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Abstract—The goal of this paper is to solve the complex
symmetric linear systems generated from the discretization
of the space fractional coupled nonlinear Schrödinger (CNLS)
equations, whose coefficient matrix is equal to the sum of a
symmetric positive definite Toeplitz matrix and a Hermitian
positive definite complex diagonal matrix. In order to make the
best use of the full Toeplitz structure of the coefficient matrix,
a new Toeplitz and diagonal splitting (TDS) is given and the
corresponding TDS iteration method is proposed to solve the
discretized linear systems, then two circulant preconditioners
based on Strang’s and T. Chan’s circulant approximation, are
proposed to accelerate the convergence of the preconditioned
conjugated gradient (PCG) method for solving the first linear
sub-system in the TDS method. Theoretical analysis and
numerical experiments demonstrate that the TDS method
is unconditional convergence and the TDS-PCG inner-outer
iteration method with two circulant preconditioners to solve
the discretization linear systems of the space fractional CNLS
equations is feasible and efficient.

Index Terms—space fractional coupled nonlinear
Schrödinger equations, Toeplitz matrix, Toeplitz and diagonal
splitting (TDS) iteration method, circulant preconditioner,
PCG method.

I. INTRODUCTION

IN this paper, the following space fractional coupled
nonlinear Schrödinger (CNLS) equations involving the

fractional Laplacian operator (−∆)
α
2 (1 < α < 2) are con-

sidered,






iu t −γ(−∆)
α
2 u +ρ(|u |2+β |v |2)u = 0,

ivt −γ(−∆)
α
2 v +ρ(|v |2+β |u |2)v = 0,

a ≤ x ≤b , 0< t ≤ T,

(1)

with the initial value conditions

u (x , 0) = u 0(x ), v (x , 0) = v0(x ), a ≤ x ≤b ,

and homogeneous Dirichlet boundary conditions

u (a , t ) = u (b , t ) = 0, v (a , t ) = v (b , t ) = 0, 0< t ≤ T.
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Here, i =
p
−1 is the imaginary unit, γ > 0 is the group

velocity dispersion, ρ > 0 describes the self-focussing of a
signal for the pulses in the birefringent media, and β ≥ 0 is
the cross-phase modulation and defines the integrability
of the CNLS equations [1]–[4]. The fractional Laplacian
operator (−∆)

α
2 is equivalent to the following Riesz-type

fractional derivative

(−∆)
α
2 u (x , t ) =

1

2 cos πα
2

�

−∞Dα
x u (x , t )+x Dα

+∞u (x , t )
�

,

where −∞Dα
x u (x , t ) and x Dα

+∞u (x , t ) are the left- and right-
side Riemann-Liouville fractional derivatives respectively
[5].

The nonlinear Schrödinger equation is one of the
most important equations in quantum mechanics and
nonlinear optics [6]. In 2000, by generalizing the path
integral method from the Brownian motion to the Lé vy-α
process, Laskin [7], [8] developed the fractional quantum
mechanics and obtained the space fractional Schrödinger
equations, which can be used to describe a wide class of
physical nonlinear phenomena, such as hydro dynamics
[9] and the dynamics of Bose-Einstein condensate [10]. In
the special case where α= 2, the system (1) becomes the
classical coupled nonlinear Schrödinger equations, which
can be used to describe the evolution of microscopic
particles. When β = 0, this system is reduced to two
unrelated fractional nonlinear Schrödinger equations. And
this system is decoupled and becomes the fractional
Schrödinger equations for describing free particles when
ρ = 0.

Since it is more challenging or sometimes even impos-
sible to obtain the analytical solution of the fractional
partial differential equations, numerical methods to solve
CNLS become very important and a large amount of work
has been intensively conducted [11]–[14]. These methods
can be grossly divided into two groups.

The first are centred on how to discretize the frac-
tional Laplacian operator. In 2013, Wang et al. [15] es-
tablished the Crank-Nicolson difference scheme for the
CNLS equations. Subsequently, they proposed a linearly
implicit conservative difference scheme and a modified
Crank-Nicolson difference scheme for the CNLS equations
in [16], [17]. In 2019, Wang and Mei [4] constructed a
Crank-Nicolson Legendre spectral Galerkin method and
introduced a linearized iterative scheme to compute the
nonlinear problem. These discretized schemes satisfy the
mass and energy conservation. In addition, the conser-
vative difference scheme [18] and finite element method
[19] also have been proposed to solve the strongly CNLS
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equations.
And the second are centred on how to solve the dis-

cretized linear system, whose coefficient matrix is usually
full large-scaled, and which is also the purpose of this
article. Recently, according to the Crank-Nicolson differ-
ence scheme [15] and the Hermitian and skew-Hermitian
splitting (HSS) method [20], Ran and Wang proposed the
partially inexact HSS (PIHSS) [1], HSS-like [2] methods
and the preconditioner combined with asymmetric Gauss-
Seidel splitting [3] to solve the linear system originated
from the difference discretization of the space fractional
CNLS equations. The primary computing in the methods
is to solve a complex diagonal linear system and a Toeplitz
linear system which is performed by fast solver. Further,
in order to avoid the complex value arithmetic, Wang et
al. [21] proposed a preconditioned modified Hermitian
and skew-Hermitian splitting iteration (PMHSS) method
to solve the CNLS equations.

In order to make the most use of the Toeplitz structure
and non-sparse property of the discretized linear system,
a new Toeplitz and diagonal splitting (TDS) iteration
method is proposed, and two circulant preconditioners
based on Strang’s and T. Chan’s approximation are fur-
ther constructed to accelerate the convergence speed of
preconditioned conjugate gradient (PCG) method to solve
the discretized linear systems of the space fractional CNLS
equations (1).

The rest of the present paper is organized as follows.
In Section II, we make a brief review of the well-known
Crank-Nicholson discretization for CNLS and show the
Toeplitz-plus-diagonal structure of the coefficient matrix.
In Section III, the TDS iteration method and the TDS-
PCG iteration method with circulant preconditioners are
proposed to solve the discretized linear systems, and the
convergence properties are studied. In Section IV, the
numerical experiments are given to show the effectiveness
of the proposed TDS and TDS-PCG methods. Finally, some
concluding remarks are made in Section V.

II. DISCRETIZATION OF THE SPACE FRACTIONAL CNLS
EQUATIONS

In this section, we first review the difference scheme of
the space fractional CNLS equations, and show the large-
scaled full complex symmetric Toeplitz structure of the
discretized linear systems, as seen in references [1]–[3],
[16].

Let h = b−a
M+1

and τ= T
N

be the sizes of spatial grid and
time step, where N and M are positive integers, then the
temporal and spatial partitions are defined as tn = nτ
for n = 0, 1, · · · , N and x j = a + j h for j = 0, 1, · · · , M + 1,
respectively. Let u (n )j ≈ u (x j , tn ) and v (n )j ≈ v (x j , tn ) denote
the corresponding numerical solutions. By the fraction-
al centered difference formula, the fractional Laplacian
(−∆)

α
2 in the truncated bounded domain as

(−∆)
α
2 u (x j ) =−

∂ α

∂ |x |α
u (x j ) =

1

hα

M
∑

k=1

c j−k u k +o(h2),

ck =
(−1)kΓ(α+1)

Γ(α/2−k +1)Γ(α/2+k +1)
, (2)

where Γ(·) is the gamma function. Moreover, the coeffi-
cients ck satisfy the following properties:

c0 ≥ 0, ck = c−k ≤ 0,
+∞
∑

k=−∞,k 6=0

|ck |= c0 ≥ 0.

The following unconditionally stable implicit difference
scheme is proposed for the space fractional CNLS equa-
tions (1):






















































i
u (n+1)

j −u (n−1)
j

2τ
−
γ

hα

M
∑

k=1
c j−k

 

u (n+1)
k −u (n−1)

k

2

!

+ρ
�

�

�u (n )j

�

�

2
+β

�

�v (n )j

�

�

2
� u (n+1)

j −u (n−1)
j

2
= 0,

i
v (n+1)

j −v (n−1)
j

2τ
−
γ

hα

M
∑

k=1
c j−k

 

v (n+1)
k −v (n−1)

k

2

!

+ρ
�

�

�v (n )j

�

�

2
+β

�

�u (n )j

�

�

2
� v (n+1)

j −v (n−1)
j

2
= 0,

(3)

where j = 1, 2, · · · , M , n = 1, 2, · · · , N − 1. It is proved that
the difference scheme (3) conserves the discrete mass and
energy, and is unconditional stable and convergent [16],
[17].

According the initial boundary value conditions, we
have

(

u (0)j = u 0(x j ), v (0)j = v0(x j ),

u (n )0 = u (n )M+1 = 0, v (n )0 = v (n )M+1 = 0.

In addition, the first step can be obtained with some
second or higher order time integrators.

Let η= 1
2τ

, µ= γ

2hα
,

u (n+1) =
h

u (n+1)
1 , u (n+1)

2 , · · · , u (n+1)
M

iT
,

b (n+1) =
h

b (n+1)
1 , b (n+1)

2 , · · · , b (n+1)
M

iT

and

v (n+1) =
h

v (n+1)
1 , v (n+1)

2 , · · · , v (n+1)
M

iT
,

b̃ (n+1) =
h

b̃ (n+1)
1 , b̃ (n+1)

2 , · · · , b̃ (n+1)
M

iT
,

where

b (n+1)
j = iηu (n−1)

j −µ
M
∑

k=1

c j−k u (n−1)
k −d (n+1)

j u (n−1)
j ,

d (n+1)
j =

ρ

2

�

|u (n )j |
2+β |v (n )j |

2
�

, j = 1, 2, · · · , M

and

b̃ (n+1)
j = iηv (n−1)

j −µ
M
∑

k=1

c j−k v (n−1)
k − d̃ (n+1)

j v (n−1)
j ,

d̃ (n+1)
j =

ρ

2

�

|v (n )j |
2+β |u (n )j |

2
�

, j = 1, 2, · · · , M .

Then, the difference schemes (3) can be rewritten in the
following matrix vector forms:

(

A (n+1)u (n+1) =b (n+1),

A (n+1)v (n+1) = b̃ (n+1),
n = 1, 2, · · · , N −1, (4)

where the coefficient matrix A (n+1) is in the following form

A (n+1) = iηI +D (n+1)+Tα,

D (n+1) = diag
�

d (n+1)
1 , d (n+1)

2 , · · · , d (n+1)
M

�

.
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Here, I is the identity matrix, D (n+1) is the diagonal matrix,
and T is the Toeplitz matrix

Tα =µ

















c0 c−1 · · · c2−M c1−M

c1 c0 · · · c3−M c2−M

...
...

...
...

...
cM−2 cM−3 · · · c0 c−1

cM−1 cM−2 · · · c1 c0

















M×M

. (5)

According the fact γ > 0 and the properties of the
coefficients ck given in (2), the Toeplitz matrix T in (5)
is symmetric and strictly diagonally dominant, so it is
symmetric positive definite. And the matrix D (n+1) is non-
negative diagonal for ρ > 0, β ≥ 0. Thus, the coefficient
matrix A (n+1) is complex symmetric and positive definite.

It must be noted that the two linear systems in (4)
have the same algebraic structure and that the coefficient
matrix A (n+1) is an M×M full Toeplitz-like matrix because
Tα is a Toeplitz matrix, the storage of Toeplitz-like matrix
A (n+1) can be reduced to O(M ) and the matrix-vector
multiplication can be obtained in O(M log M ) operations
via the fast Fourier Transforms (FFTs).

III. TDS-PCG ITERATION METHOD WITH CIRCULANT

PRECONDITIONERS

A. TDS Method

In this section, we only consider the iterative solution
of the first linear system in (4), because the second one
is the same, and it can be simplified as

Au =b , A =D +T + iηI ∈CM×M , u ,b ∈CM , (6)

where η> 0, i=
p
−1 is the imaginary unit, I is the identity

matrix, D = diag(d 1, · · · , d M ) is the nonnegative diagonal
matrix with d i ≥ 0, i = 1, · · · , M , T is the full symmetric
positive definite Toeplitz matrix.

Considering T and δI + T (δ > 0) are all large-scaled
full symmetric positive definite Toeplitz matrix, Bai et al.
[22] proposed the Toeplitz and diagonal splitting (TDS)
and then constructed a new iteration method to solve the
linear systems originated from spatial fractional diffusion
equations. In view of the fact that the circulant matrix is
the optimal preconditioner for Toeplitz matrix, and the
coefficient matrix A in (6) can be split into its diagonal
part D + iηI and Toeplitz part T , we can constructed the
following iteration method to compute an approximate
solution of the linear system (6).

Algorithm 1. (The TDS iteration method.)
Given an initial guess u (0), for k = 0, 1, 2, · · · , until

�

u (k )
	

converges, compute
(

(δI +T )u (k+
1
2
) = (δI −D − iηI )u (k )+b ,

(δI +D + iηI )u (k+1) = (δI −T )u (k+
1
2
)+b ,

(7)

where δ is a given positive constant and I is the identity
matrix.

This iteration method is the same as the HSS-like [2]
in the form, but the original idea is entirely different, and
it is also similar to that proposed by Bai in [22]. Note
that the matrix splitting in TDS method is based on the
fact that the first sub-linear systems can be solved fast

with the benefit of its Toeplitz structure and circulant
preconditioner.

Theorem 1. Let A ∈ CM×M be defined as in (6) and δ
be a positive constant. Then the iteration spectral radius
ρ(M (δ)) of the TDS method is less than 1, thus the TDS
method (7) unconditionally converges to the solution of
the linear system (6). And the optimal parameter is δ∗ =
p

λminλmax by minimizing the spectral radius ρ (M (δ)),
where λmin and λmax are the minimum and the maximum
eigenvalues of Toeplitz matrix T respectively.

Proof. The iteration matrix M (δ) of the TDS method (7)
for solving the linear system (6) is given by

M (δ) = (δI +D + iηI )−1(δI −T )(δI +T )−1(δI −D − iηI ),

then its spectral radius ρ (M (δ)) can be reduced by the
similarity invariance, and is bounded by

ρ (M (δ))≤ max
λi∈λ(T )

�

�

�

�

δ−λi

δ+λi

�

�

�

�

· max
1≤j≤M

r

(δ−d i )2+η2

(δ+d i )2+η2

≤ max
λi∈λ(T )

�

�

�

�

δ−λi

δ+λi

�

�

�

�

≤ 1, ∀δ> 0.

Thus, the TDS method converges to the unique solution
of the system of linear equations (6).

By using the similar analytical techniques in [2], [20],
the optimal parameter δ∗ is easily obtained as δ∗ =
p

λminλmax, where λmin and λmax are the smallest and
largest eigenvalues of Toeplitz matrix T respectively.

We emphasize that the optimal parameter δ∗ minimizes
the upper bound of the spectral radius ρ (M (δ)), thus
it is really the optimal parameter in theory. And the
considerable advantage of the TDS method is that the
coefficient matrix δI + T in the first half-step stays the
same, so the optimal parameter δ∗ keeps constant with
the time step n increasing in linear system (4).

B. TDS-PCG Method With Circulant Preconditioner

The two half-steps at each TDS iterate require exact
solutions of the linear systems with the symmetric positive
definite Toeplitz matrix δI +T and the complex diagonal
matrix δI +D+ iηI . As the matrix δI +D+ iηI is diagonal,
the iterate u (k+1) in the second half-step of the TDS
method can be directly solved. Thus the iterate u (k+

1
2
)

in the first half-step is an overwhelming part of the TDS
method (7).

Given the coefficient matrix δI +T is large-scaled, full
and symmetric positive definite, the iterate u (k+

1
2
) in the

first half-step of the TDS method can be solved inexactly
by Krylov subspace methods, for example, PCG method.
In order to speed up its convergence rate, some circulant
approximate matrices can be used as well preconditioners.
And then this results in the following TDS-PCG iteration
method with circulant preconditioner for solving the sys-
tem of linear equations (6).

Algorithm 2. (The TDS-PCG iteration method.)
Given an initial guess u (0), for k = 0, 1, 2, · · · , until

�

u (k )
	

converges, compute u (k+
1
2
) approximately from

(δI +T )u (k+
1
2
) = (δI −D − iηI )u (k )+b
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by employing the PCG with u (k ) as the initial guess, and
then solve u (k+1) exactly from

(δI +D + iηI )u (k+1) = (δI −T )u (k+
1
2
)+b

by using the direct matrix inversion, where δ is a given
positive constant and I is the identity matrix.

In 1986, Strang [23] and Olkin [24] proposed indepen-
dently the use of PCG method with circulant matrices
as preconditioners to solve Toeplitz linear systems. The
advantage of the circulant matrix is that it can be diago-
nalized by the Fourier matrix FM , i.e.,

F ∗MΛM F ∗M =CM , (FM )j ,k =
1
p

M
exp

2πj k i

M
,

where ΛM is a diagonal matrix holding the eigenvalues
of the circulant matrix CM , and the subscript index M
represents the matrix dimension.

For Toeplitz matrix T = (c i−j )1≤i ,j≤M , whose first
row and first column are [c0, c−1, · · · , c2−M , c1−M ] and
[c0, c1, · · · , cM−2, cM−1], respectively, the Strang’s precondi-
tioner S = (s i−j )1≤i ,j≤M [23] and the T. Chan’s precondition-
er P = (p i−j )1≤i ,j≤M [25] are two classic circulant matrices,
whose diagonal elements are defined as

(Strang) sk =















ck , 0≤ k <M/2,

0, k =M/2 is even,

ck−M , M/2< k ≤M −1,

sk+M , 0<−k ≤M −1,

and

(T. Chan) pk =







(M −k )ck +k ck−M

M
, 0≤ k ≤M −1,

pM+k , 0<−k ≤M −1.

For any Toeplitz matrix TM with a circulant precondi-
tioner CM , the matrix-vector product C−1

M TM v can be com-
puted in O(M log M ) operations for any vector v , because
the circulant linear systems can be solved efficiently by
FFTs and the multiplication TM v can also be computed
by FFTs by embedding TM into 2M ×2M circulant matrix.
Thus, the cost per iterate of PCG method is still O(M log M )
[26].

IV. NUMERICAL EXPERIMENTS

In this section, numerical experiments are carried out to
investigate the performance of the new TDS-PCG method
with two circulant preconditioners. All numerical experi-
ments are performed in MATLAB 9.4 (R2018a) in double
precision on Dell precision tower 7910 with 3.5 GHz CPU
(Intel Xeon E5-2637 v4), 32.00× 4 GB RAM.

All tests are stared from the zeros vector, and the outer
TDS iterate for the linear system (6) are terminated once
the stopping criterion ‖r (k )‖2/‖r (0)‖2 < 10−5 are satisfied,
where r (k ) is the residual vector of the k -th iterate. In
inner PCG iteration, the current residuals of the inner
iterate satisfy ‖p (k−1,j )‖2/‖p (k−1,0)‖2 < 10−3 where p (k−1,j )

is the residual of the j -th inner PCG iterate in the k -th
outer TDS iterate. We must note the lower accuracy of the
inner iteration could lead to an increase in the number
of the outer iterate, but it greatly saves the computation
amount of the inner iterate.

We consider the following space fractional CNLS equa-
tions with γ= 1, ρ = 2, β = 1, 1<α< 2, i.e.,







iu t +(−∆)
α
2 u +2(|u |2+ |v |2)u = 0,

ivt +(−∆)
α
2 v +2(|v |2+ |u |2)v = 0,

−20≤ x ≤ 20, 0< t ≤ 2.

And the initial boundary value conditions are taken in the
form
(

u (x , 0) = Sech(x +1)exp(2x i), u (−20, t ) = u (20, t ) = 0,

v (x , 0) = Sech(x −1)exp(−2x i), v (−20, t ) = v (20, t ) = 0.

In our experiments, all of the Toeplitz matrix-vector
multiplications Av are done by using FFTs in O(M log M )
operations to reduce the computational cost. And the
parameters involved are all theoretically optimal value
p

λmaxλmin.
Numerical results are given in Tables I and II. In these

tables, we denote “Non” as non-preconditioned method,
“Chan” T. Chan’s circulant preconditioner, “Strang" S-
trang’s circulant preconditioner, and “HSS” the HSS iter-
ation method proposed in [1]. “M ” denotes the number
of spatial grid points, “N = b

�

(M + 1)αT vM ,N
�

/(b − a )αc”
denotes the number of time steps and it is such that the
discrete grid ratio of spatial to time vM ,N = 0.5, where
the function bx c rounds the elements of x to the nearest
integers less than or equal to x . And “CPU” denotes the
total CPU time in seconds, “ITinn” the average number
of the PCG method required in every TDS outer iterate
and “ITout” the average number of TDS iterate required
for solving FDEs, respectively, i.e.,

ITout =
1

N

N
∑

i=1

TDS(i ), ITinn =

∑N
i=1

∑

j PCG(i , j )
∑N

n=1 TDS(i )
,

where TDS(i ) denotes the number of the TDS iterations
required for solving the discretized linear systems at the
i -th time step, and PCG(i , j ) denotes the iteration number
of the inner PCG method in the j -th TDS outer iterate at
the i -th time step.

From these tables, it can be found that all experimented
methods can successfully produce approximate solution of
the full complex symmetric linear system originated from
the discretization of the space fractional CNLS equation
(1). When M increases, the number of time steps N is
doubled and tripled in order to keep stability, the numbers
of the outer and inner iteration steps are slightly decreased
and keeps stable, but the amount of total CPU time is
greatly increased. Obviously, the results of TDS-PCG with
circulant preconditioners are the best, especially when the
dimension is larger, the advantage is more obvious.

Meanwhile, it is also found that although the number
of the HSS-like method are decreased with the number
of the spatial grid M increases, but the CPU time are
increasing rapidly. This is probably due to the first linear
systems in HSS iteration method may cost much time for
the coefficient matrix δI+D+T are full and changed along
with the time step process.

It must be note that the results of the TDS-PCG with
non circulant preconditioner can be regarded as those of
the HSS-like method proposed in [2]. Thus, the TDS-PCG
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with two proposed circulant preconditioners are the best
in iteration steps and CPU time.

V. CONCLUDING REMARKS

The coefficient matrix of the linear system generated
by numerical discretization of the the space fractional
coupled nonlinear Schrödinger equations, is equal to the
sum of a symmetric positive definite Toeplitz matrix and
a complex diagonal matrix. In order to make full use
of the full Toeplitz structure of the coefficient matrix,
a new Toeplitz and diagonal splitting (TDS) and the
corresponding TDS iteration method are proposed to solve
this discretized linear systems. And than two circulant
preconditioners based on Strang’s and T. Chan’s circulant
approximations are proposed to accelerate the conver-
gence of the TDS-PCG double-layer iteration method.
Theoretical analysis shows that the proposed TDS iteration
method is converge unconditionally, and the numerical
experiments demonstrate that the TDS-PCG double-layer
iteration method with two circulant preconditioners is
feasible and efficient, in solving the discretization linear
systems of the space fractional CNLS equations.
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