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Abstract—A numerical scheme based upon the Chebyshev
polynomials and collocation method is modified and developed
to deal with a class of Volterra integro-differential equations.
First, we construct the operational matrices of derivative and
pantograph. Then these obtained matrices are then utilized
to convert the problems to a system of algebraic equations.
Furthermore, we establish a detailed convergence analysis in
the weighted square norm. Finally, three numerical experiments
are implemented and discussed to confirm the applicability and
accuracy of the introduced computational scheme.

Index Terms—Volterra integro-differential equation, Cheby-
shev polynomial, Collocation method, Operational matrix.

I. INTRODUCTION

IN this work, we will focus on developing an efficient
numerical scheme for a class of integro-differential equa-

tions

z′(t) =α(t)z(t) + β(t)z(qt) + g(t)

+

∫ t

0

k1(t, s)z(s)ds

+

∫ qt

0

k2(t, s)z(s)ds, 0 < q < 1,

(1)

subject to the initial condition

z(0) = z0, (2)

where, t ∈ [0, T ], the variable coefficients α(t), β(t) and
g(t) are known functions, q is a real constant and also
the kernel functions k1(t, s) is defined on D = {(t, s) :
0 ≤ t ≤ T, 0 ≤ s ≤ t} and k2(t, s) is defined on
Dq = {(t, s) : 0 ≤ t ≤ T, 0 ≤ s ≤ qt}. Assume the
functions α(t), β(t), g(t) ∈ Cm([0, T ]), k1(t, s) ∈ Cm(D)
and k2(t, s) ∈ Cm(Dq) for some m ≥ 0. Then the problem
1 exists a unique solution y(t) ∈ Cm+1([0, T ]) [1]. Volterra
integro-differential equations have been employed for model-
ing various natural and social phenomena, for instance, pop-
ulation dynamics, spread of epidemics, chemical kinetics and
so on [2]. There has been a considerable amount of further
study on constructing and analyzing numerical schemes for
various classes of fractional differential equations.

In [3]–[5] the authors developed classical Runge-–Kutta
methods for this class of integro-differential equations. Gan
[6] used θ-method to deal with the delay type nonlinear
integro-differential equations. The authors of [7], [8] solved
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the problems with pantograph delay by means of finite
element methods. As is now well known, various spectral
methods play a significant role in solving all kinds of integro-
differential equations, see( [9]–[11]). Some papers have used
the methods for the considered model 1. For instance, in
[12]–[14] the authors employed Legendre polynomials to
obtain the approximate solution of the integro-differential
equations with delay. Meanwhile, Wei and Chen [15] ex-
tended the above technique for this class of equations with
proportional delays and developed a error analysis in detail.
Afterwards Zhao et al [16] employed the similar technique
to solve the nonlinear problem with non-vanishing delays.
Also, the Sinc function and collocation method were adopted
to deal with the given problem in [17].

The motivation of this work is to develop an improved
Chebyshev collocation approach to approximate the solution
of Volterra integro-differential equations with pantograph
delay. In this work, we first formulate the operational ma-
trices in the physical space. Then we construct the discrete
numerical scheme in which the variable coefficients were not
approximated. A detailed error analysis is discussed in the
weighted square norm.

II. SOME PROPERTIES OF SHIFTED CHEBYSHEV
POLYNOMIALS

The Chebyshev polynomials are important in many areas
of numerical analysis The standard Chebyshev polynomials
of the first kind are defined as the following formula

Ti(x) = cos(i arccos(x)), i ∈ N0; x ∈ [−1, 1],

where N0 := {0} ∪ N. N denotes a set of positive integers.
On the interval [0, T ], the shifted Chebyshev polynomials are
defined by the change of variable x = 2t/T − 1, 0 ≤ t ≤
T . Let the shifted Chebyshev polynomials denote by T ∗Li(t),
which can be obtained as follows

T ∗i (t) = Ti(2t/T − 1), i ∈ N0,

which satisfy the recurrence relation:

T ∗i+1(t) = 2 (2t/T − 1)T ∗i (t)− T ∗i−1(t),

where T ∗0 (t) = 1, T ∗1 (t) = 2t/L−1. Similarly to the standard
form, T ∗i (t) also satisfy the orthogonality property:

N∑′′

k=0

T ∗i (tk)T
∗
j (tk) =

 0, i 6= j and i, j ≤ N
N, i = j = 0 or N
N/2, i = j < N

(3)

where
tk =

T

2
(1− cos(kπ/N)), k ∈ N0.

are the shifted Chebyshev Gauss-Lobatto points.
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III. THE OPERATIONAL MATRIX OF DERIVATIVE

A function z(t) ∈ C[0, T ] can be approximated as

zN (t) =

N∑′′

k=0

ckT
∗
k (t). (4)

Thanks to the discrete orthogonality (3), we can directly
obtain the coefficient ck in (6) by the explicit formula

ck =
2

N

N∑′′

i=0

z(ti)T
∗
k (ti), k = 0, 1, · · · , N. (5)

First of all, according to (4), (5), we rewrite zN (t) in matrix
form as

zN (t) = T (t) · P · Z, (6)

where

T (t) =
[
T ∗0 (t), T

∗
1 (t), · · · , T ∗N−1(t), T ∗N (t)

]
,

P =


1

2N T
∗
0 (t0)

2
2N T

∗
0 (t1) · · · 1

2N T
∗
0 (tN )

1
N T
∗
1 (t0)

2
N T
∗
1 (t1) · · · 1

N T
∗
1 (tN )

1
N T
∗
2 (t0)

2
N T
∗
2 (t1) · · · 1

N T
∗
2 (tN )

...
...

. . .
...

1
2N T

∗
N (t0)

2
2N T

∗
N (t1) · · · 1

2N T
∗
N (tN )

 ,
and

Z =
[
z(t0), z(t1), z(t2), · · · , z(tN )

]T
.

So, the values of derivatives of zN (t) are simple computed
by

Z(1) = D(1) · Z, (7)

where

Z(1) =
[
z′(t0), z

′(t1), z
′(t2), · · · , z′(tN )

]T
,

D(1) is the operational matrix of derivative (see [18]).

IV. THE OPERATIONAL MATRIX OF PANTOGRAPH

In order to construct an operational matrix of pantograph
let

Zq = Q · Z (8)

where Q is the operational matrix of pantograph and

Zq =
[
z(qt0), z(qt1), z(qt2), · · · , z(qtN )

]T
,

Q = Rq · P,

where

Rq =


T ∗0 (qt0) T ∗1 (qt0) · · · T ∗N (qt0)
T ∗0 (qt1) T ∗1 (qt1) · · · T ∗N (qt1)
T ∗0 (qt2) T ∗1 (qt2) · · · T ∗N (qt2)

...
...

. . .
...

T ∗0 (qtN ) T ∗1 (qtN ) · · · T ∗N (qtN )

 .
Now, we consider to handle the part of integral term in (1).∫ t

0

k1(t, s)z(s)ds ≈
∫ t

0

k1(t, s)zN (s)ds

Then, applying (6) we get∫ t

0

k1(t, s)zN (s)ds =

∫ t

0

k1(t, s)T (s)PZds.

So, we approximate the first integral term

K1 = F · Z, (9)

where

K1 = [k0, k1, k2, · · · , kN ]T ,

and its elements ki, i = 0, 1, 2, · · · , N are

k0 =
∫ t0
0
k1(t, s)yN (s)ds,

k1 =
∫ t1
0
k1(t, s)yN (s)ds,

:

kN =
∫ tN
0

k1(t, s)yN (s)ds,

and

F = G · P · Z,

where

G = [Gij ](N+1)×(N+1),

and

Gij =

∫ ti

0

k1(ti, s)T
∗
Lj(s)ds, i, j = 0, 1, 2, · · · , N.

In our numerical scheme, the element Gij of the matrix G
are handled with Gauss quadrature formula,

Gij =

∫ ti

0

k1(ti, s)T
∗
Lj(s)ds

=
ti
2

∫ 1

−1
k1

(
ti,
tix+ ti

2

)
T ∗Lj

(
tix+ ti

2

)
dx

≈ ti
2

N∑
r=0

k1

(
ti,
tixr + ti

2

)
T ∗Lj

(
tixr + ti

2

)
ωr,

where {ωr}Nr=0 are Chebyshev weights. Similarly, the second
part of integral term in (1) can be approximated∫ qt

0

k2(t, s)z(s)ds ≈
∫ qt

0

k2(t, s)zN (s)ds.

Using (6) and Gauss quadrature formula the following oper-
ational matrix Fq is obtained:

K2 = FqZ, (10)

where

K2 =

[∫ qt0

0

k2(t, s)zN (s)ds, · · · ,
∫ qtN

0

k2(t, s)zN (s)ds

]T
and

Fq = Gq · P · Z.

where

Gq = [Gq]ij =

∫ qti

0

k2(ti, s)T
∗
Lj(s)ds, i, j = 0, 1, · · · , N

and

[Gq]ij ≈
qti
2

N∑
r=0

k2

(
qti,

qtixr + qti
2

)
T ∗Lj

(
qtixr + ti

2

)
ωr.
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V. NUMERICAL SCHEME

In this section, we apply the obtained the operational
matrices to solve the given problem 1. For this purpose,
we first apply the matrix forms (7),(8), (9) and (10) to the
problem (1). Then, we obtain the following equation in the
form of matrix

(D(1) −A−BQ− F − Fq)Z = G (11)

where
A = diag[α(x0), α(x1), α(x2), · · · , α(xN )],

B = diag[β(x0), β(x1), β(x2), · · · , β(xN )],

G = [g(x0), g(x1), · · · , g(xN )]T .

For the sake of simplicity, we use the matrix C to denote
D(1) − A − BQ − F − Fq . Then, the fundamental matrix
equation for (11) is reduced to

CZ = G,

where
C = [cij ](N+1)×(N+1).

Then, we incorporate the initial value z(0) = z0 in (2). Thus,
we have the following system of algebraic equations with
unknown z1, z2, · · · , zN .

z(0)


c01
c02
c03

...
c0N

+


c11 c12 c13 · · · c1N
c21 c22 c23 · · · c2N
c31 c32 c33 · · · c3N

...
...

...
. . .

...
cN1 cN2 cN3 · · · cNN




z(t1)
z(t2)
z(t3)

...
z(tN )



=


g(t1)
g(t2)
g(t3)

...
g(tN )


By solving the above system of algebraic equations and using
(6), we obtain the approximation zN (t).

VI. SOME KEY LEMMAS

We present some useful lemmas and notations, which are
necessary in a later section. Let L2

ωα,β (I) be the space of
measurable functions in I := (−1, 1) and ωα,β(x) is the
weight function. The norm of L2

ωα,β (I) is defined as

‖u‖L2

ωα,β
= (u, u)

1
2

ωα,β
.

For m ∈ N0, define

Hm
ωα,β, =

{
v : ∂kxv ∈ L2

ωα,β (I), 0 ≤ k ≤ m
}
,

with the semi-norm and norm as

|v|m,ωα,β = ‖dmv/dxm‖ωα,β ,

‖v‖m,ωα,β =

(
m∑
k=0

|v|2k,ωα,β

) 1
2

,

and

|v|Hm;N

ωα,β
=

 m∑
k=min(m,N+1)

‖dkv/dxk‖2L2

ωα,β

 1
2

.

Particularly, ω(x) = ω−
1
2 ,−

1
2 (x). In addition, let us denote

PN the set of all real polynomials of degree less then N ∈ N.
Moreover, the Lagrange interpolation polynomial of u is

INu =
N∑
i=0

u(xi)Fi(x), u ∈ C[−1, 1]

which satisfies

INu(xi) = u(xi), i ∈ N0,

where Fi(x) and xi are the Lagrange polynomials and
Chebyshev Gauss-Lobatto points, respectively.

Lemma 1: (see [19]) For a function u ∈ Hm,N
ω (I), with

m ∈ N. We have the estimation

‖u− INu‖L2
ω
≤ CN−m|u|Hm;N

ω
, (12)

where ω is the Chebyshev weight function.
By Lemma 1, we have the following relation:∣∣∣∣∫ 1

−1
u(x)φ(x)ω(x)− (u, φ)N

∣∣∣∣
≤ CN−m|u|Hm;N

ω (I)‖φ‖L2
ω(I)

,

(13)

where φ ∈ PN and (u, φ)N is discrete inner product.
Lemma 2: (see [20]) Assume that the function u is

bounded, then

sup
N

∥∥∥∥∥
N∑
i=0

u(xi)Fi(x)

∥∥∥∥∥
L2
ω(I)

≤ C max
x∈[−1,1]

|u(x)|,

where C is a constant independent of u.
Lemma 3: (see [12], [15]) Suppose 0 ≤ R1, R2 < +∞,

Assume that the functions E(x) and are nonnegative inte-
grable and satisfy

E(x) ≤ R1

∫ x

−1
E(t)dt+R2

∫ x

−1
E(qt+ q − 1)dt+H(x),

then
‖E‖Lp ≤ C‖H‖Lp , p ≥ 1.

VII. CONVERGENCE ANALYSIS

In order to facilitate error analysis, the equation (1) is
converted to an equivalent form defined on [−1, 1]. Hence,
we map the defined interval [0, T ] to [−1, 1] through the
coordinate transform

t = T (1 + x)/2, x = 2t/T − 1

. Then, we transform (1) and (2) into

u′(x) =A(x)u(x) +B(x)u(qx+ q − 1) +G(x)

+
T

2

∫ T
2 (1+x)

0

K1

(
T

2
(1 + x), s

)
z(s)ds

+
T

2

∫ qT
2 (1+x)

0

K2

(
T

2
(1 + x), τ

)
z(τ)dτ,

(14)

u(−1) = u−1 = z0, (15)

where

u(x) = z

(
T

2
(1 + x)

)
, A(x) =

T

2
α

(
T

2
(1 + x)

)
,

B(x) =
T

2
β

(
T

2
(1 + x)

)
, G(x) =

T

2
g

(
T

2
(1 + x)

)
.
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Moreover, by using a linear transformation:

s =
T

2
(1 + θ), θ ∈ [−1, x],

τ =
T

2
(1 + η), η ∈ [−1, qx+ q − 1],

the equation (14) become

u′(x) = A(x)u(x) +B(x)u(qx+ q − 1) +G(x)

+

∫ x

−1
K1(x, θ)u(θ)dθ

+

∫ qx+q−1

−1
K2(x, η)u(η)dη,

(16)

where

K1(x, θ) =
T 2

4
k1

(
T

2
(1 + x),

T

2
(1 + θ)

)
K2(x, η) =

T 2

4
k1

(
T

2
(1 + x),

T

2
(1 + η)

)
.

Theorem 1: Let uN (x) is the approximate solution given
by the numerical scheme. Assumed the analytical solution
of (16) u(x) ∈ Hm

ω sufficiently smooth, then the following
relation is given

‖u− uN‖L2
ω(I)

≤ CN−m
(
M‖u‖L2

ω(I)
+ |u′|Hm;N

ω (I) + |u|Hm;N
ω (I)

)
,

where N is sufficiently large and M =
max

x∈[−1,1]
|K1(x, t)|Hm;N

ω (I) + max
x∈[−1,1]

|K2(x, t)|Hm;N
ω (I)

Proof: Taking the Gauss-Lobatto collocation xi on
[−1, 1] in (16) yields

u′(xi) =A(xi)u(xi) +B(xi)u(qxi + q − 1)

+G(xi) +

∫ xi

−1
K1(x, θ)u(θ)dθ

+

∫ qxi+q−1

−1
K2(x, η)u(η)dη,

(17)

and

u(xi) =

∫ xi

−1
u′(θ)dθ + u−1. (18)

We use uN (xi) to approximate u(xi) and

uN (x) =
N∑
i=0

uN (xi)Fi(x),

where Fi(x) is the Lagrange interpolating polynomials. Sub-
stituting the approximate relation into the first integral parts
of (17) yields∫ xi

−1
K1(xi, θ)uN (θ)dθ =

1 + xi
2

∫ 1

−1
K1(xi, τ)uN (τ)dτ

≈ 1 + xi
2

N∑
r=0

K1(xi, τr)uN (τr)ωr,

by

θ =
1 + xi

2
τ +

xi − 1

2
, τ ∈ [−1, 1],

and Gauss quadrature formula. In a similar way we deal with∫ qxi+q−1

−1
K2(xi, θ)uN (θ)dθ

≈ q(1 + xi)

2

N∑
r=0

K2(xi, τr)uN (τr)ωr.

So our numerical scheme in this study can be rewritten as

u′N (xi) =A(xi)uN (xi) +B(xi)uN (qxi + q − 1) + g(xi)

+
1 + xi

2

N∑
r=0

K1(xi, τr)uN (τr)ωr

+
q(1 + xi)

2

N∑
r=0

K2(xi, τr)uN (τr)ωr,

uN (xi) =

∫ xi

−1
u′N (θ)dθ + u−1. (19)

For ease of analysis, the above equation becomes

u′N (xi) = A(xi)uN (xi) +B(xi)uN (qxi + q − 1) + g(xi)

+

∫ xi

−1
K1(x, θ)uN (θ)dθ +

∫ qxi+q−1

−1
K2(x, η)uN (η)dη

− I1(xi)− I2(xi),
(20)

where

I1(xi) =

∫ xi

−1
K1(xi, θ)uN (θ)dθ

− 1 + xi
2

N∑
j=0

K1(xi, τj)uN (τj)ωj ,

and

I2(xi) =

∫ qxi+q−1

−1
K2(xi, θ)u(θ)dθ

− q(1 + xi)

2

N∑
j=0

K2(xi, τj)uN (τj)ωj .

Using Lagrange interpolating polynomials and (20) yield

u′N (x) =IN (A(x)uN (x))

+ IN (B(x)uN (qx+ q − 1))

+ IN (G(x)) + IN

(∫ x

−1
K1(x, θ)uN (θ)dθ

)
+ IN

(∫ qx+q−1

−1
K2(x, η)uN (η)dη

)
− J1(x)− J2(x),

(21)

where

J1(x) =
N∑
i=0

I1(xi)Fi(x), J2(x) =
N∑
i=0

I2(xi)Fi(x).

Clearly by (16),

IN (u′(x)) =IN (A(x)u(x))

+ IN (B(x)u(qx+ q − 1))

+ IN (G(x)) + IN

(∫ x

−1
K1(x, θ)u(θ)dθ

)
+ IN

(∫ qx+q−1

−1
K2(x, η)u(η)dη

)
.

(22)
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By subtracting (21) from(22), we have

e′N (x) =u′(x)− IN (u′(x)) + IN (A(x)eN (x))

+ IN (B(x)eN (qx+ q − 1))

+ IN

(∫ x

−1
K1(x, θ)eN (θ)dθ

)
+ IN

(∫ qx+q−1

−1
K2(x, η)eN (η)dη

)
+ J1(x) + J2(x),

(23)

where eN (x) = u(x)−uN (x), e′N (x) = u′(x)−u′N (x). By
subtracting (19) from (18), we can obtain

u(xi)− uN (xi) =

∫ xi

−1
e′N (θ)dθ. (24)

Similarly, using Lagrange interpolating polynomials and (24)
yield

u(x)− uN (x) =u(x)− IN (u(x))

+ IN

(∫ x

−1
e′N (θ)dθ

)
.

(25)

Consequently, we rewrite (23) as

e′N (x) =A(x)eN (x) +B(x)eN (qx+ q − 1)

+

∫ x

−1
K1(x, θ)eN (θ)dθ

+

∫ qx+q−1

−1
K2(x, η)eN (η)dη +

7∑
i=1

Ji(x),

(26)

eN (x) =

(∫ x

−1
e′N (θ)dθ

)
+ J8(x) + J9(x). (27)

where

J3(x) = u′(x)− IN (u′(x)),

J4(x) = IN (A(x)eN (x))−A(x)eN (x),

J5(x) = IN (B(x)eN (qx+ q − 1))−B(x)eN (qx+ q − 1),

J6(x) = IN

(∫ x

−1
K1(x, θ)eN (θ)dθ

)
−
∫ x

−1
K1(x, θ)eN (θ)dθ,

J7(x) = IN

(∫ qx+q−1

−1
K2(x, η)eN (η)dη

)
−
∫ qx+q−1

−1
K2(x, η)eN (η)dη,

J8(x) = u(x)− IN (u(x)),

J9(x) = IN

(∫ x

−1
e′N (θ)dθ

)
−
∫ x

−1
e′N (θ)dθ.

Substituting (27) into the first integral part of (26) and
applying the Dirichlet’s formula that

∫ x
−1
∫ τ
−1 φ(τ, s)dsdτ =∫ x

−1
∫ x
s
φ(τ, s)dτds, we obtain∫ x

−1
K1(x, θ)eN (θ)dθ =

∫ x

−1

(∫ x

θ

K1(x, τ)dτ

)
e′(θ)dθ

+

∫ x

−1
K1(x, θ)(J8(θ) + J9(θ))dθ

(28)

Considering the second integral part of (26)∫ qx+q−1

−1
K2(x, η)eN (η)dη

=

∫ qx+q−1

−1
K2(x, η)

(∫ η

−1
e′(θ)dθ

)
dη

+

∫ qx+q−1

−1
K2(x, η)(J8(η) + J9(η))dη.

(29)

For the sake of applying Dirichlet’s formula we transform
the above equation to∫ qx+q−1

−1
K2(x, η)eN (η)dη

= q2
∫ x

−1
K2(x, qη + q − 1)

(∫ η

−1
e′(qθ + q − 1)dθ

)
dη

+ q

∫ x

−1
K2(x, φ(q, η))(J8(φ(q, η)) + J9(φ(q, η)))dη.

= q2
∫ x

−1

(∫ x

η

K2(x, qη + q − 1)dθ

)
e′(qθ + q − 1)dη

+ q

∫ x

−1
K2(x, φ(q, η))(J8(φ(q, η)) + J9(φ(q, η)))dη,

(30)

where φ(q, η) = qη+ q− 1. Substituting (28), (30) into (26)
we obtain

|e′N (x)| ≤M1|eN (x)|

+ (M2 +M4)

∫ x

−1
|e′N (qη + q − 1)|dη

+M3

∫ x

−1
|e′N (θ)|dθ +

7∑
i=1

|Ji(x)|

+

∫ x

−1
K1(x, θ)(|J8(θ)|+ |J9(θ))|dθ

+ q

∫ x

−1
K2(x, qη + q − 1)

9∑
i=8

|Ji(qη + q − 1)|dη,

(31)

where M1 = max
x∈[−1,1]

|A(x)|, M2 = max
x∈[−1,1]

|B(x)| and

M3 = max
x∈D1

∫ x

θ

|K1(x, τ)|dτ,

M4 = q2 max
x∈D2

∫ x

η

|K2(x, qη + q − 1)|dη,

D1 = (x, τ) : −1 ≤ x ≤ 1,−1 ≤ τ ≤ x,
D2 = (x, η) : −1 ≤ x ≤ 1,−1 ≤ η ≤ qx+ q − 1.

According to Gronwall inequality, we derive from (26), (27)
that

‖e′(x)‖L2
ω(I)
≤ C

(
‖e(x)‖L2

ω(I)
+

9∑
i=1

‖Ji‖L2
ω(I)

)
. (32)

and

‖eN (x)‖L2
ω(I)
≤ C

(
‖e′N (x)‖L2

ω(I)
+

9∑
i=8

‖Ji(x)‖L2
ω(I)

)
.

(33)
Then, by (32) and (33), we have

‖eN (x)‖L2
ω(I)
≤ C

9∑
i=1

‖Ji‖L2
ω(I)

. (34)
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Firstly, it follows from Lemma 2 and (13) that

‖J1‖L2
ω(I)
≤ C max

x∈[−1,1]
|I1(x)|

≤ CN−m max
x∈[−1,1]

|K1(x, t)|Hm;N
ω (I)

· (‖u‖L2
ω(I)

+ ‖e‖L2
ω(I)

),

(35)

‖J2‖L2
ω(I)
≤ C max

x∈[−1,1]
|I2(x)|

≤ CN−m max
x∈[−1,1]

|K2(x, t)|Hm;N
ω (I)

· (‖u‖L2
ω(I)

+ ‖e‖L2
ω(I)

),

(36)

Next, by Lemma 1, we have

‖J3‖L2
ω(I)
≤ CN−m|u′|Hm;N

ω (I), (37)

and
‖J8‖L2

ω(I)
≤ CN−m|u|Hm;N

ω (I). (38)

By virtue of Lemma 1 and m = 1, we get

‖J4‖L2
ω(I)
≤ CN−1

∥∥∥∥A′(x)∫ x

−1
e′(τ)dτ +A(x)e′(x)

∥∥∥∥
L2
ω(I)

≤ CN−1‖e′(x)‖L2
ω(I)

,

‖J5‖L2
ω(I)
≤ CN−1‖e′(x)‖L2

ω(I)
,

‖J6‖L2
ω(I)
≤ CN−1‖e(x)‖L2

ω(I)
,

‖J7‖L2
ω(I)
≤ CN−1‖e(x)‖L2

ω(I)
,

‖J9‖L2
ω(I)
≤ CN−1‖e(x)‖L2

ω(I)
.

Therefore, combining the above relations ‖Ji‖L2
ω(I)

, i =
1, 2, · · · , 9 gives the estimate

‖u− uN‖L2
ω(I)
≤

CN−m
(
M‖u‖L2

ω(I)
+ |u′|Hm;N

ω (I) + |u|Hm;N
ω (I)

)
,

where

M = max
x∈[−1,1]

|K1(x, t)|Hm;N
ω (I)+ max

x∈[−1,1]
|K2(x, t)|Hm;N

ω (I).

VIII. NUMERICAL EXAMPLES AND DISCUSSIONS

Three numerical experiments are conducted to verify the
effectiveness of the proposed numerical scheme. All the
computations were implemented by using the programming
language MATLAB.

Example 8.1: First, consider the pantograph equation

z′(t) = z

(
1

2
t

)
+

∫ t

0

z(s)ds+

∫ 1
2 t

0

z(s)ds+ 1− 3

2
t,

where t ∈ [0, T ] and the initial value z(0) = 0. The analytical
solution of the above problem is z(t) = 1− et. We employ
the introduced numerical scheme to handle the example with
various values of T and N . In Figure 1, we plot the absolute
error function |eN (x)| for N = 8, 16.

Table I provides the computational results on the interval
of [0, 10].

Example 8.2: We consider

z′(t) =
1

2
z(t) + z(

1

4
t) +

∫ t

0

et+sz(s)ds

+

∫ 1
4 t

0

sz(s)ds+ g(t),
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Fig. 1. Absolute error function for N = 8, 16 on [0, 1].

TABLE I
ABSOLUTE ERRORS ON THE INTERVAL OF [0, 10] FOR DIFFERENT

VALUES OF N .

t N = 16 N = 20 N = 24 N = 28 N = 32

1.0 3.8360e-5 5.5962e-7 1.7890e-9 2.1369e-14 4.2000e-16

2.0 1.7532e-4 8.3512e-7 4.1013e-11 5.7216e-14 3.3312e-16

3.0 2.1021e-4 8.0050e-8 2.0405e-9 6.7125e-14 2.2220e-16

4.0 1.2560e-4 7.4765e-7 2.7412e-10 1.3353e-13 7.7731e-16

5.0 2.0596e-5 8.4300e-7 3.4901e-9 1.7291e-15 2.7852e-16

6.0 1.5573e-4 8.5023e-8 5.6554e-9 1.4879e-14 2.2238e-16

7.0 2.2261e-4 1.4791e-6 4.4332e-9 1.4672e-14 4.4469e-16

8.0 1.9180e-4 2.7250e-6 5.3202e-10 7.8362e-15 7.6832e-16

9.0 6.6612e-5 3.3342e-6 3.5920e-9 1.3876e-14 1.2215e-16

where
g(t) =

1

2
− 1

4
e
t
4 +

t2

32
− e3t

2
+ e2t,

and z(0) = 0. The analytical solution is z(t) = et − 1.
This numerical example has been considered in [17], [21].
By using the proposed numerical scheme, we calculate the
example with various values of N and T . The L2 errors for
different polynomial degree N are plotted in Figure 2. Table
II displays a comparison of the maximum absolute errors of
the suggested approach and Sine collocation method of [17].

TABLE II
COMPARISON OF L∞ ERROR FOR EXAMPLE 8.2.

Sinc method Proposed method

N ‖e(t)‖L∞ N ‖e(t)‖L∞

5 3.6000e-3 4 8.1760e-4

10 2.2328e-4 8 7.7913e-9

20 5.7215e-6 12 2.8315e-14

30 2.8939e-7 16 3.3316e-16

40 2.2096e-7 20 2.2202e-16

Example 8.3: Finally, consider the integral equation with
a convolution kernel

z(t) = g(t)+

∫ q1t

0

cos(t−s)z(s)ds+
∫ q2t

0

sin(t−s)z(s)ds,
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Fig. 2. L2− errors versus the polynomial degree N for T = 1, 10

with q1 = 0.05, q2 = 0.95 and g(t) = −0.475t sin t −
0.025t cos t+1.75 cos t+0.25 cos 0.9t−cos 0.05t cos 0.95t+
0.25 sin 0.9t − 0.25 sin t. The given problem has an analyt-
ical solution z(t) = cos t. The integral equation has been
discussed in [12], [22]. Likewise, we calculate this example
on [0, 1] and [0, 5]. The computational results obtained by the
proposed numerical method and other existing methods, such
collocation Legendre spectral method [12] and Chebyshev
cardinal functions method [22] are tabulated in Tables III,
IV. Clearly, the results reveal that the suggested numerical
scheme is valid and that its accuracy is comparable to
existing numerical schemes. However, our proposed com-
putational scheme is easier to implement.

TABLE III
COMPARISON OF THE ABSOLUTE ERROR FOR EXAMPLE 8.3.

Cardinal functions method Proposed method

t N = 8 N = 16 N = 8 N = 16

1 3.29e-4 3.73e-10 8.17e-6 8.76e-13

2 7.52e-4 6.03e-10 2.15e-5 9.13e-13

3 2.81e-4 4.44e-10 1.70e-5 3.50e-12

4 9.00e-4 4.83e-10 2.24e-5 5.19e-12

5 7.13e-4 4.30e-10 5.87e-5 7.70e-12

TABLE IV
COMPARISON OF L2 AND L∞ ERRORS ON [0, 1] FOR EXAMPLE 8.3.

Legendre spectral method Proposed method

N ‖e(t)‖L2
ω

‖e(t)‖L∞ ‖e(t)‖L2
ω

‖e(t)‖L∞

8 1.731e-13 1.908e-13 2.746e-13 3.207e-13

12 3.454e-16 4.441e-16 1.065e-16 3.090e-16

16 3.628e-16 4.441e-16 6.881e-16 8.636e-16

20 2.606e-16 4.441e-16 1.776e-16 5.884e-16

IX. CONCLUSION

In this current study, we have developed and discussed the
numerical scheme based on shifted Chebyshev polynomials
to calculate a class of Volterra integro-differential equations
with pantograph delay. First, we constructed the operational

matrices of derivative and pantograph. The obtained matrices
were applied to approximate the unknown functions. Also,
we investigate a rigorous convergence analysis for the numer-
ical scheme. Besides, we implement the proposed numerical
method by three experiments. The provided results were
exhibited to confirm the validity of the introduced approach.
Moreover, the proposed computational scheme is readily
modified to handle the nonlinear Volterra integro-differential
equations of pantograph type.
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