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Abstract—The k-hypergeometric functions are de-
fined as

pFq(a, k, b, s; z) =
∞∑
n=0

(a1)n,k1 (a2)n,k2 ···(ap)n,kpz
n

(b1)n,s1 (b2)n,s2 ···(bq)n,sqn! ,

where (x)n,k = x(x + k)(x + 2k) · · · (x + (n − 1)k) is
the Pochhammer k-symbol. In this paper, efficient
recursive algorithms for computing the parameter
derivatives of the k-hypergeometric functions are de-
veloped. As the generalized hypergeometric functions
are special cases of this function and many special
functions can be expressed in terms of the generalized
hypergeometric functions, the algorithms can also be
extended to computing the parameter derivatives of
the hypergeometric functions and many other special
functions. The Bessel functions and modified Bessel
functions are presented as examples of such an appli-
cation. Theoretical analysis is worked out, some com-
putation using Mathematica is performed, and data
is provided to show the advantages of our algorithms.

Index Terms—Pochhammer k-symbol; k-
hypergeometric function; Hypergeometric function;
Parameter derivatives .

I. Introduction

THE generalized hypergeometric functions pFq have
been studied extensively from the mathematical

point of view[24,25]. They occur in a wide variety of prob-
lems in theoretical physics, applied mathematics, statis-
tics, and engineering sciences. For example, the confluent
hypergeometric Kummer function 1F1 is closely related
to the two-body Coulomb problem [26,27]; the Gauss hy-
pergeometric function 2F1 is the solution of Schrödinger
equation when solving the Pöschl–Teller,Wood–Saxon or
Hulthén potentials[28]. The derivatives of the hyperge-
ometric functions with respect to all parameters have
also been the subject of substantial research in recent
years[15-21,23-25,27] as they are widely employed in
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mathematics, physics, and other related science and engi-
neering fields. It should be noted that methods for finding
the parameter/order derivatives of the hypergeometric
functions can also be used to find the parameter/order
derivatives of many other related special functions, and
many authors[1-14] have strived to find the parame-
ter/order derivatives of various special functions in re-
cent years. Unfortunately, the existing methods based
on analytical properties are not suitable for efficient
computation.

This paper is mainly concerned about first devel-
oping efficient algorithms for computing the parame-
ter/order derivatives of the k-hypergeometric functions,
and then extending these methods to compute the pa-
rameter/order derivatives of the general hypergeometric
function and other related special functions. As many
Mathematica users know, the parameter/order deriva-
tives of the hypergeometric functions can be calculated
using both native Mathematica functions or by directly
using their series or integral expressions. However, these
methods cannot achieve the required precision or symbol-
ic expression when the derivatives are of high order due
to the limits of their computation efficiency. We can prove
that the algorithms discussed in this paper are much
more efficient analytically and also provide empirical
evidence to show that our algorithms are efficient enough
to qualitatively overcome existing computational hurdles.
It is well-known that many special functions can be ex-
pressed in terms of the hypergeometric functions. There-
fore, the parameter/order derivatives of these special
functions can be reduced to the parameter derivatives of
the hypergeometric functions. As a result, high-precision
fast calculation of parameter/order derivatives of many
other special functions can also be realized by using the
algorithms in this paper. For example, high-precision
fast calculation of the parameter/order derivatives of the
Bessel, Struve, and Legendre functions can be realized
with the application of our algorithms as they are directly
related to the hypergeometric functions. We emphasize
again that the order derivatives of the Bessel functions
are used in the study of the monotonicity, which in turn
has applications in quantum physics [29]. We use a large
portion of section IV to show how our algorithms can
be extended to efficiently compute the parameter/order
derivatives of the Bessel function and the modified Bessel
functions. Table 4 shows that the extension of our al-
gorithms is able to achieve the required precision when
algorithms using series and integral expressions directly
are not feasible.
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The classical hypergeometric function pFq(a; b; z) is
defined as

pFq(a; b; z) =
∞∑
n=0

(a1)n(a2)n···(ap)nzn
(b1)n(b2)n···(bq)nn! , (1)

where a = (a1, a2, · · · , ap), b = (b1, b2, · · · , bq) and (x)n
is the standard Pochhammer symbol. In [19], Ancarania
et. al study the parameter derivatives of the hypergeo-
metric functions and give the following results:

∂n

∂an1
[pFq (a; b; z)] = Anz

n

(a1)n p
Θ(n)
q(

1,. . . ,1|a1,a1+ 1,. . . ,a1+n,a2+n ,. . . ,ap +n
a1 + 1,. . . ,a1 +n|n + 1,b1+ n,. . . ,bq + n |;z,. . . ,z

) (2)

and
∂n

∂bn1
[pFq (a; b; z)] = n!(−1)nA1z

bn1
pΘ(n)

q(
1,. . . ,1|b1, b1 ,. . . ,b1, a1+1,. . . ,ap +1
b1 +1 ,. . . ,b1 +1|2, b1+1,. . . ,bq +1 | ;z,. . . ,z

)
,

(3)

where An = (a1)n(a2)n···(ap)n
(b1)n(b2)n···(bq)n and

pΘ(n)
q

(
α1,. . . ,αn+1|β1,. . . ,βn+p
γ1,. . . ,γn|δ1, δ2,. . . ,δq+1

|;x1, x2,. . . ,xn+1

)
=

∞∑
m1=0

. . .
∞∑

mn+1=0
(α1)m1

(α2)m2
. . . (αn+1)mn+1

×
(β1)m1 (β2)m1+m2 . . . (βn)m1+m2+ . . . +mn
(γ1)m1 (γ2)m1+m2 . . . (γn)m1+m2+ . . . +mn

×
(βn+1)

m1+m2+ . . . +mn+1
. . . (βn+p)

m1+m2+ . . . +mn+1
(δ1)m1+m2+. . . +mn+1 . . . (δq+1)

m1+m2+ . . . +mn+1

×
x
m1
1 x

m2
2 . . .x

mn+1
n+1

m1!m2! . . .mn+1! .

(4)

It is clear that (4) is a hypergeometric function with
n+1 variables, and one can directly use formulas (2) and
(3) to compute ∂n

∂an1
[pFq (a; b; z)] and ∂n

∂bn1
[pFq (a; b; z)]

respectively, but its time complexity is O(Nn+1) with
N as the number of terms used, which clearly needs to
be improved. The hypergeometric functions are solutions
of hypergeometric equations. Therefore, the parameter
derivatives also play an important role in solving non-
homogeneous differential equations corresponding to spe-
cial functions. For example, the confluent hypergeometric
function F = 1F1 (a, b, z) satisfies the differential equa-
tion [

z d2

dz2 + (b− z) ddz − a
]
F = 0. (5)

and its derivatives satisfy the following non-homogeneous
differential equation [16][

z d2

dz2 + (b− z) ddz − a
]
G(n) = nG(n−1), (6)

where G(n) = ∂n

∂an [1F1 (a, b, z)] , and

G(2) =
∞∑

m1=0

∞∑
m2=0

∞∑
m3=0

(1)m1 (1)m2 (a)m1+m2
(3)m1+m2 (a+1)m1 (b)m1+m2+2

×
(1)m3 (a+m1+m2+2)m3z

m1+m2+m3+2

(m1+m2+3)m3 (b+m1+m2+2)m3m1!m2!m3! .

(7)

As a sequence, expression (7) can certainly be used to
compute its value directly, but the complexity is O(N3),
which is very inefficient again.

As an extension of the classical hypergeomet-
ric functions, the k−hypergeometric function [21]
pFq(a, k; b, s; z) is defined as the formal power series

pFq(a, k; b, s; z) =
∞∑
n=0

(a1)n,k1 (a2)n,k2 ···(ap)n,kpz
n

(b1)n,s1 (b2)n,s2 ···(bq)n,sqn! , (8)

where a = (a1, a2, · · · , ap), k = (k1, k2, · · · , kp), b =
(b1, b2, · · · , bq), s = (s1, s2, · · · , sq) and (x)n,k is the
Pochhammer k-symbol [22] defined as

(x)n,k = x(x+ k)(x+ 2k) · · · (x+ (n− 1)k). (9)

We can express the Pochhammer symbol (x)n in terms
of the Gamma function

(x)n = Γ(x+n)
Γ(x) (10)

or the Stirling number of the first kind

(x)n =
n∑
s=0

s(n, s)(−1)n−sxs. (11)

Similarly, we can use the expression of the Pochhammer
k-symbol (x)n,k [21]:

(x)n,k = Γk(x+nk)
Γk(x) , (12)

where Γk(x) is the k−Gamma function defined as

Γk(x) = lim
n→∞

n!kn(nk) xk−1

(x)n,k
, x ∈ C\kZ− (13)

or

Γk(x) =
∫ ∞

0
tx−1e−

tk

k dt = k
x
k−1Γ(x

k
), Re(x) > 0. (14)

The classical hypergeometric functions are clearly special
cases of the k-hypergeometric functions as k = 1 and s=1,
therefore any algorithm for computing the parameter
derivatives with respect to a or b of pFq(a, k; b, s;x) can
be applied to computing the parameter derivatives of
pFq(a; b; z). The k-hypergeometric function is a solution
of the equation

(xPp(D, a, k)−Qq(D, b, s)) y = 0, (15)

where Pp(λ, a, k) = (k1λ+a1) · · · (kpλ+ap), Qq(λ, b, s) =
λ(s1λ+ b1− s1) · · · (sqλ+ bq − sq) and D = x ∂

∂x . Letting
p = 2 and q = 1 in (15), we have

(k1k2x− s1)xy′′
+ ((k1k2 + a2k1 + a1k2)x− b1) y′ + a1a2y = 0. (16)

Letting k1, k2 and s1 = 1, (16) becomes the standard
hypergeometric differential equation. Although the k-
hypergeometric functions can be expressed in terms of
the classical hypergeometric functions in the following
form

pFq(a, k; b, s;x) = pFq(ak ; bs ; kxs )

=
∞∑
n=0

( a1
k1

)n( a2
k2

)n···(
ap
kp

)n

( b1
s1

)n( b2
s2

)n···(
bq
sq )nn!

(
kx
s

)n
,

(17)

where a
k =

(
a1
k1
, a2
k2
, · · · , apkp

)
, bs =

(
b1
s1
, b2
s2
, · · · , bqsq

)
, and

kx
s = k1k2···kpx

s1s2···sp , and one can directly use the right side of
this expression to perform computations of the parameter
derivative with respect to k or s of the k-hypergeometric
functions logically, it is indeed very difficult, especially
when the order of differentiation is high, due to the
fact that the parameters k and s appear in the de-
nominator of the generalized hypergeometric function.
That being said, we pay our attention to finding efficient
algorithms for computing the parameter derivatives of
the k-hypergeometric functions first. Our algorithms are
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especially efficient when the order of the derivatives is
high.

It should be pointed out that, although Mathematica
has native functions that can be used to compute the low-
er order symbolic parameter derivatives of the general-
ized hypergeometric functions, they are time-consuming
and sometimes cannot achieve the specified accuracy.
The following example gives comparison by providing
the Mathematica code and time spent for comput-
ing ∂3

∂a2
1∂b1

[2F1(a, k; b, s; z)] and ∂4

∂a2
1∂b

2
1

[2F1(a, k; b, s; z)] ,
where z = 2

3 , a = ( 1
2 ,

2
3 ), k = ( 1

3 ,
3
5 ), b = 4

3 , s = 9
7 ,

by using some Mathematica internal functions and our
algorithms in this paper, respectively.

Clear[aa];Clear[cc];k={ 1
3 ,

3
5} ;a= 1

2 ; b= 2
3 ; c= 4

3 ; s= 9
7 ;

z= 2
3 ;Prec=32;ms={2,0};ns={1};Clear[aa];Clear[cc];

a1={a,b};b1={c};s1={s};
Timing[D[D[Hypergeometric2F1[ aa

k[[1]] ,
b

k[[2]] ,
cc
s
,
k[[1]]k[[2]]z

s
],

{aa,ms[[1]]}]/.aa→ a,{cc,ns[[1]]}]/.cc→ c,Prec]]
Timing[Hypergeometricab[x,a1,k,b1,s1,2,1,ms,ns]

ns={2};Clear[aa];Clear[cc];
Timing[D[D[Hypergeometric2F1[ aa

k[[1]] ,
b

k[[2]] ,
cc
s

, k[[1]]k[[2]]z
s

],
{aa,ms[[1]]}]/.aa→ a,{cc,ns[[1]]}]/.cc→ c,Prec]]
Timing[Hypergeometricab[x,a1,k,b1,s1,2,1,ms,ns]
{0.156250,-0.17105873358670190610911461781888}
{0.,-0.1710587335867019061091146178188814303285}
{0.703125,0.311619134384}
{0.,0.311619134383516381576850914082862448071}

where

D[D[Hypergeometric2F1[a, b, c, z]]]

is a Mathematica internal function and

Hypergeometricab[x, a, k, b, s, p, q,ms, ns]

is our function for computing
∂m1+m2+···+mp+n1+n2+···+nq

∂a
m1
1 ∂a

m2
2 ···∂ampp ∂b

n1
1 ∂b

n2
2 ···∂b

nq
q

[pFq(a, k; b, s; z)]

in this paper. This example shows that our function is
much more efficient and can achieve better accuracy.
When the order of the derivative is getting higher, the
Mathematica internal functions do not work well and
our algorithm still works very efficiently. Here is another
example:

Prec=16;Clear[a];Clear[b];Clear[a2];Clear[b2];a={2,2/3};
b={1/2,3};k={1,1};s={1,1};x=1/3;
Timing[N[D[D[HypergeometricPFQ[{2,a2},{1/2,b2},x],
{a2,1}]/.a2→ 2/3,{b2,1}]/.b2→ 3,Prec]]
Hypergeometricab[x,a,k,b,s,2,2,{0,1},{0,1}]
Timing[N[D[D[HypergeometricPFQ[{2,a2},{1/2,b2},x],
{a2,3}]/.a2→ 2/3,{b2,3}]/.b2→ 3,Prec]]
Hypergeometricab[x,a,k,b,s,2,2,{0,3},{0,3}]
{0.015625,-0.2069231935716211}
{0.,-0.2069231935716211044}
{0.062500,HypergeometricPFQ{0,3},{0,3},0) [...]}
{0.,-0.011331765835823066706}

where ”...” means that the contents of some square
brackets are omitted. Using the Mathematica internal
function,

∂2

∂a2∂b2

[
2F2({2, 2

3}, {
1
2 , 3},

1
2 )
]

is calculated, whereas
∂6

∂a3
2∂b

3
2

[
2F2({2, 2

3}, {
1
2 , 3},

1
2 )
]

is not. Again, our function is much more efficient and can
achieve much better accuracy.

II. Explicit formulas for the parameter
derivatives of k-hypergeometric function

Using expression (11), one can get an expression for
the derivatives of the Pochhammer symbol

dn

dxn [(x)m] =


n!

m∑
k=n

(
k
n

)
(−1)m-ks(m, k)xk-n,

n = 1, 2, · · · ,m,
0, n = m+ 1,m+ 2, · · ·

(18)

and the following expression for the parameter deriva-
tives of the confluent hypergeometric function

G(n) = ∂n

∂an [1F1 (a, b, z)] = ∂n

∂an

∞∑
m=0

(a)nzm
(b)mm!

= n!
∞∑
m=n

m∑
k=n

Cnk
(−1)m−ks(m,k)ak−nzm

(b)mm! .
(19)

The time complexity of using (19) to compute G(n)

directly would be O(N2), which is clearly a great im-
provement of the result in reference [16].

In [21], the authors give the following proposition
about the Pochhammer k-symbol.

Proposition 2.1 The following identities hold.
1).

(x)n,k =
n−1∑
l=0

en−1
l (1, 2, · · · , n− 1)klxn−l. (20)

2).

∂
∂k (x)n,k =

n−1∑
l=0

l (x)l,k (x+ (l + 1)k)n−1−l,k, (21)

where ens (x1, x2, · · · , xn) =
∑

1≤i1<···<is≤n
xi1 · · ·xis .

Following the idea of (18), we can give the following
proposition that can be proved by using (12) and the
expression (x)n,k = kn

(
x
k

)
n
.

Proposition 2.2 The following identities hold.
1).

(x)n,k =
n∑
l=1

(−1)n−ls(n, l)kn−lxl

=
n−1∑
l=0

(−1)ls(n, n− l)klxn−l.
(22)

2).

Ak,n,m(x) =


m!

n∑
l=m

(
l
m

)
s(n, l)(−k)n−lxl−m,

m = 1, 2, · · · , n,
0,m > n.

(23)
3).

Bk,n,m(x) =


m!

n−1∑
l=m

(
l
m

)
(−1)ls(n,n−l)xn−l

k(m−l)
,

m = 1, 2, · · · , n,
0,m > n.

(24)

Remark Comparing the above propositions, one can
find en−1

l (1, 2, · · · , n− 1) = (−1)ls(n, n− l).
Using (23) and (24), we can get the following theorem.
Theorem 2.1 For m = 1, 2, · · · ,

∂m

∂am1
[pFq(a, k; b, s; z)]

=
∞∑
n=m

Ak1,n,m(a1)(a2)n,k2 ···(ap)n,kpz
n

(b1)n,s1 (b2)n,s2 ···(bq)n,sqn!
(25)
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and
∂m

∂km1
[pFq(a, k; b, s; z)]

=
∞∑
n=m

Bk1,n,m(a1)(a2)n,k2 ···(ap)n,kpz
n

(b1)n,s1 (b2)n,s2 ···(bq)n,sqn! ,
(26)

Similarly, we give the following proposition for
Ck,n,m(x) = dm

dxm

[
1

(x)n,k

]
and Dk,n,m(x) = ∂m

∂km

[
1

(x)n,k

]
.

Proposition 2.3 The following identities hold.
1).

Ck,n,m(x) = m!
(n−1)!kn−1

n−1∑
i=0

Cin−1
(−1)i+m

(x+ik)m+1 . (27)

2).

Dk,n,m(x) = (−1)m(n−1)m
(n−1)!kn+m−1

+ (−1)mm!
(n−1)!kn−1

m∑
j=0

(
n+ j − 2

j

)
1
kj

n−1∑
i=1

(
n− 1
i

)
(−1)iim−j

(x+ik)m−j+1 .

(28)

Proof Using

1
(x)n

=
n−1∑
i=0

(−1)i
(n−1−i)!i!(x+i)

= 1
(n−1)!

n−1∑
i=0

(
n− 2
m

)
Cin−1

(−1)i
x+i ,

we have
1

(x)n,k
= 1

kn( xk )
n

= 1
kn

n−1∑
i=0

(−1)i

(n−1−i)!i!( xk+i)

= 1
(n−1)!kn−1

n−1∑
i=0

(
n− 1
i

)
(−1)i
x+ik

= 1
(n−1)!

n−1∑
i=1

(
n− 1
i

)
(−1)i

n−2∑
j=1

(−i)n−j−1

xn−jkj

+ 1
(n−1)!

n−1∑
i=1

(
n− 1
i

)
(−1)i (−i)n−1

x

n−1
(x+ ik) .

Therefore,

Ck,n,m(x) = m!
(n−1)!kn−1

n−1∑
i=0

(
n− 1
i

)
(−1)i+m

(x+ik)m+1 ,

and
Dk,n,m(x) = (−1)m(n−1)m

(n−1)!kn+m−1

+ (−1)mm!
(n−1)!kn−1

m∑
j=0

(
n+j-2
j

)
n−1∑
i=1

(
n-1
i

)
(−1)iim-j

kj(x+ik)m-j+1 .

Using (23),(24),(27) and (28), one can have the fol-
lowing theorem about the parameter derivatives of the
k-hypergeometric functions.

Theorem 2.2 For mi = 0, 1, 2, · · · , i = 1, 2, · · · , p,
and nj = 0, 1, 2, · · · , j = 1, 2, · · · , q,

∂m1+m2+···+mp+n1+n2+···+nq

∂a
m1
1 ∂a

m2
2 ···∂ampp ∂b

n1
1 ∂b

n2
2 ···∂b

nq
q

[pFq(a, k; b, s; z)]

=
∞∑

n=Mp

∏p
i=1
∏q
j=1

Aki,n,mi (ai)Ckj,n,mj (bj)zn

n!
(29)

where Mp = max{m1, · · · ,mp} and
∂m1+m2+···+mp+n1+n2+···+nq

∂k
m1
1 ∂k

m2
2 ···∂kmpp ∂s

n1
1 ∂s

n2
2 ···∂s

nq
q

[pFq(a, k; b, s; z)]

=
∞∑

n=Mp

∏p
i=1
∏q
j=1

Bki,n,mi (ai)Dkj,n,mj (bj)zn

n! .
(30)

where Aki,n,m(ai) and Bki,n,m(ai)(i = 1, 2, · · · , p) are
defined by (23) and (24) respectively, and Cki,n,m(ai) and
Dki,n,m(ai)(i = 1, 2, · · · , p) are defined by (27) and (28),
respectively.

III. Recursive formulas for the parameter
derivatives of the Pochhammer k-symbol, its

reciprocal and their efficiency analysis
Some explicit formulas of Ak,n,m(x), Bk,n,m(x),

Ck,n,m(x) and Dk,n,m(x) are given in the previous
section. In this section, we establish some recursive
algorithms for them and apply the algorithms to
the computation of the parameter derivatives of the
k-hypergeometric functions. First, using the fact that
(x)n,k = (x)n−1,k (x+(n−1)k), we can get the following
lemma and corresponding recursive algorithms.

Lemma 3.1 For integers n,m ≥ 0 and real number
k > 0, the following recursive formulas hold:

Ak,n,m(x) = (x+ nk − k)Ak,n-1,m(x)
+mAk,n-1,m-1(x) (31)

and
Bk,n,m(x) = (x+ nk − k)Bk,n-1,m(x)

+ (n− 1)mBk,n-1,m-1(x). (32)

Algorithm of Ak,n,m(x) and Bk,n,m(x)

Ak,0,0(x) = 1, Ak,0,l(x) = 0, l = 1, 2, · · · ,m,
Ak,n,0(x) = (x+ nk − k)Ak,n-1,0(x),
Ak,n,l(x) = (x+ nk − k)Ak,n-1,l(x)

+lAk,n-1,l-1(x),
l = 1, 2, · · · ,m, n = 1, 2, · · · .

(33)

and
Bk,0,0(x) = 1, Bk,0,l(x) = 0, l = 1, 2, · · · ,m,
Bk,n,0(x) = (x+ nk − k)Bk,n-1,0(x),
Bk,n,l(x) = (x+ nk − k)Bk,n-1,l(x)

+(n-1)lBk,n-1,l-1(x),
l = 1, 2, · · · ,m, n = 1, 2, · · · .

(34)

Similarly, using the fact that 1
(x)n−1,k

= x+(n−1)k
(x)n,k

,

one can also get the following lemma and the recursive
algorithms for the reciprocal of the Pochhammer k-
symbol.

Lemma 3.2 For integers n,m ≥ 0 and real number
k > 0, the following recursive formulas are true.

Ck,n,m(x) = Ck,n−1,m(x)−mCk,n,m−1(x)
x+(n−1)k (35)

and

Dk,n,m(x) = Dk,n−1,m(x)−(n−1)mDk,n,m−1(x)
x+(n−1)k . (36)

Algorithm of Ck,n,m(x) and Dk,n,m(x)

Ck,0,0(x) = 1, Ck,0,l(x) = 0 (l = 1, 2, · · · ,m) ,
Ck,n,0(x) = Ck,n−1,0(x)

x+(n−1)k ,

Ck,n,l(x) = Ck,n−1,l(x)−lCk,n,l−1(x)
x+(n−1)k ,

l = 1, 2, · · · ,m, n = 1, 2, · · · .

(37)

and
Dk,0,0(x) = 1, Dk,0,l(x) = 0 (l = 1, 2, · · · ,m) ,
Dk,n,0(x) = Dk,n−1,0(x)

x+(n−1)k ,

Dk,n,l(x) = Dk,n−1,l(x)−(n−1)lDk,n,l−1(x)
x+(n−1)k ,

l = 1, 2, · · · ,m, n = 1, 2, · · · .

(38)

Since Ak,n,m(x), Bk,n,m(x), Ck,n,m(x) and Dk,n,m(x)
in the preceding section are in explicit form, we
don’t need to compute Ak,l,j(x), Bk,l,j(x), Ck,l,j(x)
and Dk,l,j(x) for l = 0, 1,· · · ,n − 1, j = 0, 1,· · · ,m − 1
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intuitively if we use them to perform computation of
(29) and (30). If we perform the computation of

∂m1+m2+···+mp

∂am1
1 ∂am2

2 · · · ∂ampp
[pFq(a, k; b, s; z)]

and
∂m1+m2+···+mp

∂km1
1 ∂km2

2 · · · ∂kmpp
[pFq(a, k; b, s; z)]

by using (33), (34), (37) and (38), we must com-
pute all Ak,l,j(x), Bk,l,j(x), Ck,l,j(x) and Dk,l,j(x) for
l = 0, 1, · · · ,n − 1, j = 0, 1, · · · ,m − 1. However, the
recursive ones are more efficient because we need to
take the sum of the first N terms of the series (de-
pending on the accuracy of the calculation and it-
s relevant properties) when the explicit formulas are
used. The total amount of time spent on computing
Aki,n,mi(ai)(Bki,n,mi(ai))(i = 1, · · · ,p, n = m̃, m̃ +

1,· · · ,N, m̃ = min{m1, · · · ,mp}) is O

(
N

p∑
i=1

mi

)
if

recursive algorithm (33)((34)) is used, and the time spent
on computing Csj ,n,ni(ai)(Dsj ,n,nj (ai))(i = 1, 2,· · · ,p,

n = 0, 1, 2,· · · ,N) is O

(
N

q∑
i=1

ni

)
if recursive al-

gorithm (37)((38)) is used. However, the time spent
on computing Aki,n,mi(ai)(Bki,n,m(ai))(i = 1, 2,· · · ,p,

n = m̃, m̃+1,· · · ,N) is O

(
N2

p∑
i=1

mi

)
if formula

(23)((24)) is used, and the time spent on Cki,n,mi(ai)
(Dki,n,m(ai))(i = 1, 2,· · · ,p,n = m̃, m̃+1, · · · ,N) is at

least the order of O
(
N2

q∑
i=1

ni

)
if formula (28) ((29))

is used. Therefore, the formulas in section II are much
slower than the recursive algorithms in this section. We
performed experiment by using Mathematica and the
actual time spent by the two different sets of algorithms
is recorded in the following table.

Table I. Comparison of efficiency between the explicit
formula and the recursive algorithm

ALGO x, k,m,N, Time x, k,m,N, Time
(23)
(33)

1
3 ,

2
3 , 5, 100, 0.156250

0.000000
1
3 ,

2
3 , 10, 400, 53.57812

0.046875
(24)
(34)

2
3 ,

5
3 , 6, 100 0.156250

, 0.015625
1
3 ,

2
3 , 6, 400, 53.32812

0.046875
(27)
(35)

2
3 ,

2
3 , 5, 100, 0.062500

0.015625
1
3 ,

2
3 , 5, 400, 72.17187

0.187500
(28)
(36)

1
3 ,

4
3 , 5, 100, 0.328125

0.031250
1
3 ,

2
3 , 5, 400, 450.7850

0.265625

The data in Table I shows that the advantage of the
recursive algorithm over the explicit formulas becomes
more significant as N increases. As N increases from 100
to 400, the recursive algorithm is from 2-10 to 310-1500
times as fast as the explicit formula.

IV. Algorithms and applications of the
parameter derivatives of the hypergeometric

functions to Bessel functions
In this section we develop our algorithms for com-

puting the parameter derivatives of the hypergeometric
functions and apply them to computing the parameter
derivatives of the Bessel and modified Bessel functions.
Using the recursive algorithm in section 3, we can also
get recursive algorithms for (12) and (13). Similar to the

usual approach [21], a standard algorithm for computing
the k-hypergeometric functions is as follows:

S0 = 1, C0 = 1, a = 1; b = 1,
If p > 0 a =

∏p

i=1(ai + j ∗ ki)
If q > 0 b =

∏q

l=1(bl + j ∗ sl)
Cj+1 = azCj

b(j+1) , Sj+1 = Sj + Cj+1, j = 0, 1, 2, · · · ,

(39)

where Cj represents the j + 1st term of the power series
(8), and Sj represents the sum of the first j + 1 terms.

It follows (33) that only a two-dimensional array
Ai,l(l = 0, 1, · · · ,mi, i = 1, 2, · · · , p) is needed for stor-
ing and completing the calculation of the l-derivative
of (ai)n,k with respect to variable ai. Similarly, two
two-dimensional arrays C1j,l, C2j,l(l = 0, 1, · · · , ni, j =
1, 2, · · · , q) are needed for completing the calculation the
l-derivative of 1

(bj)n,k with respect to variable bj . Now we
can improve Algorithms (33) and (37) and can give the
following algorithm for computing the expression (29):

Initializing
Ai,0= 1, i = 1, 2, · · · , p, n = 0,
C1j,0= 1, j = 1, 2, · · · , q, C2 = C1, C0 = 1, a = 1, b = 1,
ma = max{m1,m2, · · · ,mp}, nb = max{n1, n2, · · · , nq},
If ma+ nb > 0 S0= 0 else S0= 1
loop body
If p > 0

Ai,l= (ai+(n− 1) ∗ ki)Ai,l+l ∗Ai,l−1
(l = mi ,mi−1, · · · , 1)
Ai,1= (ai+(n− 1)ki)Ai,1,
i = 1, 2, · · · , p,
a =
∏p

i=1 Ai,mi ,
If q > 0

C2j,0= C1j,0
bj+(n−1)sj

C2j,l=
Cj,l−l∗C2j,l−1
bj+(n−1)sj

, (l = 1, 2, · · · , nj)
j = 1, 2, · · · , q,
C2j,l−→ C1j,l(l = 1, 2, · · · , nj , j = 1, 2, · · · , q),
b =
∏q

j=1 Cj,nj ,

Cn=Cn−1∗x
n

;Sn= Sn−1+abCn,n = 1, 2, · · · .
(40)

To improve Algorithms (34) and (38), all we have to do
is to replace{

Ai,l= (ai+(n− 1) ∗ ki)Ai,l+l ∗Ai,l−1,

C2j,l=
Cj,l−l∗C2j,l−1
bj+(n−1)sj

(41)

by {
Ai,l= (ai+(n− 1) ∗ ki)Ai,l+(n− 1)l ∗Ai,l−1,

C2j,l=
Cj,l−(n−1)l∗C2j,l−1

bj+(n−1)sj
.

(42)

The computational time of (40) is clearly
p∑
i=1

mi +
q∑
i=1

ni

times of the computational time of (39). The efficiency
of algorithms (39) and (40) is verified by the following
numerical results using Mathematica. By using (17), we
can compare them using the following internal functions
in Mathematica:

pFq(a, k; b, s;x) = HypergeometricPFQ[ak ,
b
s ; KpzSp

], (43)
where Kp = k1k2 · · · kp, Sp = s1s2 · · · sp. The numerical
results are as follows:

Table II. The time of (39),(40) and (29)
ALGO {m1,m2,m3},

{n1,n2},x
Time32 Time64 Time128

(43)
(39)

{0, 0, 0},
{0, 0}, 2/3

0.01562
0.00000

0.01562
0.01562

0.01562
0.01562

(40)
(29)

{1, 2, 2},
{2, 3}, 2/3

0.01562
0.04687

0.01562
0.12500

0.03125
0.68750

(40)
(29)

{4, 2, 3},
{4, 3}, 2/3

0.01562
0.04687

0.03125
0.14062

0.04687
0.59375
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where a = { 1
2 ,

3
5 ,

2
7}, k = { 3

2 ,
3
4 ,

1
5}, b = { 2

3 ,
3
4}, s =

{ 1
3 ,

1
4}, and (29) is computed by using explicit formulas

(23) and (27). As one can see from Table II, explicit
formula (29) is much slower than (40), especially when
the number of terms in a series is large.

By (17) and

2F1(a, b; c; z) = Γ(c)
Γ(b)Γ(c−b)

∫ 1
0
tb−1(1−t)c−b−1

(1−zt)a dt, (44)

we have

2F1(a, k; b, s; z) = Γ( bs )
Γ( a2

k2
)Γ( bs−

a2
k2

)

×
∫ 1

0 t
a2
k2
−1(1− t)

b
s−

a2
k2
−1(1− k1k2z

s t)−
a1
k1 dt

(45)

where a = {a1, a2}, k = {k1, k2}, b
s >

a2
k2

, a2
k2
> 0.

∂m+n+r

∂am∂bn∂cr [2F1(a,b;c,z] , ∂m+n+r

∂am∂bn∂cr [2F1(a,b,k1,k2;c,s;z]
can certainly be calculated by using the derivative
law of parametric variables with integrals (44) and
(45) directly, but it is very complicated and time-
consuming. It is even more difficult to calculate
∂m+n+r

∂km1 ∂k
n
2 ∂s

r [2F1(a, b, k1, k2; c, s; z] by using (45). For ex-
ample,

∂
∂s 2F1(a, k; b, s; z) = − b

s2B( a2
k2
, bs )

∫ 1
0 R1(t, s)dt

− a1k2zΓ( bs )
s2Γ( a2

k2
)Γ( bs−

a2
k2

)

∫ 1
0 R2(t, s)dt

−
bΓ( bs )

(
ψ( bs )−ψ

(
b
s−

a2
k2

))
s2Γ( a2

k2
)Γ( bs−

a2
k2

)

∫ 1
0 R3(t, s)dt,

(46)

where

R1(t, s) = t
a2
k2
−1(1-t)

b
s−

a2
k2
−1(1− k1k2z

s t)−
a1
k1 ln (1-t),

R2(t, s) = t
a2
k2 (1− t)

b
s−

a2
k2
−1(1− k1k2z

s t)−
a1
k1
−1,

R3(t, s) = t
a2
k2 (1− t)

b
s−

a2
k2
−1(1− k1k2z

s t)−
a1
k1 .

However, we can rewrite (45) using our algorithm:

∫ 1
0 R2(t, s)dt = B(a2

k2
, bs −

a2
k2

)2F1(a, k; b, s; z) (47)

and ∫ 1
0 R2(t, s) lnn(1− t) lnm(1-k1k2z

s1
t)dt

= (−k1)m
n∑
i=0

(
n
i

)
siB0,i(a2

k2
, y)|y= b

s−
a2
k2

∂m+i

∂am1 ∂b
i [2F1(a, k; b, s; z)] ,

(48)

where B0,i(x, y) = ∂i

∂yiB0,n(x, y) and B(x, y) is a Beta
function. We can also use the following recursive algo-
rithm [11] for B0,i(x, y):

B0,q(x, y) =
q−1∑
j=0

(
q-1
j

)
ψ(q-1-j)(x, y)B0,j(x, y). (49)

where ψ(k)(x, y) = ψ(k)(y) − ψ(k)(x + y). Let (48)R be
the numerical result on the right-side of (48) and (48)L
be the integral on the left-side of (48) in Mathematica.

Some numerical results are as follows.

Table III. Some numerical results and time spent of (48)
ALGO m,n Time32, Err Time64, Err
(48)L
(48)R

3, 0 0.0781, 10−27

0.0156, 10−31
0.2343, 10−21

0.0312, 10−63

Integral value:− 5.25633666184117304892560440937 · · ·
ALGO m,n Time32, Err Time64, Err
(48)L
(48)R

1, 2 0.0781, 10−24

0.0312, 10−31
0.2656, 10−18

0.0781, 10−63

Integral value:− 99.0080456625546349331907776519 · · ·
ALGO m,n Time32, Err Time64, Err
(48)L
(48)R

2, 2 0.0781, 10−24

0.0468, 10−31
0.2500, 10−18

0.0937, 10−63

Integral value: 134.30455302556773469630042838747 · · ·
ALGO m,n Time32, Err Time64, Err
(48)L
(48)R

3, 2 0.0781, 10−24

0.0468, 10−31
0.2500, 10−18

0.1093, 10−63

Integral value: − 182.935226648018003047959972182 · · ·

where {a1, a2}={ 1
3 , 3

5},{k1, k2}={ 3
2 , 6

5},b= 4
3 ,s= 8

5 ,z= 2
3 ;

Table IV. Some numerical results and time spent of (48)
ALGO m,n Time32, Err Time64, Err
(48)L
(48)R

3, 0 0.0781, 10−11

0.0156, 10−31
0.1406, 10−14

0.0312, 10−63

Integral value:− 7.1888336144179851500597011593579 · · ·
ALGO m,n Time32, Err Time64, Err
(48)L
(48)R

1, 2 0.0937, 10−11

0.0156, 10−31
0.1562, 10−11

0.0468, 10−64

Integral value:− 1760.5868975396014633077075809639 · · ·
ALGO m,n Time32, Err Time64, Err
(48)L
(48)R

2, 2 0.0781, 10−9

0.0312, 10−32
0.1562, 10−11

0.0468, 10−64

Integra valuel: 1453.18907504451195656055365326318 · · ·
ALGO m,n Time32, Err Time64, Err
(48)L
(48)R

3, 2 0.0781, 10−9

0.0312, 10−31
0.1562, 10−11

0.0468, 10−63

Integral value:− 1199.7182932950773803479765506986 · · ·

where {a1, a2}={1, 3
5},{k1, k2}={ 9

8 , 6
5},b=1,s= 8

5 ,z= 2
3 .

Table III and IV show that (48)R can always achieve
the specified precision, and the efficiency is also much
better. However, the numerical integration (48)L can-
not achieve the specified precision, and even the high
precision (64-bit) results are worse than those under
the specified precision of 32-bit. This is because the
accumulation error of improper integral affects the true
value in integral calculation.

Now we can apply our algorithms to the computation
of the parameter derivatives of Bessel functions because
the Bessel functions can be expressed in terms of the
generalized hypergeometric series as

Jα(x) = Γ̂(α+ 1)
(
x
2
)α

0F1(α+ 1, −x
2

4 ), (50)

where Γ̂(α + 1) = 1
Γ(α+1) . In [1] the author discusses

the higher order derivatives of Jα(x) with respect to the
parameter. For example, the author gives

∂m

∂υm

[{
Jυ(z)
Iυ(z)

}]
= (−1)m m!i

2π

m∑
k=0

1
(m−k)!

m−k∑
p=0

(−1)p
(
m− k
p

)
×
[

eiυπ
(
ln z

2 + πi
)p

−e−iυπ
(
ln z

2 − πi
)p ]Γ(m-k-p)(−υ)

×
{
δk,0Γ(υ + 1)

{
Jυ(z)
Iυ(z)

}
∓ (1−δk,0)Qk(z)

( 2
z

)υ+2(υ+1)k+1

}
,

(51)

where Iυ (z) is the modified Bessel function, and Qk(z) =
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F 0:k+1;0
1:k+1;0

(
-:υ,υ, · · · , · · · ,-;

2:υ+1,υ+1, · · · ,v+1;-; ±
z2

4 ,∓
z2

4

)
,

F p:q;rs:t;u

(
(ap):(bq); (cr);
(ds):(et); (fu); w, z

)
=
∞∑
j=0

∞∑
k=0

[ap]j+k[bq ]j [cr]k
[ds]j+k[et]j [fu]k

wjzk

j!k!

(52)

is the Kampé Fériet function, where (ap) = a1, a2, · · · , ap
and [ap]k =

∏p
i=1(ai)k.

It is very complicated to compute ∂m

∂αm Jα(x) using
formula (51). To use our recursive algorithms, we express
it in terms of the hypergeometric function:

∂m

∂αm Jα(x)

=
m∑
l=0

(
m
l

)
Pm−l,α(x) ∂l

∂αl

[
0F1(α+ 1, x

2

4 )
]
,

(53)

where

Pl,α(x) =
l∑

u=0

(
l
u

)
Γ̂(u)(α+1)

(
x
2
)α lnl−u x

2 . (54)

For Γ̂(u)(α) we give the following recurrence formula [14]:

Hψ
0 (α) = 1, Hψ

n,0(α) = ψ̂
(n−1)

(α),

H ψ̂
n,l(α) =

n−1∑
i=1

(
n-1
i

)
ψ̂

(n−1−i)
(α)H ψ̂

i,l−1(α),

H ψ̂
n (α) =

n−1∑
l=0

H ψ̂
n,l(α), Γ̂(n)(α) =H ψ̂

n (α)Γ̂(α)

(55)

for n = 1, 2, · · · , where ψ̂ = −ψ(α). The Bessel functions
Jα(x) have many integral representations, for example

Jα(x) = 2( 1
2x)α

π
1
2 Γ(α+ 1

2 )

∫ 1
0 (1-t2)a− 1

2 cos (xt) dt (56)

and

Jα(x) = 1
π

∫ π
0 cos(x sin θ − αθ)dθ

− sinαπ
π

∫∞
0 e−x sinh t−αtdt.

(57)

So ∂m

∂αm Jα(x) has the integral representation

∂m

∂αm
Jα(x) = 1

π

∫ π
0 θn cos(αθ − x sin θ + mπ

2 )dθ

−
∫∞

0

m∑
l=0

(
m
l

)
(−t)lπm−l−1

e−x sinh t−αt sin 2απ+(m−l)π
2 dt.

(58)

Expression (51) is not suitable for numerical calculations.
Although numerical calculation for (58) is possible, it is

not nearly as fast as (53).
Table V. Numerical results and time spent

for computing ∂m

∂αm
Jα(x)

ALGO x, α,m Time32, Err Time64, Err
(58)
(53)

14
3 ,

7
5 , 4

0.0625, 10−24

0.0, 10−33
0.2187, 10−63

0.0156, 10−66

Integral value: 0.40812913683842034037286730580 · · ·
ALGO x, α,m Time32, Err Time64, Err

(58)
(53)

17
4 ,

16
3 , 3

0.0468, 10−26

0.0, 10−32
0.1250, 10−62

0.0156, 10−65

Integral value: − 0.005366802486446309837207649 · · ·
ALGO x, α,m Time32, Err Time64, Err

(58)
(53)

7
4 ,

4
3 , 5

0.0781, 10−32

0.0, 10−33
0.1718, 10−64

0.0156, 10−66

Integral value: − 0.389864144512303879299266271 · · ·
ALGO x, α,m Time32, Err Time64, Err
(60)L
(60)R

14
3 ,
−1
3 , 4 0.1093, 10−10

0.0, 10−33
0.1718, 10−14

0.0156, 10−66

Integral value: − 4278.386924357320400812464127 · · ·
ALGO x, α,m Time32, Err Time64, Err
(60)L
(60)R

25
3 ,

1
3 , 4

0.0781, 10−32

0.0, 10−34
0.2031, 10−65

0.0, 10−66

Integral value: − 11.46781035988221326684265462 · · ·
ALGO x, α,m Time32, Err Time64, Err
(60)L
(60)R

25
7 ,

3
4 , 5

0.0625, 10−32

0.0156, 10−34
0.1718, 10−65

0.0156, 10−66

Integral value:14.80981216018528406723583503919 · · ·

Using (56) and (50), we have∫ 1
0 (1− t2)α− 1

2 cos (xt) dt
= 1

2B( 1
2 , α+ 1

2 )0F1(α+ 1, x
2

4 )
(59)

for α > − 1
2 , so

2
∫ 1

0 (1− t2)α−
1
2 cos (xt) lnm(1− t2)dt

=
m∑
l=0

(
m
l

)
Bm−l( 1

2 , α+ 1
2 ) ∂l

∂αl

[
0F1(α+ 1, x

2

4 )
]
.

(60)

Table V shows that (60)R can always achieve the
specified precision, and the calculation speed is also fast.
However, when α approaches − 1

2 from the right, numer-
ical calculation of (60)L can not achieve the specified
precision.

V. Conclusion
In this article, we first establish recursive represen-

tations of the Stirling numbers of the first kind for
Pochhammer k-symbol (x)n,k( 1

(x)n,k
) and its derivatives

Ak,n,m(x)(Ck,n,m(x)) and Bk,n,m(x)(Dk,n,m(x)) with re-
spect to x and k. Thus formulas for

∂m1+m2+···+mp+n1+n2+···+nq

∂am1
1 ∂am2

2 · · · ∂ampp ∂bn1
1 ∂bn2

2 · · · ∂b
nq
q

[pFq(a, k; b, s; z)]

and
∂m1+m2+···+mp+n1+n2+···+nq

∂km1
1 ∂km2

2 · · · ∂kmpp ∂sn1
1 ∂sn2

2 · · · ∂s
nq
q

[pFq(a, k; b, s; z)]

for feasible computations are obtained. This is an es-
sential progress over the multiple series mentioned in
the introduction. These results, however, do not allow
efficient computations. In order to improve the efficiency
further, recursive algorithms for the derivatives of (x)n,k
and 1

(x)n,k
with respect to x and k, and the parameter

derivatives
∂m1+m2+···+mp+n1+n2+···+nq

∂am1
1 ∂am2

2 · · · ∂ampp ∂bn1
1 ∂bn2

2 · · · ∂b
nq
q

[pFq(a, k; b, s; z)]
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and
∂m1+m2+···+mp+n1+n2+···+nq

∂km1
1 ∂km2

2 · · · ∂kmpp ∂sn1
1 ∂sn2

2 · · · ∂s
nq
q

[pFq(a, k; b, s; z)]

are developed. As an example, the algorithms are also
extended to the computation of the parameter derivatives
of the Bessel functions and the modified Bessel functions.
To illustrate the advantages and rationality of our results,
numerical calculations in Mathematica are performed
and data are provided. Numerical results show that
the advantages are obvious in both of computational
accuracy and efficiency. Some special integrals are also
calculated by using the relationship between the integrals
and their related special functions, and the advantages
of accuracy and calculation efficiency are also obvious.
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[27] Flügge S., “Practical Quantum Mechanics I”, Berlin: Springer,
1971.

[28] Landau, L.J., “Bessel functions: monotonicity and bounds”, J.
Lond. Math. Soc. vol. 2, no. 61, pp. 197-215, 2000.

[29] L. Landau,“Monotonicity and bounds on Bessel functions”,
Electronic Journal of Differential Equations, Conf. 04, 2000,
pp. 147-154,2000.

[30] A. Li and H. Qin, ”Some Transformation Properties of the In-
complete Beta Function and Its Partial Derivatives”, IAENG
International Journal of Applied Mathematics, vol.49, no. 1,
pp. 109-113, 2019.

[31] A. Li, Z. Sun and H. Qin, “The Algorithm and Application
of the Beta Function and Its Partial Derivatives”, Engineering
Letters, vol. 23, no. 3, pp. 140-144, 2015.

[32] A. Li, F. Qin and H. Qin, “The Calculation and Application
of the Partial Derivatives of the Generalized Hypergeometric
Function”, IAENG International Journal of Applied Mathe-
matics, vol. 50, no. 3, pp. 713-719, 2020.

[33] Z. Sun and H. Qin, “Some Results on the Derivatives of the
Gamma and Incomplete Gamma Function for Non-positive
Integers”, IAENG International Journal of Applied Mathe-
matics, vol. 47, no. 3, pp. 265-270, 2017.

Engineering Letters, 29:3, EL_29_3_35

Volume 29, Issue 3: September 2021

 
______________________________________________________________________________________ 




