn . As the performance 

of the algorithm (29) is determined by the statistical 

properties of the determining decision statistics  jjL   

(26), one examines the probabilistic characteristics of the 

functionals (26) firstly. 

 
Fig. 3.  Block diagram of the optimal discrimination device. 
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B. The Characteristics of the Determining Decision 

Statistics of the Discrimination Algorithm 

As it is noted previously, the modulating interference 

 t0 , the additive noise  tn  and the realization of the 

observable data  tx  (9) are the Gaussian random 

processes. In addition, according to [6], the random process 

 ty  (26) is the asymptotically Gaussian one under 

0 . Therefore, if condition (5) is satisfied, then the 

process  ty  can be considered as the approximately 

Gaussian one. Consequently, when fulfilling (5), the 

functionals  jjL   (26) are also the approximately 

Gaussian random processes. Thus, for a full statistical 

description of the random processes  jjL  , it is sufficient 

to specify their mathematical expectations and correlation 

functions [6], [7]. 

Assuming that lH , being the hypothesis on the presence 

of the signal  ll ts 0,  (1) in the observed data  tx , is 

valid, one can now denote the regular component (the 

mathematical expectation) of the j-th functional  jjL   

(26) as     ljjjjl HLS  , 2,1j , 2,1l . By 

averaging the functionals  jjL   (26) over all the possible 

realizations for various hypotheses lH , one can find out 

that the regular components  jjlS   are defined from (14) 

to an accuracy of an insignificant constant summand NA , 

and thus it should be presumed that 
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In (30),  xg , 0 , 
2
0z , 0q  are defined from (3), (5), (15), 

(17), respectively. 

Now one can introduce the random component of the j-th 

functional  jjL   (26), while the lH  hypothesis on the 

presence of the signal  ll ts 0,  (1) in the observed data 

 tx , as       ljjjjjjl HLLN  , 2,1j , 2,1l . 

When the inequality (5) holds, the random components 

 jjlN   are the approximately Gaussian centered random 

processes, so that   0 jjlN . At that, similarly to [6]-

[8], the correlation functions 

     jjljjljjjl NNK 2121 ,  , 2,1j , 2,1l  of the 

random components  jjlN   are defined from (16), where 

it should be presumed 
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According to (30), (31), the SNR at the output of the 

optimal discrimination device is equal to [5]-[7] 
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 (32) 

 

It should be noted that the limits of integration in the 

expressions for the functionals  11 L  and  22 L  (26) do 

not overlap under  21111 , ,  22122 , . Then, 

when fulfilling (2), (5), the random processes  11 L  and 

 22 L  (26) at the intervals  21111 , , 

 22122 ,  are statistically independent. 

C. The Characteristics of the Discrimination Algorithm 

As before, the performance of the optimal signal 

discrimination algorithm (29) is characterized by the 

average discriminating error probability EP  [5]-[7]. 

Following [6]-[8], one presupposes that the SNR 2z  is 

great enough, so that the condition (20) is satisfied. One 

can also suggest that the lengths of the prior intervals 

 2111,  and  2212 ,  of the unknown time positions 

01  and 02  of the signals (1) are the same and they are 

much longer than the duration of the signals 0 , i.e. the 

condition (21) is satisfied. Then, taking into account the 

notations (30), (31) used to define the statistical 

characteristics of the functionals  jjL   (26), the 

expressions (14), (16) allow us to apply the results of 

Section 2.C and to write the average error probability EP  

for the optimal algorithm (29) in the form of (25), where 

the SNR 2z  is determined from (32), and 
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Proceeding to the study of the error probability EP  for 

the optimal algorithm (29), one can state that, in Fig. 2a, by 

solid lines, one presents the dependences of the average 

error probability EP  upon the ratio 0q  under 20m , 
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500   and under the different fixed values of 0z . The 

curve 1 corresponds to 50 z , 2 – 70 z , 3 – 80 z , 4 – 

90 z , 5 – 100 z . In Fig. 2b, by solid lines, one can see 

the similar dependences of the error probability EP  upon 

the ratio 0z  under 20m , 500   and under the 

different values of 0q . The curve 1 corresponds to 

5.00 q , 2 – 10 q , 3 – 5.10 q , 4 – 20 q , 5 – 

5.20 q . The results shown in Figs. 2 are obtained for the 

case of the band modulating interference, when 
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From Figs. 2, it follows that the error probability EP  for 

the optimal discrimination algorithm (29) decreases when 

the ratio 0z  (i.e. the energy E of the undistorted component 

(6) of the signal (1)) increases. On the other hand, when the 

ratio 0q  (that is, the intensity of the modulating 

interference  t0 ) increases, the error probability EP  for 

the optimal algorithm (29) decreases under the fixed ratio 

0z , if the value of 0q  is not too low while the value of 0z  

is not too high. In other words, the modulating interference 

 t0  influence can lead to decreasing the error probability 

EP  for the optimal algorithm (29). At the same time, the 

error probability EP  for the quasi-optimal algorithm (13) 

always increases with the appearance of a modulating 

interference. This happens because the optimal algorithm 

(29), in contrast to the quasi-optimal one (13), uses both the 

undistorted component (6) energy and the energy of the 

distorted signal component (7) (i.e. the modulating 

interference  t0 ) while discrimination of the signals (1) 

is carried out. 

In Fig. 4a, the solid lines show the dependences of the 

average error probability EP  for the optimal algorithm (29) 

upon the ratio 0q  under 10m  and under the different 

fixed values of 0z  and 0 . The dashed lines demonstrate 

the corresponding dependences for the quasi-optimal 

algorithm (13). The curves 1-3 correspond to 100 z , 

while the curves 4-6 – to 70 z . The curves 1, 4 are 

calculated under 400  , the curves 2, 5 – under 600  , 

and the curves 3, 6 – under 1000  . 

From Fig. 4a, it follows that the error probability EP  for 

the optimal discrimination algorithm (29) decreases when 

the ratio 0  (5) increases, that is, with widening the 

bandwidth 0  of the modulating interference  t0 . This 

happens because the average power of the distorted 

component (7) used in optimal discrimination increases 

with the ratio 0 . Moreover, the performance of the quasi-

optimal algorithm (13) does not depend upon the value of 

0 . 

It is time to introduce the average energy of the signals 

 

  mjjS EEttsE  
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00
2 d , , (35) 

 

where 0E  and mE  are the energies of the undistorted (6) 

and distorted (7) components of the signals (1) that are 

defined as 
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Here 2
  is the dispersion (8) of the random process  t  

(7). 

The ratio between the average energy SE  (35) of the 

signals (1) and the spectral density 20N  of the additive 

noise is denoted as 

 

 22
00
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This ratio can be considered as the average SNR at the 

receiver input. Then 
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where Θ is defined in the same way as in (4). 

In Fig. 4b, one can see the solid lines describing the 

dependences of the average error probability EP  of the 

optimal algorithm (29) upon the modulation factor k under 

20m , 1000   and under the different fixed values of 

SZ  (37). The curve 1 corresponds to 7SZ , 2 – 

5.8SZ , 3 – 10SZ , 4 – 12SZ . The corresponding 

dependences for the quasi-optimal algorithm (13) are also 

shown by the dashed lines. 

The results presented in Figs. 4a, 4b are obtained for the 

case when the function  xg  is defined according to (34). 

From Fig. 4b, it follows that for both the quasi-optimal 

(13) and optimal (29) algorithms, the discrimination error 

probability EP  increases with the modulation factor k under 

the fixed average signal energy SE  (the fixed ratio SZ ). 

This is so due to the fact that, under the fixed average 

energy SE , the energy of the undistorted signal component 

0E  decreases with the factor k increasing. Still, however, 

when the factor k increases, the error probability EP  for the 

optimal discrimination algorithm (29) always turns out to 

be significantly less than the one for the quasi-optimal 

algorithm (13). 
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From Figs. 2, 4, it also follows that the optimal 

discrimination algorithm (29) in the presence of a 

modulating interference  t0  (the case when 00 q  or 

0k ) provides a lower error probability EP  (i.e., higher 

performance) than the quasi-optimal algorithm (13). And 

the gain in the error probability EP  that the optimal 

algorithm demonstrates in comparison with the quasi-

optimal one increases together with the modulating 

interference intensity (ratio 0q  (17) or factor k), or with the 

undistorted signal component energy 0E  (36) (ratio 0z  

(15)), or under increasing the average signal energy SE  

(35) (ratio SZ  (37)), or under widening the bandwidth 0  

of the modulating interference spectral density (ratio 0  

(5)). 

V. STATISTICAL SIMULATION OF THE DISCRIMINATION 

ALGORITHMS 

In order to test the performance of the introduced 

discrimination devices and to establish the limits of 

applicability of the asymptotically exact formulas for their 

characteristics, statistical computer simulation of the 

operation of the algorithms (13), (29) is carried out. 

During simulation, within the intervals  jj 21

~
,

~
 , 

2,1j  of possible values of the normalized parameters 

000  jjl , the samples  11

~
 jjjjr rMM

j
, 

  112

~~
,,1,0  jjjr   of the functionals (11) are 

generated with the discretization step 1  as follows 
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In (38) the notations are: 0

~
 ijij , 2,1, ji ; 1 j , 

if the signal  jj ts 00 ,  (6) is present in the observable 

realization (9), and otherwise – 0 j ; 0z  is determined 

from (15);   20111 21
~

 jjjj lrK , 

  20112 21
~

 jjjj lrK ; 

 
 







2

2

1

2
~

d 
~~k

k
k ttn  are the independent Gaussian 

random numbers with the zero mathematical expectations 

and unit dispersions;     002
~~ Ntntn   is the 

normalized Gaussian white noise with the unit spectral 

density; 0
~

 tt  is the normalized time; 

   20111 21
~

,0max  jjjj lrV , 

   20112 21
~

,0min  jjjj lrV ; 

 20

~~
 vl jjv ,     002

~~
Ntt  ; 2  is the 

discretization step  of the process  t
~~

 , and   is an 

integer part. For certainty, in the simulation, it is assumed 

that the spectral density     ~~~
0gqG , 0

~   is 

rectangular by shape, i.e. the function  ~g  satisfies the 

relation (34). 

The samples jv
~

 of the normalized random process 

 t
~~

  are generated by the moving summation method [14], 

as it is described in [8], [15]: 
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where     pmpmHmp  20sin , and m  are 

independent Gaussian numbers with the parameters 

 1,0~ N . In (38), (39), the discretization step 2  is 

chosen based on the condition [8], [15] 

 

 
a) 

 
b) 

Fig. 4. The average discrimination error probability for the optimal 

algorithm. 
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   1212 2  R , (40) 

 

where     tttR
~~

sin
~

00   is the correlation coefficient 

of the process  t
~~

 . In (40), the discretization error ε is 

taken equal to 0.05, so that one can assume that 

02 05.0  . 

In the sum (39), the number of terms is chosen according 

to the condition [15] 
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~  are the 

dispersions of the process  t
~~

  and its generated samples, 

respectively, while 1  is the maximum allowable 

relative deviation of the dispersion of the generated sample 

from the dispersion of the simulated process. The value 

05.0  can be considered acceptable. Then, according to 

(41), it should be assigned that 130p  in (39). Now, if 

one takes 01.01  , then the stepwise approximations 

built based on the samples (38) approximate the continuous 

realizations of the functionals (11) with a mean-square 

error that does not exceed 10%. 

The generation of the Gaussian numbers k ,  m  is 

carried out using sequences of the independent random 

numbers uniformly distributed within the interval  1,0  by 

applying the Cornish-Fisher method, as it is described in 

[8], [15]. 

From the sequences of the generated samples 11r
M , 

22r
M , the maximum ones are selected: 1max1 1

1

max r
r

MM  , 

2max2 2
2

max r
r

MM  . Further, the values of max1M  and 

max2M  are compared and, according to the decision rule 

(13), the decision is made in favor of one of the hypotheses 

– 1H  or 2H . If, when processing N realizations (9) within 

which the signal  0101 ,ts  (6) is presented 

( 11  , 02  ), the decision in favor of the hypothesis 

2H  is made in 1n  cases, then the estimate 21

~
P  of the 

probability estimate 21P  (19) is found as NnP 121

~
 . 

Similarly, from N observations of the realizations (9) within 

which the signal  0202 ,ts  (6) is present ( 01  , 12  ), 

one defines the estimate 12

~
P  of the probability 12P  (19), 

and then – the estimate   2
~~~
1221 PPPE   of the 

probability EP  (25). 

When simulating the discrimination algorithm (29), the 

continuous realizations of the functionals (26) are replaced 

by their stepwise approximations built based on the samples 

 11

~
 jjjjr rLL

j
 generated with the discretization step 

1 ,  while the spectral density of the modulating 

interference is the rectangular one (34). Following [15], one 

gets 
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Here 
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 pkWW j  ,max1 ,  pkWW j  ,min2 , 

 221 W , а ij
~

, ijK  2,1, ji , jr j
M , j , w  are 

determined in the same way as in (38), while jw
~

, kwH  – 

as in (39). It can be shown [15] that when choosing 

01.01  , 02 05.0  , 130p , the root-mean-square 

error does not exceed 10% while the functionals (26) are 

approximated by means of (42). Based on the generated 

realizations (42), the estimates of the probabilities of the 

erroneous decisions are found by a technique similar to that 

described in section devoted to the simulation of the 

algorithm (13). 

Some results of the statistical simulation of the 

algorithms (13), (29) are presented in Fig. 2, under 

21
~

11  , 21
~

21  m , 23
~

12  m , 

232
~

22  m , 20m ,   2
~~

211101 l , 

  2
~~

222102 l , 500  . To obtain each experimental 

value, 1010  realizations (38) or (42) are processed. In this 

case, the boundaries of the confidence intervals deviate 

from the experimental values by no more than 10..15%, and 

the probability of this deviation is not greater than 0.9. In 

Fig. 2а, by crosses and light squares, rhombuses, circles 

and triangles, one draws the experimental values EP
~

 of the 

average error probability (25) for the quasi-optimal 

discrimination algorithm (13) depending upon the value of 

0q , while 50 z , 7, 8, 9, 10. Here, by pluses and dark 

squares, rhombuses, circles, triangles, one also draws the 

corresponding experimental values EP
~

 of the average error 

probability (25), (32)-(34) for the optimal discrimination 

algorithm (29). In Fig. 2b, the experimental values EP
~

 of 

the probabilities (25) and (25), (32)-(34) are plotted using 

the similar symbols and demonstrating the dependencies 

upon the values of 0z  under 0q  equal to 0.5, 1, 1.5, 2, 2.5. 

It follows from Fig. 2 that both proposed algorithms for 

discriminating non-overlapping pulse signals can be used 

in practical applications. The algorithm (13) is applicable, 

if the design of the discrimination device is an extremely 

simple one, the requirements for the level of the 
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discrimination error probability are not too high, and it is 

possible to provide a sufficiently large ratio 0z  (15). In 

turn, the algorithm (29) can be recommended, if it is 

required to provide a very low level of the discrimination 

error probability, while the ratio (15) may not be too large. 

In addition, the formulas (25) and (25), (32)-(34) 

approximate well the experimental values of the average 

discrimination error probability in a wide range of values of 

the parameters of both the useful signals and the 

modulating interference, at least, under 00 q , 40 z . 

VI. CONCLUSION 

The quasi-optimal and optimal algorithms are introduced 

for discriminating the pulse signals distorted by a 

modulating interference. By the statistical simulation 

methods, their operability and efficiency are established. 

The analytical expressions are obtained for the 

discrimination error probabilities when using the 

considered algorithms, and this makes it possible to 

theoretically evaluate their performance in each specific 

case. It is shown that the application of the optimal 

algorithm to discriminate the signals distorted by a 

modulating interference leads to a lower error probability in 

comparison with the results of application of the quasi-

optimal algorithm. However, the quasi-optimal 

discrimination algorithm is simpler than the optimal 

discrimination one, and it does not require a priori 

information on the properties of the modulating 

interference. And the hardware implementation of the 

devices specified above can be effectively implemented by 

means of both digital signal processors [12] and field-

programmable gate arrays [13]. 

The expressions obtained for the discrimination error 

probabilities allow us to make a choice between the 

discrimination devices presented in Figs. 1, 3 and others, 

depending on the available prior information as well as the 

requirements to the discrimination accuracy and to the 

simplicity of the device practical implementation.  
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