
Long-term Software Fault Prediction with Robust
Prediction Interval Analysis via Refined Artificial

Neural Network (RANN) Approach
Momotaz Begum, Member, IAENG, Md. Samzid Bin Hafiz, Md. Jakirul Islam, and Mohammad Jakir Hossain

Abstract—Predicting software faults is one of the most chal-
lenging issues in software engineering but has not been reached
yet to obtain satisfactory results. Among various methods of
software fault prediction, non-homogeneous Poisson process
(NHPP) based software reliability models (SRMs) and artificial
neural network (ANN) are used vastly. But, the suitable model
selection with parameter estimation of SRMs and appropriate
architecture selection of ANN complicate the task of software
fault prediction. The purpose of this paper is to predict the
long-term software faults from the software fault count data
using a refined artificial neural network approach (RANN). In
order to pre-process software fault count data, we have used five
data transformation methods to transform Poisson count data to
Gaussian data. The long-term behavior of the software faults is
then predicted by means of point and interval predictions. The
point prediction of RANN is compared with the conventional
SRMs for the case of our newly made synthetic data and eight
real data in terms of predictive performance (average relative
error). To ensure software reliability, we have constructed
prediction intervals (PIs) of the predicted fault points using
our proposed simulation based method (PI simulation) and
compared them with those of existing delta method (PI delta)
in terms of coverage rate and mean prediction interval width.
The PI simulation method covers both the real and predicted
fault point within narrower interval width than the PI delta
method. Thus, the RANN can afford a cost effective prediction
device from the viewpoint of predictability in the early phase
of software testing.

Index Terms—non-homogeneous Poisson process, artificial
neural network, long-term prediction, software reliability, fault
count data, prediction interval.

I. INTRODUCTION

W ITH the increase of the software applications in ver-
satile fields, the mismatch between expected results

and actual results, which is known as software fault, has
become a major concern. Determination of software fault
prediction is a crucial process of software testing [1]. The
performance of a computer program without experiencing
any software fault is known as software reliability. To assess
the software reliability, prediction interval analysis of soft-
ware faults is necessary [2], which represents the uncertainty

Manuscript received February 20, 2021
Momotaz Begum is an Associate Professor in the Department of Com-

puter Science and Engineering, Dhaka University of Engineering & Tech-
nology, Gazipur, Bangladesh (corresponding e-mail of corresponding author:
drmomotaz@duet.ac.bd).

Md. Samzid Bin Hafiz is an Assistant Professor in the Department of
Electrical and Electronic Engineering, Dhaka University of Engineering &
Technology, Gazipur, Bangladesh (e-mail: samzid.eee@duet.ac.bd).

Md. Jakirul Islam is an Assistant Professor in the Department of Computer
Science and Engineering, Dhaka University of Engineering & Technology,
Gazipur, Bangladesh (e-mail: jakirduet@duet.ac.bd).

Mohammad Jakir Hossain is a Professor in the Department of Electrical
and Electronic Engineering, Dhaka University of Engineering & Technol-
ogy, Gazipur, Bangladesh (e-mail: jakir@duet.ac.bd).

of the prediction of software faults within a specified range.
In the ref. [3], they proposed a new prediction interval
method based on fuzzy numbers to improve the quality of
uncertainty modelling for a higher prediction horizon. To
adjust the prediction intervals for short-term load forecasting,
a probabilistic method is proposed based on Association
Rules and ANNs, which shows closer prediction interval
maintaining accuracy [4]. Khosravi et al. [5] introduced the
combination of prediction interval methods (Delta, Bayesian,
bootstrap, and mean-variance estimation) and examined with
12 synthetic and real-world case studies to show its better
quality compared to each methods.

Nowadays, the use of software reliability models (SRMs)
for software fault prediction is increasing significantly [6,
7, 8]. Stochastic models like SRMs must be developed
under several mathematical assumptions, and their parameter
estimation is a complicated task in software testing. Another
problem with SRMs is the selection of a suitable model from
a huge number of SRM models, as no SRM can fit every
software fault count data [9].

At present, the use of artificial neural network (ANN) with
back propagation (BP) learning algorithm is very common
in various classification and prediction problems [10, 11].
Karunanithi et al. [12] first proposed the software fault
prediction using ANN. Since then, many other researchers
have applied the ANN approach [13, 14]. Sitte [15] compared
some ANN approaches with a set of SRMs from the view-
point of prediction. In [16, 17, 18, 19], they utilized some
evolutionary computing techniques and machine learning
techniques to improve the predictive performance of the
classical ANN models. Hu et al. [20] used the ANN approach
to predict the software fault as well as to correct it.

There is no straightforward way to select a suitable archi-
tecture of neural network for each application as the number
of hidden layers and neurons must be determined through a
trial-and-error heuristic approach. Unlike the familiar SRMs,
the software reliability can not be quantified as a probabil-
ity by using the conventional ANN. Multilayer perceptron
(MLP) with one-stage look-ahead prediction method was
used for software release decision [21] and software fault
prediction, where delta method was used for constructing
the prediction intervals [2]. Recently, the same authors in-
vestigated the applicability of Box-Cox power transformation
to the neuro-based long-term software fault prediction using
multi-stage look-ahead prediction method, where the optimal
number of hidden neurons and transformation parameter λ
were determined [22].

Meanwhile, it should be noted that the conventional ANN
has some limitations for the case of long-term software fault

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

prediction. To overcome the limitation, Begum and Dohi
[23, 24] introduced a refined ANN (RANN) approach for
optimal software release problem. In this paper, we have
used the RANN approach for the problem of long-term
software fault prediction with proposed prediction interval
method. Here, we have examined the software fault count
data, whereas the conventional ANNs deal with the software
fault-detection time data that are not readily available for
software testing. We have applied five data transformation
techniques to transform the Poisson data into the Gaussian
data. Then, we have made the long-term software fault
prediction by using RANN with multiple inputs multiple
outputs. It is worth noting that the ANN approaches in
early works [12, 15, 16, 20, 17, 18, 19] have considered
only one-stage look ahead prediction instead of the long-
term prediction. In addition, the common SRMs also fail
to consider it [25]. Through numerical experiments with
eight real software fault count data, we have investigated
the predictive performance of the RANN and compared it
with the NHPP based SRMs. Also, we have generated Monte
Carlo simulation data (synthetic data) and compared the per-
formance of the transformation and non-transformation based
RANNs for four datasets. Additionally, we have proposed a
simulation-based method to construct the prediction interval
(PI simulation), which is compared with the existing delta
method (PI delta) [26, 27] for real datasets and synthetic
datasets.

The rest of the paper is organised as follows: the section II
describes the theoretical formulation of NHPP based SRMs,
RANN, and PI delta method. The proposed PI simulation
method along with synthetic data generation is explained in
section III. In section IV, the point prediction and prediction
interval analysis of RANN are explained for real and syn-
thetic datasets. The prediction interval analysis includes the
comparison between PI delta and proposed PI simulation.

II. RELATED THEORY

A. Non-homogeneous Poisson process-based SRM
Suppose Z(t) denotes the cumulative number of software

faults detected at time t. Let (i) Z(0) = 0, (ii) Z(t) has
independent increments, (iii) Pr{Z(t+ q)−Z(t) ≥ 2}=o(q),
(iv) Pr{Z(t+q)−Z(t) = 1}= λ(t;θ)q+o(q), where λ(t;θ) is
the intensity function of non-homogeneous Poisson process
(NHPP), o(q) is the higher term of infinitesimal time q, and
θ is the model parameter. Hence, the probability that Z(t)
equals y is evaluated by

Pr{Z(t) = y} =
{Λ(t;θ)}y

y!
exp{−Λ(t;θ)}, (1)

where

Λ(t;θ) =

∫ t

0

λ(y;θ)dy (2)

is called the mean value function. By specifying Λ(t;θ)
or λ(t;θ), the identification problem of the NHPP can be
diminished to a statistical problem of estimating θ. The
NHPP-based SRMs are regarded as parametric SRMs due
to its dependence on the model parameter θ. Table I shows
NHPP-based SRMs as well as their mean value functions.
Okumara and Dohi [28] developed a parameter estimation

tool named SRATS. By using this tool, the model parameter
θ can be estimated.

Let ti (i = 1, 2, . . . , n) represents the testing day, and
t (≥ tn) is the observation point. The maximum likelihood
method is used to evaluate the model parameter θ. Hence,
the log likelihood function for the fault count data (ti, yi) is
expressed by

LLF (θ) =
n∑
i=1

(
(yi − yi−1) log

{
Λ(ti;θ)− Λ(ti−1;θ)

}
− log

{
(yi − yi−1)!

})
− Λ(tn;θ), (3)

where Λ(0;θ) = 0, y0 = 0 and t = tn is used
for simplicity [8]. By maximizing Eq. (3) with respect to
θ̂, the maximum likelihood estimate of θ̂ can be attained
[24, 37, 36, 38]. After evaluating the model parameter,
the mean value function at an arbitrary time tn+l can be
represented as follows:

Λ(tn+l; θ̂) =

∫ tn+l

0

λ(y; θ̂)dy, (4)

Λ(tn+l|Z(tn) = yn; θ̂) = yn +

∫ tn+l

tn

λ(y; θ̂)dy

= yn + Λ(tn+l; θ̂)− Λ(tn; θ̂) (5)

where l stands for the length of prediction. In the next
section, a RANN approach will be used for the long-
term software fault prediction, which is regarded as a non-
parametric model.

B. Refined Artificial Neural Network (RANN) Approach
ANN consists of an input layer, multiple hidden layers,

and one output layer. The input layer and the output layer
interact with the outside world while the hidden layers
don’t communicate with the outside world. Here, we have
considered a multiple-inputs multiple outputs ANN with a
single hidden layer as a refined ANN [23, 24].

1) Pre-data Processing: Since in the software fault
prediction, the Poisson count data [7, 8] is used as integer
values, the original data needs to be transformed into the
Gaussian data at first [22]. In this paper, we have applied five
data transformation techniques to transform the Poisson data
into the Gaussian data such as Anscombe transform (AT1)
[39], Asymptotically unbiased Anscombe transform (AT2)
[40], Bartlett transform (BT) [41], Fisz transform (FT) [42],
and Box-Cox power transform (BCT) [43]. The formulae
of data transformation and their inverse transformation are
described in Table II. Here, we have pre-processed the data
ỹi by any of the five data transformation methods.

2) Training Phase: We have assumed that the uni-
formly distributed pseudo-random variates give nk connec-
tion weights from input to hidden layer and kl connection
weights from hidden to output layer. Since the common BP
algorithm does not support the training of all the weights,
including k(n + l) unknown patterns, it is necessary to
develop a long-term point prediction method, as shown in
Fig. 1. In order to get the prediction of the number of
software faults for l testing days from the observation point

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

TABLE I: Non-homogeneous Poisson process-based SRMs.

Model (Abbr.) Mean value function

Log extreme value minimum: (lxvmin) [29, 30] Λ(t;θ) = a(1− F (− log t)),θ ∈ (a, b, c), F (t) = exp(− exp{(− t−c
b

)})

Truncated extreme value minimum: (txvmin) [30] Λ(t;θ) = aF (0)−F (−t)
F (0)

,θ ∈ (a, b, c), F (t) = exp(− exp{(− t−c
b

)})

Log extreme value maximum: (lxvmax) [30] Λ(t;θ) = aF (log t),θ ∈ (a, b, c), F (t) = exp(− exp{(− t−c
b

)})

Truncated extreme value maximum: (txvmax) [30] Λ(t;θ) = aF (t)−F (0)
1−F (0)

,θ ∈ (a, b, c), F (t) = exp(− exp{(− t−c
b

)})

Log logistic: (llogist) [31] Λ(t;θ) = aF (log t),θ ∈ (a, b, c) , F (t) = 1

1+exp (− t−c
b

)

Truncared logistic: (tlogist) [32] Λ(t;θ) = aF (t)−F (0)
1−F (0)

,θ ∈ (a, b, c), F (t) = 1

1+exp (− t−c
b

)

Log normal: (lnorm) [33, 28] Λ(t;θ) = aF (log t),θ ∈ (a, b, c), F (t) = 1√
2πb

∫ t
−∞ exp (− (s−c)2

2b2
)ds

Truncated normal: (tnorm) [28] Λ(t;θ) = aF (t)−F (0)
1−F (0)

,θ ∈ (a, b, c), F (t) = 1√
2πb

∫ t
−∞ exp (− (s−c)2

2b2
)ds

Pareto: (pareto) [34, 35] Λ(t;θ) = aF (t),θ ∈ (a, b, c), F (t) = 1− (c
t+c

)b

Gamma: (gamma) [36, 37] Λ(t;θ) = aF (t),θ ∈ (a, b, c), F (t) =
∫ t

0

cbsb−1 exp (−cs)
Γ(b)

ds

Exponential: (exp) [38] Λ(t;θ) = aF (t),θ ∈ (a, b), F (t) = 1− exp(−bt)

TABLE II: Formulae of Data transformation.

Name Data transformation Inverse transformation

AT1 [39] ỹi = 2
√
yi + 3/8

ỹ2n+l−3/2

4

AT2 [40] ỹi = 2
√
yi + 1/8

2ỹ2n+l−1

8

BT [41] ỹi = 2
√
yi + 1/2

ỹ2n+l−2

4

FT [42] ỹi =
√
yi + 1 +

√
yi

ỹ2n+l+ỹ
−2
m+l
−2

4

BCT [43]
when λ = 0, ỹi =log(yi) exp(ỹn+l)

when λ 6= 0, ỹi =
yλi −1

λ
(λỹn+l + 1)1/λ

tn, the prediction needs to be made at the point tn−l. In
that case, there are (n − l)k + kl = nl estimable weights
and k(n + l) − nl non-estimable weights for the period
(tn−l, tn]. In this paper, we have used (ỹ1, . . . , ỹn−l) and
(ỹn−l+1, . . . , ỹn) in the training period as the input and the
teaching signals, respectively. By updating the connection
weights, the squared error between teaching signals and
the network outputs can be minimized. The common input
bias with unit values is connected to the hidden and output
neurons.

Suppose wij ∈ [−1, 1] are the connection weights from
i-th (i = 0, 1, . . . , n− l) input neuron to j-th (j = 0, 1, . . . , k
hidden neuron, where w0j and w′0s denote the bias weights
for j-th hidden neuron and s-th (s = n − l + 1, n − l +
2, . . . , n) output neuron, respectively. The hidden neuron hj
is represented by:

hj =
n−l∑
i=1

ỹijwij + w0j . (6)

We choose a proper value of k in the pre-experiments to
evaluate the number of hidden neurons [2]. Here, we have
introduced a threshold function in the RANN named sigmoid
function f(hj) = 1/ exp(−hj). Each output neuron ys is
defined by:

ỹs =
k∑
j=1

f(hj)w
′
js + w′0s. (7)

where w′js is the connection weight from j-th hidden neuron
to s-th output neuron, and the final output is f(ỹs) =
1/ exp(−ỹs). Here, the sum of square error is represented
by

Error =

∑n
s=n−l+1(ỹos − ỹs)2

(l − 1)
, (8)

where ỹos is teaching signal, and ỹs is point prediction for
the period (tn−l+1, tn].

In order to adapt the convergence speed and weights in
the BP algorithm, the main tuning parameters such as the
learning rate η and momentum α have been controlled and
pre-experimented [22]. We have updated connection weights

1

2

n-l

w11

.

.

.

.

.

.

hk l

h2

w12

.

.

.

w21

W‘11

W‘12

W‘21 W‘1l

w22

W‘22

W‘2l

W‘k1

W‘k2

W‘kl

.

.

.

.

.

.

 𝑦1

 𝑦2

 𝑦𝑛+1

 𝑦𝑛+2

 𝑦𝑛+𝑠

 𝑦𝑛−𝑙

1Bias 1 Bias

w01

w02

w0k

W‘01

W‘02

W‘0l

h1

h2

hk

 𝑦𝑛−𝑙+1

n-
l+2

n-
l+1

n

 𝑦𝑛−𝑙+2

 𝑦𝑛

.

.

.

.

.

.

𝑘 𝑛 + 𝑙 − 𝑛𝑙 , [−1,1]

𝑛 − 𝑙 𝑘 + 𝑘𝑙

Wn-l1

Wn-lk w1k

Fig. 1: Architecture of RANN.

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

as follows:

wij(new) = wij + αwij + ηδhj ỹi, (9)
w′js(new) = w′js + αw′js + ηδỹsỹs. (10)

Here δỹs and δhj are the output gradient of the output layer
and hidden layer, respectively, which are represented by

δỹs = ỹs(1− ỹs)(ỹos − ỹs), (11)
δhj = f(hj)(1− f(hj)). (12)

The updated the bias weights for hidden and output neurons
are as follows:

w0j(new) = w0j + αw0j + ηδhj , (13)
w′0s(new) = w′0s + αw′0s + ηδỹs. (14)

In order to obtain the desired output, the outlined procedure
is repeated.

3) Prediction Phase : To get the k(n + l) − nl non-
estimable weights, we have generated these weights by the
uniform pseudo-random variates ranged in [−1, 1]. By using
these arbitrary connection weights, the predicted point of
software fault (ỹn+1, . . . , ỹn+l) is evaluated by substituting
Eqs. (6) and (7) by

hj(new) =
n∑
i=1

ỹijwij(new) + w0j(new), (15)

ỹn+s =
k∑
j=1

f(hj(new))w
′
js(new) + w′0s(new), (16)

respectively, for s = 1, 2, . . . , l. It should be noted that
we have got a single output from a single sample. To get
the point prediction, we have created m sets of random
variates and used the arithmetic mean of the m predictions
of (ỹn+1, . . . , ỹn+l), where our preliminary experiments
showed that m = 1, 000 provides satisfactory results. Since
the BP algorithm is used with combination of Monte Carlo
simulation, we can call the prediction scheme as the refined
artificial neural network.

C. Prediction Interval by Delta (PI delta) Method
Delta method is a commonly used approach in many

situations such as an approximation of the variance for an
arbitrary function of random variables based on Taylor series
expansions [44, 45].

Let δTr be the output gradient vector for the output and
hidden neurons:

δTr = [δỹ1, δỹ2, . . . , δỹs, δh1, δh2, . . . , δhj] (17)

where δhj and δỹs are defined in Eq. (11 and 12). Gener-
ally, the ANN parameters, specifically weights, are adjusted
by minimizing the Error2. Here ∆wr is the Jacobian matrix
and defined as:

∆wr =


w′1s(new) w11(new) w21(new) . . . wi1(new)

w′2s(new) w12(new) w22(new) . . . wi2(new)

...
...

...
. . .

...
w′js(new) w1j(new) w2j(new) . . . wij(new)

 .
(18)

Start

Input 𝜆 𝑡 = 𝑎 1 − 𝑒𝑥𝑝 𝑏𝑡 with
model parameters 𝑎, 𝑏 =

413.2050, 0.0461

Failure times as pseudo random variates are
given by 0 < 𝑇1 ≤ 𝑇2 ≤ ⋯ ≤ 𝑇1000 by the

thinning algorithm

Count data 𝑋𝑛 =
𝑇𝑖 ≤ 𝑇𝑛 ∈

𝑖 = 1,2,… , 𝑛 with
realizations 𝑥𝑛 =

𝑡𝑖 ≤ 𝑡𝑛

Fault Data
𝑡𝑖 , 𝑥𝑖

End

False

True

Fig. 2: Flowchart for synthetic data generation.

In the above equation, the weights w′js(new) and wij(new)

are given in Eq. (9 and 10), respectively. The prediction
intervals (PIs) of the number of software faults are defined
by [PIlow, P Iup] in the RANN. Then, the lower limit and
upper limit of PI are defined by

PIlow = ỹn+s − t1−α/2n−l

√
1 + δTr (∆wTr ∆wr)−1δr, (19)

PIup = ỹn+s + t
1−α/2
n−l

√
1 + δTr (∆wTr ∆wr)−1δr, (20)

respectively. Here ỹn+s is calculated from Eq. 16, and
t
1−α/2
n−l is the (α/2) - quantile of the student t-distribution

function with (n− l) degree of freedom [44]. Here ∆wr and
δTr are calculated at off-line, even though they can be the
potential sources of computational error for forming PIs.

III. PROPOSED METHODS

A. Simulation-based Prediction Interval (PI simulation)
Method

In Section II(B), we have discussed about the RANN
approach for the long-term point prediction. In Subsection
II(B.2), we have estimated the weights for the period (0, tn]
of the training data. To get the k(n+ l)− nl non-estimable
weights, we need to apply the uniform pseudo-random vari-
ates ranged in [−1, 1] to get the non-estimable weights. Then
the predicted points of the software faults, (ỹn+1, . . . , ỹn+l),
are calculated by Eqs. (15) and (16). In order to get the PIs
of the software fault count data, we have generated m sets
of random variates where our preliminary experiments show
that m = 1, 000. After getting the predicted points, we have
sorted these values. According to the 95% significance level,
25th value acts as the lower limit, and 975th value acts as
the upper limit.

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

B. Synthetic Data Generation
The synthetic data are generated by the popular numerical

computation method, named the Monte Carlo simulation. We
have assumed that the software fault count process follows
an exponential NHPP model, λ(t) = a{1− exp(−bt)}, with
model parameters (a, b) = (413.2050, 0.0461) shown in Fig.
2. We have created the primary failure time data as the
pseudo-random variates, which are given by 0 < T1 ≤ T2 ≤
· · · ≤ T1000 with realizations 0 < t1 ≤ t2 ≤ · · · ≤ t1000, by
the thinning algorithm [46]. Without losing generality, we
can create the count data yi at time ti (i = 1, 2, . . . , n). We
have considered the pair (ti, yi) as a software fault count
data of the underlying NHPP. From 1000 samples we have
selected 4 types of cases: Case1 (fitted), Case2 (under fitted),
Case3 (overfitted), and Case4 (s-shaped). Figure 6 shows all
the datasets.

IV. NUMERICAL ILLUSTRATIONS

A. Real Data Analysis
1) Point Prediction: We have estimated the point predic-

tion using our RANN described in Eq. (16). For the case of
SRMs, the model parameter θ has been estimated by using
SRATS tool, and then the point prediction at any arbitrary
time has been calculated by using Eq. (5). We have used
eight real project data sets DS1∼ DS8 [7], where the testing
days and the total number of software faults are given as
(62, 41, 46, 109, 111, 73, 81, 114) and (133, 266, 144, 553,
481, 367, 461, 144), respectively. In the process of getting
the expected output via the BP algorithm, the calculation of
the gradient descent requires high computational cost, while
the convergence criteria of the minimum error and the total
number of iterations are same [22]. In our experiments, the
search range of λ for Box-Cox transform is [−3,+2].

The prediction model’s capability is estimated by the
average relative error (AE),

AEl =

∑l
s=1REs
l

, (21)

where the relative error (REs) for the future time t = n+ s
is defined by

REs =

∣∣∣∣ (ỹon+s − ỹn+s)ỹon+s

∣∣∣∣ . (22)

The prediction model with smaller AE is considered as the
best one. The supplemental material [47] summarizes the
analysis results for data sets DS1∼ DS8 at 50% ∼ 90%
observation points of the whole data, where the prediction
lengths are l=5, 10, 15, and 20 days.

Table III shows the best model in terms of AE for dataset
DS1∼ DS8, where l means that prediction length, “Middle
Testing” implies 50% ∼ 70%, and “Late Testing” represents
80% ∼ 90% observation points. From these results, it can
be perceived that (i) our refined neural network with MIMO
(FT) could predict the software faults in the early testing
phase, and (ii) SRM (txvmax) provides better result than
RANN in the late testing phase.

In figure 3, we depict the time-dependent behavior of RE
and compare SRMs with all datasets for 20 output length.
From this result, it is obvious that from the early testing
to the late testing, AT2 provides less error than others. The

case of non-transformation gives the worst result. Though
we omit to show all the results for conciseness, it can be
observed that the SRM (txvmax) leads to better results than
other models.

2) Prediction Interval (PI) Analysis: Here, we consider
prediction interval for software fault data by our RANN
approach. To construct the prediction interval, we have used
the PI delta and proposed PI simulation method.

There are two quality assessment criteria of PIs: the
mean prediction interval width (MPIW) and PI coverage rate
(PICP) [44]. The significance level is assumed as 95%. The
PCIP is defined by

PICP =

∑l
s=1 CP s
l

, (s = 1, 2, . . . , l). (23)

where

CPs =

{
1 ỹn+s ∈ [PIlow, P I

up]
0 ỹn+s 3 [PIlow, P I

up].
(24)

Here, PIup and PI low are the upper and lower predictive
limits, respectively. The MPIW is defined by

MPIW =

∑l
s=1 PI

up − PIlow
l

. (25)

Additionally, PI-normalized averaged width (PINAW) which
quantifies the PI length is given by:

PINAW = MPIW/l, (26)

where l is prediction length.
Table IV shows the comparison between two prediction

interval methods for DS1∼DS8 where l = 20. In the table,
PI delta and PI simulation mean the prediction intervals by
delta and proposed simulation methods, respectively. From
these results, it is observed that the delta method provides
wider PIs than the simulation-based method although its
coverage probability is over 95% significance level. The
RANN with BCT and non-transformation (NT) do not cover
the coverage probability for all cases.

Figure 4∼5 shows the two-sided 95% prediction intervals
of software faults in case of l = 20 via two prediction
interval methods. The length of each rectangle in the Box
plot indicates the two-sided 50% prediction intervals with
DS1. Firstly, we observe that the PIs of the delta method
are wider than those of the simulation-based method as the
delta method is prone to much more uncertainty. The non-
transformation RANN does not cover the point prediction
and the real value because of its tighter prediction regions
with low coverage probability. Secondly, it is seen that the
RANN with AT1, AT2, BT, FT, and BCT includes the point
prediction and the real value within the coverage range.

B. Synthetic Data Analysis

1) Point Prediction: For synthetic data Case1∼Case4, we
observe 50% past data as our input to the ANN for the next
15 days. At the observation point tn, we have utilized the
(n−l) software fault count data for training the RANN. After
pre-processing the synthetic datasets, we have made the long-
term point prediction by five data transformation methods

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

AT1

BT

FT

BCT

AT2

LL

Non

Tmax

(a) DS1

AT1

BT

FT

BCT

AT2

Lmin

Non

Lmax

(b) DS2
Relative Error

AT1

BT

FT

BCT

AT2

Inorm

Non

Tmax

(c) DS3

AT1

BT

FT

BCT

AT2

Lmin

Non

Tmax

(d) DS4

AT1
BT

FT
AT2

Gamma

Non

Tmax

Relative Error

(e) DS5

AT1

BT

FT

BCT

AT2

Gamma

Non

(f) DS6

AT1

BT

FT

BCT

AT2

Tmax

Non

Lmin

Relative Error

(g) DS7

AT1

BT

FT

BCT

AT2

LL

Non

Lmin

(h) DS8

Fig. 3: Inter-temporal behavior of relative error in real data analysis.

using Eq. (16) for the next 15 days. The point prediction has
been justified by the average error (AE) in Eq. (17).

Table V outlines the results of AE for Case1∼Case4 at
the 50% observation points for the prediction length l = 15
days, where “Best λ” stands for the optimal transformation
parameter, and the bold number denotes the best prediction
model for the case of minimum AE. Here, the number of
hidden neurons changes from k = 10 ∼ 50. In our RANN,
we have compared the non-transformed method with the
five data transform methods. We observe that in almost

all cases our approach gives smaller AEs than the non-
transformation method. For Case1∼Case4, the RANN with
FT offers less error than the non-transformation method.
However, for the synthetic datasets, the data transformation
with RANN method can predict accurately for long-term
prediction.

In Figure 7, we delineate the time-dependent behavior of
RE and compare five data transformation methods (including
non-transformation method) for all cases. From this result,
it is obvious that FT delivers fewer error. The common

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

TABLE III: Best prediction models for varying prediction point and prediction length

(a) DS1. (b) DS2. (c) DS3.

l
Middle Phase Late Phase

l
Middle Phase Late Phase

l
Middle Phase Late Phase

50% 60% 70% 80% 90% 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

5 MIMO
(BCT)

MIMO
(FT)

MIMO
(BCT)

SRM
(txvmin)

SRM
(txv-
max)

5 MIMO
(FT)

MIMO
(FT)

SRM
(lxv-
max)

SRM
(lxvmin)

SRM
(txv-
max)

5 MIMO
(AT2)

MIMO
(BT)

MIMO
(BT)

MIMO
(FT)

SRM
(txv-
max)

10 MIMO
(AT2)

SRM
(tlo-
gist)

MIMO
(AT2)

SRM
(lxv-
max)

- 10 MIMO
(AT2)

MIMO
(AT2)

SRM
(lxv-
max)

- - 10 MIMO
(BT)

SRM
(txv-
max)

SRM
(txv-
max)

- -

15 MIMO
(AT2)

MIMO
(AT2)

SRM
(txv-
max)

- - 15 MIMO
(FT)

MIMO
(BCT)

- - - 15 MIMO
(AT1)

SRM
(txv-
max)

- - -

20 MIMO
(BCT)

MIMO
(AT2)

- - - 20 MIMO
(AT2)

- - - - 20 MIMO
(FT)

- - - -

(d) DS4. (e) DS5. (f) DS6.

l
Middle Phase Late Phase

l
Middle Phase Late Phase

l
Middle Phase Late Phase

50% 60% 70% 80% 90% 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

5 MIMO
(FT)

SRM
(txv-
max)

SRM
(txv-
max)

SRM
(lxv-
max)

SRM
(lxv-
max)

5 SRM
(gamma)

SRM
(txv-
max)

SRM
(txv-
max)

SRM
(lxv-
max)

SRM
(lxv-
max)

5 MIMO
(BT)

MIMO
(FT)

SRM
(txv-
max)

MIMO
(FT)

SRM
(lxv-
max)

10 MIMO
(BCT)

MIMO
(BT)

SRM
(lxv-
max)

MIMO
(AT2)

- 10 MIMO
(FT)

SRM
(lxv-
max)

SRM
(txv-
max)

SRM
(lxv-
max)

SRM
(txv-
max)

10 MIMO
(FT)

MIMO
(BT)

MIMO
(FT)

SRM
(txv-
max)

-

15 SRM
(txv-
max)

MIMO
(AT1)

SRM
(txv-
max)

- - 15 MIMO
(BT)

SRM
(txv-
max)

SRM
(txv-
max)

SRM
(txv-
max)

- 15 MIMO
(BT)

MIMO
(AT2)

MIMO
(FT)

SRM
(txv-
max)

-

20 MIMO
(BT)

MIMO
(AT1)

- - - 20 MIMO
(BT)

SRM
(txv-
max)

MIMO
(BT)

- - 20 MIMO
(AT1)

MIMO
(BT)

MIMO
(AT1)

- -

(g) DS7. (h) DS8.

l
Middle Phase Late Phase

l
Middle Phase Late Phase

50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

5 MIMO
(FT)

SRM
(txv-
max)

SRM
(txv-
max)

MIMO
(BT)

SRM
(txv-
max)

5 MIMO
(FT)

SRM
(lxv-
max)

SRM
(lxv-
max)

MIMO
(BT)

MIMO
(BT)

10 MIMO
(BT)

MIMO
(AT1)

MIMO
(FT)

MIMO
(FT)

- 10 MIMO
(BCT)

MIMO
(BT)

MIMO
(FT)

SRM
(lxv-
max)

SRM
(exp)

15 MIMO
(BT)

SRM
(txv-
max)

MIMO
(AT1)

SRM
(txv-
max)

- 15 MIMO
(FT)

MIMO
(AT2)

MIMO
(BT)

SRM
(txv-
max)

-

20 MIMO
(BT)

MIMO
(FT)

MIMO
(BT)

- - 20 MIMO
(AT2)

MIMO
(BT)

MIMO
(AT2)

MIMO
(BT)

-

non-transformation method gives the worst result in the full
testing phase in comparison to others. On the other hand, the
most standard BT, AT2, and BCT provide worse results and
show the increasing trend.

2) Prediction Interval Analysis: We have constructed PIs
for synthetic data (Case1∼Case4) by using two methods:
proposed PI simulation and PI delta method. Here, we have
used the point prediction of four simulation data sets from
the previous subsection and set the significance level at 95%.
We have calculated the prediction interval at 50% observation
point with l=15 for all data sets. Table VI shows the result
of predictive measures for all cases. First, we have found
that the measures based on PI delta method are wider than
those of the proposed PI simulation method. In addition,
the transformation in RANN gives the wider PIs and the
higher coverage rate over 95% in almost all cases. On the
other hand, the non-transformation approach provides the
narrow range and does not include the coverage probability.
The observations from Table VI are illustrated in figures
8∼9, which show the two-sided 95% prediction intervals of
software fault data in Case1 with the delta and simulation-
based methods. In Case1, RANNs with AT1, FT, and BT
include the real value and the point prediction in the Box
plot. But, AT2, BCT, and non-transformation do not include

those in their intervals.

V. CONCLUSIONS

RANN approach is used for long-term software fault pre-
diction based on software fault count data. The prediction
length could be given arbitrarily based on the system testing
length. As far as we know, this paper is the first to construct
and analyze the prediction intervals of the long-term software
faults using the RANN approach. Here, the RANN has been
compared with existing SRMs to show its effectiveness in
predicting software faults in the early testing phase. we have
also constructed the prediction intervals of the cumulative
number of software faults by the PI delta and proposed
PI simulation method in numerical experiments with eight
real datasets and Synthetic datasets (four datasets). We find
that PI simulation encompasses both the real and predicted
fault point within narrower interval width in comparison
to existing PI delta method. In future, these experimental
results will be validated through the software metrics (e.g.,
McCabe, Halstead, OO Metrics) with different prediction
interval methods.

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

TABLE IV: Assessment of prediction interval for DS1 ∼ DS8, where DT = Data transformation and NT=Non-transformation.

DS1 (60% observation point) DS5 (60% observation point)

DT
PI delta PI Simulation

DT
PI delta PI Simulation

PICP MPIW PINAW PICP MPIW PINAW PICP MPIW PINAW PICP MPIW PINAW

AT1 0.9589 2174.98 108.75 0.9785 2152.74 107.63 AT1 0.9545 6589.91 299.54 0.9735 6989.87 349.49
AT2 0.9525 2112.45 105.62 0.9512 1618.45 100.66 AT2 0.9659 7156.59 357.83 0.9686 6789.46 339.47
FT 0.9458 1049.78 52.48 0.9569 2013.25 98.23 FT 0.9586 7258.51 362.92 0.9541 6243.31 312.16
BT 0.9545 2098.25 109.91 0.9584 1964.78 49.92 BT 0.9647 7564.43 378.22 0.9547 5678.71 283.93
BCT 0.9558 1075.25 53.75 0.9348 998.48 80.92 BCT 0.9453 5489.94 274.5 0.9458 5472.82 273.64
NT 0.9289 1017.12 49.85 0.9308 1025.12 51.96 NT 0.9382 4234.37 211.72 0.9453 4989.59 249.48

DS2 (50% observation point) DS6 (60% observation point)

AT1 0.9585 2945.85 147.29 0.9683 2143.57 107.19 AT1 0.9582 4712.24 235.61 0.9535 4576.67 228.83
AT2 0.9472 2515.56 125.78 0.9545 1945.41 97.27 AT2 0.9512 4523.33 226.17 0.9579 4971.18 248.56
FT 0.958 3258.86 162.94 0.954 2145.78 107.29 FT 0.9612 4871.17 243.56 0.9589 4283.23 214.16
BT 0.9654 3982.41 199.12 0.9635 3120.12 156.01 BT 0.951 4279.29 213.96 0.9519 3986.58 199.33
BCT 0.9523 2134.57 106.73 0.9571 2051.23 102.56 BCT 0.9543 4585.83 229.29 0.9534 4575.51 228.77
NT 0.9445 1325.85 66.29 0.9347 1643.27 82.16 NT 0.9245 2987.49 149.37 0.9452 3698.45 184.92

DS3 (50% observation point) DS7 (60% observation point)

AT1 0.9558 5015.47 250.77 0.9595 4019.92 200.99 AT1 0.9586 5698.45 284.92 0.9615 6125.89 306.29
AT2 0.9549 4045.89 200.64 0.9681 3647.72 182.38 AT2 0.9512 4953.23 247.66 0.9536 4989.91 249.46
FT 0.9581 4012.12 200.61 0.9533 3782.25 189.11 FT 0.9586 5941.49 297.07 0.9585 6124.47 306.22
BT 0.9625 4317.82 215.89 0.9543 3758.87 187.94 BT 0.9596 5210.31 260.52 0.9589 5426.63 271.33
BCT 0.9455 2915.85 145.79 0.9565 3247.29 162.36 BCT 0.9556 4653.28 232.66 0.9495 4523.21 226.16
NT 0.9248 2654.35 132.72 0.9351 2471.19 123.56 NT 0.9289 3961.45 198.07 0.9453 3212.24 160.61

DS4 (60% observation point) DS8 (60% observation point)

AT1 0.9532 5263.56 263.19 0.9683 6458.51 322.93 AT1 0.9541 745.41 37.27 0.9555 643.23 32.16
AT2 0.9582 5796.59 289.83 0.9523 5894.73 294.74 AT2 0.9652 659.86 32.99 0.9656 712.2 35.61
FT 0.9685 6125.49 306.27 0.9519 4785.84 239.29 FT 0.9553 598.89 29.94 0.9562 562.12 28.11
BT 0.9651 5872.2 293.61 0.9453 4506.89 225.34 BT 0.9659 963.12 48.16 0.9585 496.56 24.83
BCT 0.9451 4969.58 248.48 0.9351 4891.47 244.57 BCT 0.9532 489.87 24.49 0.9594 589.89 29.49
NT 0.9263 2920.23 146.01 0.9289 1279.91 63.99 NT 0.9251 233.53 11.68 0.9343 375.86 18.79

TABLE V: Comparison of AEs for Case1 ∼ Case4 (l =
15) at 50% observation point. Here, NT stands for Non-
transformation.

Case1

k AT1 AT2 FT BT BCT(Best λ) NT

10 1.0563 1.0952 0.8952 0.7514 1.3698(1.1) 2.4589
20 0.8531 1.1361 0.0756 1.369 0.9458(1.0) 1.9412
30 0.1362 0.2492 0.0911 0.3448 0.2771(0.7) 0.5062
40 0.3589 0.8781 0.0396 0.6391 1.069(0.3) 1.3497
50 0.1015 0.2639 0.0963 0.3940 0.6852(0.1) 0.7423

Case2

10 2.5896 3.4712 2.4820 1.6352 3.6094(1.1) 4.8956
20 2.1356 2.9841 0.0641 2.4810 1.0489(0.8) 3.6523
30 3.0564 1.8971 0.6749 0.9423 1.6357(1.4) 1.4758
40 0.9852 0.0918 0.0686 1.2301 0.6987(-0.3) 0.3497
50 0.0779 1.2891 0.9852 0.3289 0.4024(1.3) 0.5045

Case3

10 2.1324 0.0654 0.6894 2.4120 2.3145(-1.9) 4.2536
20 1.4578 1.6932 0.0335 1.9482 0.2837(2.0) 2.5896
30 0.0229 1.3472 1.2035 0.0151 1.9823(0.0) 0.3811
40 0.6417 0.9856 1.4712 0.7519 1.8742(1.2) 1.9786
50 0.2471 0.8945 0.3691 0.2981 0.8974(1.0) 1.8421

Case4

10 3.6451 1.6523 0.6417 0.8741 2.8963(1.3) 3.6012
20 1.6481 1.9631 1.2013 1.2475 1.9876 (-1.1) 3.1987
30 1.9685 0.3781 1.2489 0.3419 1.0947(0.9) 2.8475
40 0.2896 1.0143 1.0321 0.6389 1.6981(-0.8) 1.2589
50 1.0241 0.2781 0.2389 0.3141 0.8949(-0.3) 1.3698

TABLE VI: Results of predictive measures for Case1 ∼
Case4 at 50% observation point, where DT = Data trans-
formation and NT=Non-transformation.

Case1

Delta Simulation

DT PICP MPIW PINAW PICP MPIW PINAW

AT1 0.9632 157.95 10.51 0.9536 170.71 11.38
AT2 0.9482 229.02 15.27 0.9621 137.13 9.14
FT 0.9549 107.91 7.19 0.9429 106.47 7.09
BT 0.9521 113.71 7.59 0.9587 52.08 3.47
BCT 0.9479 183.75 12.25 0.9425 96.96 6.46
NT 0.9189 46.30 3.08 0.9349 43.13 2.88

Case2

AT1 0.9592 197.62 13.17 0.9693 192.51 12.83
AT2 0.9653 196.38 13.09 0.9589 167.48 11.16
FT 0.9617 141.03 9.40 0.9623 124.48 8.29
BT 0.9551 157.57 10.51 0.9593 125.90 8.39
BCT 0.9546 177.88 11.85 0.9459 167.62 11.17
NT 0.9263 111.95 7.46 0.9129 135.25 9.017

Case3

AT1 0.9512 142.94 9.53 0.9521 129.42 8.63
AT2 0.9641 198.22 13.21 0.9523 151.75 10.12
FT 0.9581 204.45 13.63 0.9557 188.67 12.58
BT 0.9547 75.34 5.02 0.9562 101.44 6.76
BCT 0.9596 143.83 9.58 0.9459 76.87 5.12
NT 0.9154 51.62 3.44 0.9591 92.24 6.15

Case4

AT1 0.9589 125.07 8.34 0.9683 115.78 7.72
AT2 0.9492 156.76 10.45 0.9614 121.47 8.09
FT 0.9859 193.94 12.93 0.9519 158.89 10.59
BT 0.9459 179.42 11.96 0.9598 129.89 8.65
BCT 0.9587 157.64 10.51 0.9241 111.47 7.43
NT 0.9459 125.45 8.36 0.9137 89.78 5.99

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

(a) AT1. (b) AT2.

(c) FT. (d) BT.

(e) BCT. (f) Non-transformation.

Fig. 4: prediction interval by delta method with DS1 (l = 20).

REFERENCES

[1] L. Lun, X. Chi, and H. Xu, “Testing approach of com-
ponent interaction for software architecture.” IAENG
International Journal of Computer Science, vol. 45,
no. 2, pp. 353–363, 2018.

[2] M. Begum and T. Dohi, “Prediction interval of cumula-
tive number of software faults using multilayer percep-
tron,” in Applied Computing & Information Technology.
Springer, 2016, pp. 43–58.

[3] L. G. Marı́n, N. Cruz, D. Sáez, M. Sumner, and
A. Núñez, “Prediction interval methodology based on
fuzzy numbers and its extension to fuzzy systems and
neural networks,” Expert Systems with Applications,
vol. 119, pp. 128–141, 2019.

[4] M. A. Zuniga-Garcia, G. Santamarı́a-Bonfil, G. Arroyo-
Figueroa, and R. Batres, “Prediction interval adjustment
for load-forecasting using machine learning,” Applied
Sciences, vol. 9, no. 24, p. 5269, 2019.

[5] A. Khosravi, S. Nahavandi, D. Creighton, and A. F.

Atiya, “Comprehensive review of neural network-based
prediction intervals and new advances,” IEEE Transac-
tions on neural networks, vol. 22, no. 9, pp. 1341–1356,
2011.

[6] K.-Y. Cai, Software defect and operational profile mod-
eling. Springer Science & Business Media, 2012,
vol. 4.

[7] M. R. Lyu et al., Handbook of software reliability
engineering. IEEE computer society press CA, 1996,
vol. 222.

[8] J. D. Musa, A. Iannino, and K. Okumoto, “Software
reliability: Measurement, prediction, application. 1987,”
McGrawHill, New York, 1987.

[9] K. Sharma, R. Garg, C. Nagpal, and R. Garg, “Selection
of optimal software reliability growth models using a
distance based approach,” IEEE Transactions on Reli-
ability, vol. 59, no. 2, pp. 266–276, 2010.

[10] Y. Wang, D. Niu, and L. Ji, “Short-term power load
forecasting based on ivl-bp neural network technology,”
Systems Engineering Procedia, vol. 4, pp. 168–174,

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

(a) AT1. (b) AT2.

(c) FT. (d) BT.

(e) BCT. (f) Non-transformation.

Fig. 5: prediction interval by simulation-based method with DS1 (l = 20).

2012.
[11] S. Santosa, R. Pramunendar, D. Prabowo, and Y. P. San-

tosa, “Wood types classification using back-propagation
neural network based on genetic algorithm with gray
level co-occurrence matrix for features extraction.”
IAENG International Journal of Computer Science,
vol. 46, no. 2, pp. 149–155, 2019.

[12] N. Karunanithi, Y. K. Malaiya, and L. D. Whitley, “Pre-
diction of software reliability using neural networks,” in
ISSRE, 1991, pp. 124–130.

[13] T. Wu, Y. Dong, Z. Dong, A. Singa, X. Chen, and
Y. Zhang, “Testing artificial intelligence system towards
safety and robustness: State of the art.” IAENG Inter-
national Journal of Computer Science, vol. 47, no. 3,
pp. 449–462, 2020.

[14] W. Wongsinlatam and S. Buchitchon, “Criminal cases
forecasting model using a new intelligent hybrid arti-
ficial neural network with cuckoo search algorithm.”
IAENG International Journal of Computer Science,
vol. 47, no. 3, pp. 481–490, 2020.

[15] R. Sitte, “Comparison of software-reliability-
growth predictions: neural networks vs parametric-
recalibration,” IEEE transactions on Reliability,
vol. 48, no. 3, pp. 285–291, 1999.

[16] L. Tian and A. Noore, “Evolutionary neural network
modeling for software cumulative failure time predic-
tion,” Reliability Engineering & system safety, vol. 87,
no. 1, pp. 45–51, 2005.

[17] Y.-S. Su and C.-Y. Huang, “Neural-network-based ap-
proaches for software reliability estimation using dy-
namic weighted combinational models,” Journal of Sys-
tems and Software, vol. 80, no. 4, pp. 606–615, 2007.

[18] S. Noekhah, A. A. Hozhabri, and H. S. Rizi, “Software
reliability prediction model based on ica algorithm and
mlp neural network,” in 7th International Conference
on e-Commerce in Developing Countries: with focus
on e-Security. IEEE, 2013, pp. 1–15.

[19] R. Mahajan, S. K. Gupta, and R. K. Bedi, “Design of
software fault prediction model using br technique,”
Procedia Computer Science, vol. 46, pp. 849–858,

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

5 10 15 20 25 30

50

100

150

200

250

300

(a) Case1 (fitted)

5 10 15 20 25 30

50

100

150

200

250

300

(b) Case2 (unfitted)

5 10 15 20 25 30

50

100

150

200

250

300

(c) Case3 (overfitted)

5 10 15 20 25 30

50

100

150

200

250

300

(d) Case1 (S-shaped)

Fig. 6: Simulation datasets.

AT1

BT

FT

BCT

AT2

Non

(a) Case1 (fitted)

AT1

BT

FT

BCT

AT2

Non

(b) Case2 (underfitted)

AT1

BT

FT

BCT

AT2

Non

(c) Case3 (overfitted)

AT1

BT

FT

BCT

AT2

Non

(d) Case4 (s-shaped)

Fig. 7: Time-dependent behavior of relative error.

2015.
[20] Q. Hu, M. Xie, S. H. Ng, and G. Levitin, “Robust

recurrent neural network modeling for software fault
detection and correction prediction,” Reliability Engi-
neering & System Safety, vol. 92, no. 3, pp. 332–340,
2007.

[21] M. Begum and T. Dohi, “Optimal software release
decision via artificial neural network approach with
bug count data,” Advanced Reliability and Maintenance
Modeling VII, McGraw Hill, pp. 17–24, 2016.

[22] ——, “A neuro-based software fault prediction with
box-cox power transformation,” Journal of Software

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

(a) AT1. (b) AT2.

(c) FT. (d) BT.

(e) BCT. (f) Non-transformation.

Fig. 8: prediction interval by delta method with Case1 (l = 15).

Engineering and Applications, vol. 10, no. 03, p. 288,
2017.

[23] ——, “Optimal release time estimation of software
system using box-cox transformation and neural net-
work,” International Iournal of Mathematical, Engi-
neering and Management Sciences, vol. 3, no. 2, pp.
177–194, 2018.

[24] ——, “Optimal stopping time of software system test
via artificial neural network with fault count data,”
Journal of Quality in Maintenance Engineering, vol. 24,
no. 1, pp. 22–36, 2018.

[25] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson,
and F. Törner, “Evaluating long-term predictive power
of standard reliability growth models on automotive
systems,” in 2013 IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE). IEEE,
2013, pp. 228–237.

[26] H. Cheng, P.-N. Tan, J. Gao, and J. Scripps, “Multistep-
ahead time series prediction,” in Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining.

Springer, 2006, pp. 765–774.
[27] J. Park, N. Lee, and J. Baik, “On the long-term predic-

tive capability of data-driven software reliability model:
an empirical evaluation,” in 2014 IEEE 25th Interna-
tional Symposium on Software Reliability Engineering.
IEEE, 2014, pp. 45–54.

[28] H. Okamura, T. Dohi, and S. Osaki, “Software relia-
bility growth models with normal failure time distri-
butions,” Reliability Engineering & System Safety, vol.
116, pp. 135–141, 2013.

[29] A. L. Goel, “Software reliability models: Assumptions,
limitations, and applicability,” IEEE Transactions on
software engineering, no. 12, pp. 1411–1423, 1985.

[30] K. Ohishi, H. Okamura, and T. Dohi, “Gompertz
software reliability model: Estimation algorithm and
empirical validation,” Journal of Systems and software,
vol. 82, no. 3, pp. 535–543, 2009.

[31] S. S. Gokhale and K. S. Trivedi, “Log-logistic soft-
ware reliability growth model,” in Proceedings Third
IEEE International High-Assurance Systems Engineer-

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

(a) AT1. (b) AT2.

(c) FT. (d) BT.

(e) BCT. (f) Non-transformation.

Fig. 9: prediction interval by simulation-based method with Case1 (l = 15).

ing Symposium (Cat. No. 98EX231). IEEE, 1998, pp.
34–41.

[32] M. Ohba, “Inflection s-shaped software reliability
growth model,” in Stochastic models in reliability the-
ory. Springer, 1984, pp. 144–162.

[33] J. A. Achcar, D. K. Dey, and M. Niverthi, “A bayesian
approach using nonhomogeneous poisson processes for
software reliability models,” in Frontiers in reliability.
World Scientific, 1998, pp. 1–18.

[34] A. A. Abdel-Ghaly, P. Chan, and B. Littlewood, “Eval-
uation of competing software reliability predictions,”
IEEE Transactions on Software Engineering, no. 9, pp.
950–967, 1986.

[35] B. Littlewood, “Rationale for a modified duane model,”
IEEE Transactions on Reliability, vol. 33, no. 2, pp.
157–159, 1984.

[36] S. Yamada, M. Ohba, and S. Osaki, “S-shaped reliabil-
ity growth modeling for software error detection,” IEEE
Transactions on reliability, vol. 32, no. 5, pp. 475–484,
1983.

[37] M. Zhao and M. Xie, “On maximum likelihood estima-

tion for a general non-homogeneous poisson process,”
Scandinavian journal of statistics, pp. 597–607, 1996.

[38] A. L. Goel and K. Okumoto, “Time-dependent error-
detection rate model for software reliability and other
performance measures,” IEEE transactions on Reliabil-
ity, vol. 28, no. 3, pp. 206–211, 1979.

[39] F. J. Anscombe, “The transformation of poisson, bino-
mial and negative-binomial data,” Biometrika, vol. 35,
no. 3/4, pp. 246–254, 1948.

[40] M. Makitalo and A. Foi, “A closed-form approximation
of the exact unbiased inverse of the anscombe variance-
stabilizing transformation,” IEEE transactions on image
processing, vol. 20, no. 9, pp. 2697–2698, 2011.

[41] M. Bartlett, “The square root transformation in analysis
of variance,” Supplement to the Journal of the Royal
Statistical Society, vol. 3, no. 1, pp. 68–78, 1936.

[42] M. Fisz, “The limiting distribution of a function of two
independent random variables and its statistical appli-
cation,” in Colloquium Mathematicum, vol. 3, 1955, pp.
138–146.

[43] G. E. Box and D. R. Cox, “An analysis of transforma-

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

tions,” Journal of the Royal Statistical Society: Series
B (Methodological), vol. 26, no. 2, pp. 211–243, 1964.

[44] A. Khosravi, S. Nahavandi, D. Creighton, and A. F.
Atiya, “Comprehensive review of neural network-based
prediction intervals and new advances,” IEEE Transac-
tions on neural networks, vol. 22, no. 9, pp. 1341–1356,
2011.

[45] R. D. De VlEAUX, J. Schumi, J. Schweinsberg, and
L. H. Ungar, “Prediction intervals for neural networks
via nonlinear regression,” Technometrics, vol. 40, no. 4,
pp. 273–282, 1998.

[46] P. W. Lewis and G. S. Shedler, “Simulation of non-
homogeneous poisson processes by thinning,” Naval
research logistics quarterly, vol. 26, no. 3, pp. 403–
413, 1979.

[47] M. Begum, M. S. B. Hafiz et al., “Supplementary
material is added for detailed information on the
comparison of average errors for datasets:1∼8,” 2020.
[Online]. Available: https://bit.ly/2CdIwxn

Engineering Letters, 29:3, EL_29_3_44

Volume 29, Issue 3: September 2021

__

