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Research on Traffic Acoustic Event Detection
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Abstract—Road traffic monitoring is important for intelligent
transportation, and researchers have begun to focus on the
detection of traffic events using acoustic information. In this
paper, we apply model fusion to traffic acoustic event classi-
fication. First, an improved, two-channel convolutional neural
network (CNN) model is proposed as the weak classifier for
constructing the fusion model. The mel-cepstral feature and
its first-order and second-order difference are selected as the
input features. Six different input features are constructed after
signal preprocessing and segmentation. Second, after training
six different CNN models, the voting method and support vector
machine (SVM) stacking method are used to construct the
final fusion model. Experimental results demonstrate that the
detection rate of traffic acoustic events reaches 95.1%, which
is higher than that of traditional traffic detection algorithms.

Index Terms—traffic acoustic event detection, acoustic fea-
ture, two-channel convolutional neural network, model fusion.

I. INTRODUCTION

HE detection of traffic states based on acoustic infor-

mation is an important research direction for intelligent
transportation. Compared to existing monitoring techniques,
acoustic signal processing and classification techniques have
the advantage of low cost and are unaffected by lighting
conditions. Especially in the case of tunnels, where there is
insufficient light for visual monitoring, acoustic signals have
better coverage. Therefore, it is an important supplement
to existing monitoring methods. However, when compared
with the laboratory environment, the real traffic environment
is complicated. For example, a tunnel is a special traffic
environment and is very different from an open road envi-
ronment. Effectively processing traffic acoustic data remains
a challenge. In 1998, Henryk Maciejewski et al. [1] studied
and designed a classification system based on wavelet[2] and
neural networks. The specific recognition model, based on
the sound signal, was constructed for four different vehi-
cles, and the results indicated that the recognition accuracy
was 73.68%. Audi Ovox et al. applied sound recognition
technology to the field of intelligent transportation [3] and
used voice recognition technology in the car. Xianglong Luo
et al. [4] used empirical mode decomposition (EMD) and
a support vector machine (SVM)[5] to identify the vehicle
state. In recent years, some scholars have tried to apply
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convolutional neural networks (CNNs)[6] to recognize sound
events[7]. Compared with traditional classifiers, convolu-
tional neural networks have greatly improved recognition
rates. The ConvNet model[8] has improved the accuracy by
nearly 20% on the Esc-50 database. The LSTM+CNN model
proposed by Bae et al. achieved an 84.1% accuracy rate in
the DCASE2016 competition[9].

Model fusion is an important subject in the machine
learning field. It refers to training several different models
and then integrating the whole model in a manner con-
ducive to its intended function. The model fusion algorithm
is easy to understand, simple to implement, and achieves
better performance, so it is widely used in industry[10]. For
classification tasks, the general workflow of model fusion
involves generating N weak classifiers and then combining
them with some strategy to form the final strong classifier
and enhance the recognition performance of the model. The
higher the accuracy and diversity of the weak classifiers are,
the better the final model fusion effect will be. With an
increase in the number of weak classifiers, the error rate of
strong classifiers decreases exponentially.

In this paper, an algorithm based on model fusion is
proposed for classification of traffic events, and the improved
two-channel CNN model is proposed as the weak classifier.
This model uses the mel-cepstral feature and its first-order
and second-order difference features to train six different
CNN models and improves the robustness through fusion.
To verify the performance of the proposed algorithm, we
collected a total of 974 audio samples for the experiment,
including the sounds of five types of events: braking, a
door closing, crashing, a horn, and an engine running.
The experimental results show that the detection rate of
traffic acoustic events reaches 95.1%. The proposed audio
surveillance system may be used to monitor traffic accidents
and save valuable time during rescue missions. In addition,
the system can be embedded in the automatic driving system,
and improves the ability of self-driving cars to adapt to the
state of traffic.

II. TRAFFIC ACOUSTIC EVENT DETECTION
ALGORITHM BASED ON MODEL FUSION

A. Features

For traffic acoustic event detection, the mel-cepstral fea-
ture and its first-order and second-order differences are
selected as the input features. Among many acoustic features,
the mel-cepstral feature is widely used in acoustic event
classification and emotion recognition [11]. The mel-cepstral
feature is a spectral feature that is calculated based on
the nonlinear relationship between the human ear’s auditory
characteristics and audio signal frequency. Fig. 1 shows the
comparison of the mel-cepstral features from the five traffic
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Fig. 1. Mel-cepstral feature of different events
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Fig. 2. The first-order differences between mel-cepstral features from

different events

acoustic events in the data set. It can be seen from Fig. 1 that
the difference between the mel-cepstral features in different
categories is obvious, while the difference between the same
category is inconspicuous. The standard mel-cepstral feature
only reflects the static characteristics of traffic acoustic
events. The dynamic characteristics can be described by
the difference in mel-cepstral[12], [13]. The difference in
mel-cepstral features is further modified to further strip the
features and obtain information such as event type changes.
Combining the mel-cepstral feature with its differences can
improve the recognition performance of the system. Fig.2
and Fig. 3 show the comparison of the first-order and second-
order mel-cepstral differences. For the difference features, the
gap between different categories is magnified so the dynamic
characteristics are more obvious.

B. Multi-model construction and fusion mode

Model diversity is a key factor that determines the effect of
the fusion model, which can be enhanced using the following
schemes. First, by increasing the disturbance of the data for
a given initial data set, different data can be selected to
train different weak classifiers. Second, disturbance of the
input features can be added, and different input features can
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Fig. 3. The second-order differences between mel-cepstral features from
different events

be used to train different models. Third, disturbance of the
algorithm parameters should be considered: basic algorithms
generally have parameters to be set, such as the number of
hidden layer neurons and the learning rate of the neural
network. By setting different parameters, weak classifiers
with large differences can be produced[14].

This paper adopts the second scheme, and different feature
extraction methods are adopted to construct a different mod-
el. By combining the audio channel separation and audio seg-
mentation methods, different input features are obtained. The
audio channel separation method includes non-separation and
harmonic-percussive source separation. The audio cutting
method includes non-cutting, overlapping cutting and non-
overlapping cutting. So, six different features are obtained.

The harmonic component of audio data determines the
timbre and can be used to distinguish different sound objects.
When an object vibrates and makes noise, it emits many
waves of different frequencies, or in other words, harmonics.
Different audio data contain different frequencies, loudness
and distribution of harmonics, so various acoustic events can
be distinguished. Separating the harmonic source from the
percussive source and obtaining mel-cepstral features can
better judge the tone color of the unique sounding object
in traffic acoustic events. By separating the harmonic source
and the percussive source, the mel-cepstral feature and its
difference can be obtained.

Audio data last for 3 seconds and are divided using three
methods: non-cutting, non-overlapping cutting and overlap-
ping cutting. The non-cutting method uses the original audio
to extract the mel-cepstral features and their differences; the
non-overlapping cutting method divides the audio data into
three segments according to Is, then extracts the features
and stacks them to obtain three-channel features for use
as input features; the overlapping cutting method divides
the speech into two segments according to 1s; and the
overlapping cutting method divides data into 1s and then
stacks the features to obtain two-channel features for use as
input features. As shown in Fig.4, the above methods are
adopted to separate and cut the audio data. The combination
of the results can produce six different input features; model
fusion is then carried out after training the model separately.

Volume 29, Issue 3: September 2021



Engineering Letters, 29:3, EL._29 3 33

e

Input Audio,

harmonic-
percussive source
separation

non-
separation

— 7\
0 source
non- | overlapping non-
cutting cutting overl?ﬁfnng
e non- | overlapping non-
) o overlapping
] 1] H
cutting cutting cutting
Y Y A 4
model 1 | model 2 | model 3 | | model 4 | model 5 | model 6 |
final model

Fig. 4. Model fusion framework

The voting and stacking methods, based on the SVM, are
adopted to fuse the output from the six CNN models. The
voting method votes on the results from the six models, and
the category with the highest number of votes is the final
classification result. The stacking method, using an SVM as
a strong classifier, uses the output results from the 6 models
as the input characteristics for the SVM to train the new
model and considers the SVM classification results as the
final results.

C. Improved CNN model

Convolutional neural networks (CNNs) are neural net-
works designed to handle high-dimensional data. Compared
with traditional neural networks, CNNs have a greatly
improved structure. First, the convolutional layer and the
pooling layer are introduced to achieve local and hierarchical
feature extraction. Second, weight sharing is used to reduce
the difficulty of network optimization. Finally, the ReLU ac-
tivation function is used to solve the gradient disappearance
problem.

Traditional CNNs have only one convolutional channel.
For harmonic-percussive source separation, an improved,
two-channel CNN model is proposed to process the two-
channel input feature by referring to the VGG model[15].
The VGG model uses a continuous 3x3 convolution kernel
to replace the larger convolution kernel, which improves the
network depth when the kernels have the same perception
field. For a given perception field, the small convolution
kernel is better than the large convolution kernel because
multiple, nonlinear layers can increase the network depth
to improve the complexity of the model, and there are
fewer parameters. As shown in Fig. 5, separate convolutional
layers are used to process the input feature from each
channel before the fully connected layers. Each convolutional
channel has three convolution blocks, and each convolution
block is followed by the max-pooling layer. The convolution
block contains two convolution layers followed by the ReLU
activation function[16]. A batch normalization layer is added
at the end of the convolution block. The number of channels
in the convolutional layers is shown in Fig.5. The output
feature map from the convolution layers is spliced into one
dimension and input into the fully connected layers. The
fully connected layers have two layers, and the number of
nodes is [2048, 1024]. The output layer is the softmax layer,
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Fig. 5. Two-channel CNN model

which outputs the prediction probability for each category.
The models cost function is the cross-entropy loss function.
The two-channel CNN model uses different convolutional
channels to process the features from different channels to
retain each channels characteristics. Therefore, the connec-
tion and difference between the two channels can be better
explored, which improves the recognition rate of the traffic
acoustic event detection system.

For non-separation, the single-channel CNN model is used
as a weak classifier. In the single-channel CNN model, the
convolutional channel parameters are set in accordance with
the parameter settings of one of the two channels, and the
parameter settings for the whole connection layer are also
consistent with these parameter settings.

III. EXPERIMENT
A. Parameter setting

The data set collected in this experiment contains five
common traffic acoustic events: braking, a door closing, a
crash, a horn and the sound of an engine running. The data
set contains 974 audio data, including 70 for braking, 50 for
a door closing, 332 for crashes, 124 for horns, and 398 for
engine noise. The effect of the model was evaluated using
5-fold cross-validation.

Audio data last for three seconds, and the sampling
frequency is 16 kHz. For harmonic-percussive source sep-
aration, the mel-cepstral feature and its difference for each
channel are extracted. For non-separation, the input feature
is extracted from the audio data directly. First, the audio data
are divided into frames, with a frame length of 50 ms and a
frame shift of 20 ms. Second, an FFT is calculated for each
data frame, and the number of FFT points is 1024. Third,
the log mel-cepstral feature is obtained using mel-filter banks
with 80 subband filters. Fourth, the first-order and second-
order mel-cepstral feature differences are calculated and the
multi-channel input feature is obtained. The features obtained
from the three different cutting methods have different sizes.
For non-cutting, the final input feature size is (149, 80, 3).
For non-overlapping cutting, the size of the mel-cepstral
feature for each 1s is (49, 80, 3), and the final input feature
size obtained by stacking the feature of each 1s is (49, 80, 9).
For overlapping cutting, the size of the mel-cepstral feature
for each 2s is (99, 80, 3), and the final input feature size
obtained by stacking the feature of each 2s is (99, 80, 6).

The experimental equipment includes an Nvidia Tesla
K20C graphics card (5 GB memory) and an Intel Xeon
CPU e5-2675 v3 processor. The Adam optimizer is used; the
exponential decay rate of the first-order moment estimation
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TABLE 1
THE AVERAGE ACCURACY OF THE SIX WEAK CLASSIFIERS

Scene label || M1/% || M2/% || M3/% || M4/% || M5/% || M6/%
brake 533 64.0 68.4 92.8 72.2 72.7
close 57.1 70.6 43.6 85.7 45.0 60.0
crash 87.5 95.8 87.7 88.0 81.6 90.2
horn 84.6 78.8 83.3 80.4 73.8 80.6
run 98.8 99.2 96.7 97.5 88.8 99.1

average 88.2 91.1 87.4 90.8 87.1 89.8
TABLE 11

THE EXPERIMENTAL RESULTS OF MODEL FUSION

Model Accuracy/%

M1 88.2

M2 91.1

M3 87.4

M4 90.8

M5 89.1

M6 89.8

voting fusion method 93.4
stacking fusion method with SVM 95.1

is 0.9 and that of the second-order moment estimation is
0.999. The learning rate is le-3. The batch size is 64 and
the epoch is 100.

B. Validation of the two-channel CNN model

Table I shows the experimental results of the six weak
classifiers, and the settings of models 1-6(M1-M6) are shown
in Fig. 4. The results verify that the two-channel CNN
model has a positive effect on improving accuracy. For
non-cutting, the average accuracy of the one-channel CNN
model is 88.2%, and that of the two-channel CNN model is
91.1%, which is 2.9% higher. For non-overlapping cutting,
the average accuracy of the one-channel CNN model is
87.4%, and that of the two-channel CNN model is 90.8%,
which is 3.4% higher. For overlapping cutting, the average
accuracy of the one-channel CNN model is 87.1%, and that
of the two-channel CNN model is 89.8%, which is 2.7%
higher. The two-channel CNN model significantly improves
the accuracy of the three different cutting methods. Overall,
the accuracy of the two-channel CNN model is 2%-4%
higher than that of the one-channel CNN model. Harmonic-
percussive source separation can better identify the timbre of
sound objects and is conducive to mining information.

C. Validation of model fusion

Table II integrates the above experimental results and
presents the experimental results of model fusion. As shown
in the table, the positive effect on accuracy is obvious. The
accuracy of the vote method for model fusion is 93.4%,
and the accuracy of the stacking method for model fusion,
based on SVMs, is 95.1%. These accuracies are 2.3% and
4.0% higher than the maximum accuracy of the single model,
respectively. Fig.6 and Fig.7 show the confusion matrixes
of the voting method for model fusion and the stacking
method for model fusion with SVMs; these figures also
comprehensively show the classification for each category.
It can be seen from the figure that in some categories, the
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Fig. 6. The confusion matrix of voting method model fusion
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Fig. 7. The confusion matrix of stacking method model fusion with SVM

model fusion algorithm achieves quite a high accuracy. For
example, in the traffic acoustic event of engine noise, the
two fusion methods have the highest recognition rate, with
the voting method for model fusion reaching an accuracy of
97.8% and the stacking method for model fusion with SVMs
reaching an accuracy of 99.0%. In addition, in the traffic
acoustic event of a crash, the accuracy for both methods
is over 85%. These results indicate that the mel-cepstral
feature and its difference can accurately reflect the acoustic
characteristics of the engine noise and crash events, and the
CNN model can effectively excavate the characteristics. At
the same time, fewer data and uneven data distributions affect
the experimental results. The data size of the crash crashes
and engine noise events is larger than that for other events,
so the accuracies are higher.

D. Comparative experiment results

To better analyze the performance of the model, four
different classifiers were introduced and compared: the Gaus-
sian mixture model (GMM)[17], support vector machine
model (SVM)[18], k-nearest neighbor model (KNN)[19], and
deep neural network model (DNN)[20]. The Gaussian kernel
with a penalty coefficient of 1.5 was adopted as the SVM
model kernel function and the OVR mode was adopted for
classification, the number of neighbor for the KNN model
was k=15, and the DNN model used four fully connected
layers where the number of neurons in each layer was [988,
1024, 512, 6].

The 988-dimensional input feature was extracted with the
OpenSmile tool[21]. The features are primarily composed
of 26 low-level descriptors (LLDs) and their corresponding
differences, including intensity, loudness, MFCC 1-12, LSP
0-7, the zero-crossing rate, voiced probability, fundamental
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Fig. 8. Comparisons of experimental results

frequency, and fundamental frequency envelope. Then,19
statistical functions are calculated for 26 LLDS, so features
extracted from each data have a total of 988 dimensions[22].
To display the results of the comparative experiment more
intuitively, a histogram of the experimental results is drawn
as follows. As shown in Fig. 8, it is obvious that the fusion
algorithm comprising the two models proposed in this paper
demonstrates a great improvement over other algorithms, and
the recognition rate is 5.2% and 6.9% higher than that of the
top-performing DNN.

IV. CONCLUSION

This paper proposes a model fusion algorithm for traffic a-
coustic event detection. Combining audio channel separation
and audio segmentation methods, six different input features
are extracted, and six different models are trained. The voting
method and stacking method based on SVMs are adopted to
fuse the output results from the six CNN models. To better
extract the timbre features of the audio data, the harmonic
source and percussive source are separated, and an improved
two-channel CNN model is proposed to process the two-
channel input feature. Before the fully connected layers, the
two-channel CNN model uses separate convolutional layers
to process different channels input features. Experimental
results show that the two-channel CNN model plays a key
role in improving detection accuracy. Moreover, the model
fusion algorithm with a two-channel convolutional neural
network as the weak classifier has good performance in
acoustic event detection and will have good application
prospects in road traffic monitoring.
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