
 

  
Abstract—The vehicle problem (VRP) is a typical 

optimization problem in logistics and transportation. The 
objective function is to find the shortest route distances visited 
by all vehicles originating from a central deport to travel 
customers, and the sum of deliveries of each vehicle should meet 
the capacity constraint. This problem belongs to NP hard 
problems, so it is not easy to resolve it with common methods. 
Ant colony optimization (ACO) has shown prominent 
performance for many practical applications. However, it is 
inclined to premature convergence. The paper offers a hybrid 
ACO&DE algorithm, which hybridizes ant colony optimization 
(ACO) with differential evolution (DE) for the VRP. The main 
feature of the ACO&DE can make full use of advantages of the 
ACO and DE algorithm to make up for its own weakness, i.e., 
the ACO has fast construction mechanism, and the DE can 
extend the search scope of the ACO. Moreover, to make the DE 
suitable for solving the VRP, both strategies of mutation 
operator and crossover operator have been redesigned to 
implement the discrete DE directly. In addition, to increase the 
solution diversity by expanding the search space, we present a 
new selection strategy with probabilistic mechanism to 
determine new target vectors in the next iteration. Meanwhile, 
2-opt heuristic and 2-exchange neighborhood is embedded in the 
ACO&DE to improve the local search performance. The results 
have shown that the proposed ACO&DE algorithm is 
competitive with existing optimal methods in solving the VRP, 
and thus can be further extended in variants of the VRP and 
other logistics transportation fields. 
 

Index Terms—Vehicle routing problem, 2-opt, Ant colony 
optimization, Selection operation, Differential evolution. 
 

I. INTRODUCTION 
he effective transportation of goods has great influence 
on transportation cost and customer satisfaction by 
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reducing the energy consumption and fast delivery. Most 
goods transportation problems can be defined as the vehicle 
routing problems. The VRP belongs to a classical 
optimization problem in logistics system. In the VRP, 
customers geographically located on the network are served 
by vehicles with capacity. Each vehicle with capacity 
constraints should start from the central depot, and finally 
return to it, and each customer should be visited by a vehicle 
only once. The objective function is to find the best vehicle 
paths that minimize total visited distance and the number of 
vehicles. The VRP is a NP-hard problem with wide 
applications, and it is complicated to solve with common 
optimization methods. The development of exact algorithms 
and approximate methods has made important progress. 
Pessoa et al. [1] presented an extended formulation and 
adopted a branch cut and price method to resolve the 
instances with 75 customers. Baldacci and Mingozzi [2] 
proposed a set partitioning based on Lagrangian relaxation to 
solve small instances. Nevertheless, this exact method can not 
be suitable for larger instances. Because of the high time 
complexity and more time consuming and calculation, exact 
algorithms is suitable for small cases. In practical application, 
the problems that need to be solved are large scale, scholars 
continue to seek approximate or heuristic algorithms to solve 
this problem. 

At present, most researchers have focused particularly on 
designing the effective heuristics to improve the algorithm 
performance. Clarke and Wright [3] designed constructive 
heuristics, which build vehicle routes successively by adding 
unvisited customers according to saving criteria. These 
constructive heuristics can be conveniently improved by 
executing 2-opt procedure as local search. Recent research 
concentrates on the use of modern meta-heuristics. Taillard [4] 
and Rochat and Taillard[5] adopted tabu search to obtain the 
best known results for the VRPs while Osman[6] used 
simulated annealing to get similar results. Barrie et al. [7] 
incorporated several neighborhoods into the genetic 
algorithm (GA) to obtain more significant improvement and 
demonstrated that the GA is an effective method to solve the 
basic VRP. Asma et al. [8] presented a hybrid firefly 
algorithm integrated with genetic operators and two local 
searches to increase the solution’s quality. The experiments 
demonstrated that hybrid firefly algorithm has high 
computational accuracy. Nevertheless, these algorithms 
usually need more computing times and some parameter 
settings to get better solutions [9], the performance of these 
algorithms still need to be further studied and improved  
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The ACO is a meta-heuristic algorithm [10] and it imitates 
the process of ant colony behavior as they have ability to 
obtain the best path from the nest to the food source.  
Bullnheimer et al. [11] first proposed an ant system algorithm 
to solve the VRP, and then designed another improved 
algorithm incorporating ant colony optimization with 2-opt 
heuristic to improve the algorithm performance. Due to the 
complexity of the VRP, the basic ACO algorithms is difficult 
to deal with complicated information requirements. Many 
researchers have presented novel strategies to increase the 
high effectiveness of basic ACO and successfully applied 
these strategies to different variants of the VRP. It is an 
significant research topic to integrate the ACO algorithm with 
other methods for solving the large scale VRP. For each 
metaheuristc algorithm has own advantages and weakness, 
researchers have been exploring hybrid algorithms, which can 
take advantages of each algorithm to make up for its 
shortcomings.   

More recently, differential evolution (DE) is a novel 
mataheuristic algorithm inspired from organism intelligent 
behaviors. The DE algorithm was originally presented for 
continuous optimization [12], and it could make the 
population evolve at each generation through simple 
operations. Because of its simple operations and fast 
convergence, the DE algorithms are successfully applied to 
solve continuous problems in different fields [13], including 
pattern recognition [14], and power systems [15], among 
others. However, the standard DE algorithm operates in 
continuous space problems, which is not used directly to solve 
discrete combinatorial optimization problems. Compared 
with continuous optimization, discrete optimization problems 
is more complex, therefore the literature on DE algorithm to 
solve discrete optimization problems is relatively limited. At 
present, some researchers have proposed improved strategies 
to extend application fields of the DE method. Pan et al. [16] 
presented a discrete DE method to solve flowshop scheduling 
problems. Zhang et al. [17] designed a novel DE for solving 
distributed blocking flowshop problem. Ali et al. [18] 
proposed a discrete DE method to solve traveling salesman 
problems. Experiment results have shown this DE algorithm 
can outperform other comparative methods. Since the DE 
algorithm has some advantages, i.e., simplicity, fast 
convergence and so on, it is successfully applied in 
resource-constrained project, flow show scheduling problems. 
The limitations of using discrete DE to solve the VRP and 
promising applications of discrete DE form the main 
motivation of our research. 

  Although meta-heuristics has made some progress in the 
vrp, a new methodology still needs further research and 
discussion. This paper presents a hybrid ACO&DE algorithm 
to solve the VRP. The main innovation of this paper is 
different from all the above literatures in the following aspects. 
First, the crucial idea is to combine the ACO with the DE to 
form a hybrid ACO&DE algorithm. The ACO&DE can make 
use of advantages of the ACO and DE algorithm to make up 
for its own weakness. Second, within the ACO&DE 
framework, an effective local search based on 2-opt heuristic 
and 2-exchange neighborhood is embedded in ACO&DE 
algorithm to expand the local search ability of algorithms.  
2-opt heuristic should be applied to execute as an improved 

method within the same route, and 2-exchange can be used for 
the between two routes.  To enhance the performance of the 
ACO for the VRP, the DE algorithm is also applied to extend 
the search scope of the ACO algorithm. Third, different from 
the basic DE, the hybrid ACO&DE algorithm adopted several 
vehicle sets to denote a solution, each of which represents the 
permutation of visiting customers. Moreover, to make the DE 
suitable for solving the VRP, both strategies of mutation 
operator and crossover operator have been redesigned to 
implement the discrete DE directly. In addition, a new 
selection strategy is adopted to promote the solution diversity 
by expanding the search space. In addition, the common 
selection strategy is survival of the fittest, and it is very easy to 
lead to local optimum. Hence, to increase the solution 
diversity by expanding the search space, we present a new 
selection strategy with probabilistic mechanism to determine 
new target vectors in the next iteration. That is to say, a certain 
quantity of inferior solutions can enter into the next 
generation according to the probability mechanism. Finally, 
numerical experiment results shows that the proposed 
ACO&DE algorithm is competitive with existing optimal 
methods in solving the VRP. 

   The rest of this paper is arranged as follows. In Section 2, 
we present a description of the VRP, while Section 3 briefly 
gives basic ACO and DE algorithm. In Section 4, the 
proposed ACO&DE algorithm is introduced. Section 5 
discusses experimental results. At last some conclusions are 
drawn in Section 6. 

II. PROBLEM DESCRIPTION  
The VRP has always been a hot issue for scholars in the 

logistics and transportation.  The VRP is often described as an  
undirected graph G =(V, A), in which V ={0,…, n} denotes a 
set of nodes, node 0 represents a depot, namely a central depot, 
and a node corresponds to a customer position with a demand 
di, i ={1,…, n}, to be transported. Let A={(i, j)|i, j∈V} be an 
edge set. The distance cij is related to each edge (i,j)∈A and 
denotes the distance between customers (i, j). M denotes a set, 
i.e., M={1,…, m}, in which m indicates the number of serving 
vehicles. Customers geographically located are served by 
vehicles and assigned at the depot, while each vehicle leaves 
from the depot and must return to it. Based on the above 
description, the VRP model can be defined mathematically as 
follows:   
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Formula (1) is an objective function that minimizes total 

visited distance by all vehicles originating from a depot to 
visit a set of customers. Constraints (2) indicate that a 
customer should be served by one vehicle at most. Constraints 
(3) ensure that a vehicle should leave and finish a route at this 
depot. The Constraints (4) assure that each vehicle should not 
exceed a predetermined amount. Constraints (5) should 
guarantee that when a customer is served in a certain vehicle, 
there must be exactly one customer before and one customer 
after it in the vehicle respectively. Constraints (6) avoid 
producing subtours. Constraints (7) and (8) specify decision 
variables as binary. Consider decision variables xijk such that 
xijk =1 if the vehicle k visited from node i to node j, otherwise, 
xijk=0. Consider variables yik=1 which represent if node i is 
visited by vehicle k , otherwise, yik=0. 

III. ANT COLONY OPTIMIZATION AND DIFFERENTIAL 
EVOLUTION 

The ACO algorithm was first presented by Dorigo et al. 
[10]. Their inspiration came from direct observation of ant 
colonies. Through communicating pheromone information, 
the ACO algorithm simulates the process of ant colony 
behavior as ants can seek the shortest routes between their 
nest and food source position. When ants find food sources, 
the pheromone trails will attract the other ants to move. The 
paths with more pheromone trails can increase the probability 
of other ants choosing these ones. Over a long time, as more 
and more the ants have finished their shorter paths, more 
pheromone trails deposit on the shorter paths, but are less 
intensified on the longer paths. Ants can not only seek the 
shortest route between a food position and the nest, but adapt 
to surrounding environmental change. The basic principle of 
ACO algorithms is based on the natural behaviors of seeking 
the shortest route from a nest to the food position. The ACO 
algorithm mainly includes solution construction rule and 
pheromone updating rule. Pseudo of the ACO algorithm is 
listed in Fig.1.  

The DE method is also regarded as a meta-heuristic 
algorithm based on a population stochastic search. Just like 
other meta-heuristic algorithms, the DE consists of four steps, 
i.e., population initialization phase, mutation, crossover and 
selection operations. The main principle of this algorithm is to 
make the solutions evolve continually at each generation 
through above these steps. Starting with the population of 
target vectors, the DE algorithm can produce mutant vectors 
by adopting a mutation operation. Then, to expand the 
diversity of the population, these mutant vectors are 
recombined with target vectors to obtain trail vectors by 
implementing the crossover process. At the same time, trail 

vectors can inherit some features from mutant vectors. After 
that, competition between a target vector and a trial vector 
should make the better one participate in the next iteration 
according to the survival of the fittest. These operations are 
performed repeatedly until a predefined termination condition 
is met. Generally, the performance of this algorithm is 
affected by the initial population size, the mutation strategy, 
crossover factor, selection strategy, and other factors. 
Therefore, many variants of the DE algorithms have been 
proposed in research literatures to focus on these factors to 
enhance performance of the DE. DE algorithm is a random 
search process that can record and share the optimal 
information within the population. The complexity of simple 
evolutionary process is reduced and the global convergence 
ability is enhanced. As being used in the continuous space, 
DE algorithm easily operates the floating points, so it can 
decrease the computational time in the process of encoding 
and decoding. Pseudo of the DE algorithm is listed in Fig.2 

In the paper, we present a novel hybrid ACO&DE, which 
adopts a distinctive probability selection operation to produce 
new individuals in the next generation. The ACO&DE 
possesses the excellent features of the DE. Moreover, the 
probability selection operation can expand the diversity of the 
population. Therefore, the hybrid ACO&DE offers a novel 
effective method for vehicle routing problems.  

 

 

 
 

Fig. 1.  Pseudo of ant colony optimization. 

 

 
 

Fig. 2.  Pseudo of differential evolution. 
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IV. HYBRID ACO&DE ALGORITHM  
 In the process of solving the VRP, on the one hand, 

determine which customers a vehicle will visit, on the other 
hand, each vehicle should also consider the order of visiting 
customers. Therefore, the VRP is an extremely complex 
problem, which makes solution methods more difficult. We 
presented a novel hybrid ACO&DE algorithm integrating the 
ACO and differential evolution (DE) to solve the VRP.  
Meanwhile, The ACO&DE can take advantages of ACO, the 
ability to construct a solution quickly, and that of DE, the 
ability to expand search areas to seek the global optimal 
solution. Furthermore, within the ACO&DE framework, an 
effective local search based on 2-opt heuristic and 2-exchange 
neighborhood is embedded into the ACO&DE to enhance the 
local search ability. To make the DE suitable for solving the 
VRP, both strategies of mutation operator and crossover 
operator have been redesigned to implement the discrete DE 
directly. The proposed ACO&DE algorithm consists of 
solution representation, solution construction, some 
operations and pheromone trail updating. 

A. Solution Representation 
For a VRP with n customers and m vehicles, a feasible 

solution is defined as a set of m vehicle permutations, i.e., X 

={Xk (k=1, 2, …, m)}, in which Xk ={xi,1, xi,2, ..., xi,nk } is a 
sequence of customers and nnm

k k =∑ =1
.  Such a solution 

form is decoded easily to a VRP schedule.  In this schedule, Xk 
denotes the partial customer schedule at vehicle k.  In others 
words, it indicates the assigned customers and their visiting 
order at vehicle k. For an example as shown in Fig. 3, consider 
a VRP with n=12 and m=3. A feasible solution is X={X1, X2, 
X3}, in which X1 = (v2, v8, v11, v10, v1), X2 = (v9, v12, v6) and X3 
= (v4, v7, v5, v3).  Using the decoding strategy, customers v2, v8, 
v11 , v10 , and v1 are assigned at the first vehicle, and visited in 
the order of customers v2 → v8 → v11→ v10→v1, customers v9, 
v12, and v6 at the second vehicle following customers v9 → v12 

→ v6, and customers v4, v7, v5 and v3 at the third vehicle 
following customers v4 → v7 → v5→ v3.  

    

B. Solution Construction 
In our ACO&DE algorithm, the initial population is 

generated by two different construction methods so that it 
should ensure the diversity of population.  One method is a 
greedy algorithm, the other is ACO algorithm. The greedy 
algorithm adopts the principle of nearest neighbor method, 
which select the nearest customer from the current point. 

Randomly choose a customer as the current point, and add it 
into the current vehicle route. And then, determine the nearest 
customer from the current node at each step. The vehicle 
keeps visiting customer until it reaches its capacity. When all 
customers are visited by vehicles, terminate the algorithm 
process, and output a feasible solution. Fig.4 presents the 
pseudo of greedy algorithm. 

 
We mainly focus on the construction mechanism of ACO 

algorithm. In the VRP, a feasible solution is directly defined 
as a set of m vehicle permutations. Thus, an artificial ant 
represents a vehicle in the construction solution process of 
ACO algorithm. Initially the ants begin from a depot and 
successively visit customers, until every customer is served. 
The ant k at the node i moves to node j according to the 
following probabilistic rule: 
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In which ilτ  denotes the pheromone trail of edge (i,l), 
and β is the visibility. The variable q represents a random 
variable ( 10 ≤≤ q ), and parameter q0 ( 10 0 ≤≤ q ) can 

determine the relative significance of exploitation. If 

0qq ≤ then the short edge is chosen according to Equation 
(9); otherwise, determine an edge according to S. S denotes a 
variable depending on the probability rule as in Formula (10).   
The visibility

ilη  is the inverse of the edge length, and Mk 
record nodes already traveled by an ant. 

C. Mutation Operation 
After initializing the population, each vector Xi, i = 1, 2,…, 

NP, defined as the target vector, can produce a mutant vector 
Vi . This mutation vector Vi = {vi,1, vi,2, ..., vi,j, ..., vi,D, i = 1, 
2, ..., NP, j = 1, 2, ..., D}, is obtained by using three randomly 
chosen target vectors. With regard to each target individual Xi, 
the mutation operation is executed to produce a mutation 
vector Vi by calculating the difference between two randomly 

 
 

Fig. 3.  Illustration of a solution representation. 

 
 

Fig. 4.  Pseudo of greedy algorithm. 
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chosen solutions from the population. That is to say, three 
vectors Xp1, Xp2, Xp3 shall be randomly opted from the current 
population such that, p1, p2, p3∈{1, 2,…, NP}, and p1 ≠ p2 ≠ 
p3≠ i. A mutant vector Vi is generated as follows: 

 
)(

321 pppi XXFXV −⋅+=      p1≠p2≠p3≠i                              (11) 

in which F is a mutation scale parameter, F∈[0,2], which can 
control the search direction by  amplifying the differential 
values Xp2 -Xp3. 

To make the DE suitable for discrete problems, a new 
mutation strategy has been redesigned to solve the VRP 
directly. Let d be the differential set, i.e., d =Xp2-Xp3, and the 
subtraction operator between Xp2 and Xp3 is performed as 
follows:
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If xp2,j and xp3,j have the different elements, the resulting set is 
xp2,j; otherwise it is 0. Let ϑ be a scale differential set, i.e., 
ϑ=F×d. The scale operator between the scale parameter F and 
d is stated as 
 
  Dj

otherwise
Frifd

dF j
j  , 2, 1, ,

, 0
,

…=


 ≤

=×                         (13)  

 
In which r∈[0,1] denotes a random value, and dj is the jth 
element of d. If r≤F, the scale differential set ϑ learns from the 
corresponding dj; otherwise it is 0. And then, adding a 
nonzero differential vector ϑ to the base set Xp1 can obtain a 
required mutant solution Vi. The sum calculation between Xp1 
and ϑ is defined as follows:                      
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For a target vector Xi, a mutant solution Vi obtains elements 
from ϑ if the condition ϑj =0 is met, otherwise, the remaining 
elements of Vi are copied from the corresponding the base set 
Xp1. A mutant solution Vi should be generated by redefining 
on the above operators. An example is explained in Fig. 5. 
Note that Vi may not be feasible, but subsequent operators can 
make it feasible. 

In order to explain the redefined mutant process, consider 
Xp1 = {[v1, v2, v3], [v4, v5,v6]} Xp2 = {v4, v2, v3, v5, v6, v1 }, Xp3 = 
{v1, v2, v5, v4, v6,v3 }, and F =0.5. A mutant solution Vi is 
described as follows: 
Step 1:    Arrange a permutation Xp1, Xp2 and Xp3 in a row and 

get customer sequence, i.e., Xp1 = {[v1, v2, v3], [v4, 
v5,v6]}, Xp2 = {[v4, v2, v3], [v5, v6, v1]}, Xp3 = {[v1, v2, 
v5], [v4, v6,v3 ]}. 

Step 2:     Applying formulas (12) and (13) for Xp2  and Xp3  to 
obtain the differential set d={v4, 0, v3 , v5, 0, v1 }.  

Step 3:     Produce a random number set, r ={ r1, r2, …, rn}. 
The set r is orderly as 0.3, 0.4, 0.6, 0.2, 0.7 and 0.8, 
i.e., r ={0.3, 0.4, 0.6, 0.2, 0.7, 0.8}. 

Step 4:   Generate the scale differential set ϑ according to 
formula (14). For random number r1, r2, and r4 are 
smaller than scale parameter F, set ϑ1 =v4, ϑ2 =0 and 
ϑ4 =v5, and the remaining elements of ϑ are 0, i.e., 
ϑ={v4, 0, 0, v5, 0, 0}.               

Step 5:   Applying formula (15) for Xp1 = {[v5, v3, v6], [v4, 
v1,v2]} and ϑ={v4, 0, 0, v5, 0, 0} to produce a mutant 
solution Vi. For v2 ≠0 , v5 ≠0, set vi,1 =v4, and vi,4=v5 . 
And then, the remaining elements of Vi are copied 
from the remaining customer of Xp1 in their original 
order. Set vi,2 =v3, vi,3=v6 , vi,5=v1 and vi,6=v2. 

Step 6:     Output the mutant solution Vi ={[v4, v3, v6], [v5, v1, 
v2]}. 

D. Crossover Operation 
A crossover operation can be used to improve the global 

searching ability. A trail vector, Ui, i = 1, 2, ..., NP, can be 
obtained by recombining Xi with Vi in which this operation 
process makes Ui inherit some features from the mutant vector. 
Let pcr be a crossover parameter in [0,1]. If the value of 
parameter pcr is larger, it means that the trail vector can inherit 
more features from the mutant vector. A trail vector Ui=(ui,1, 
ui,2, ..., ui,D) can be obtained as follows: 
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where ui,j denotes the jth element of vector Ui, j = 1, 2,…,D, i 
= 1, 2,…, NP, and rj∈(0, 1) is a random number. Trail vector 
Ui obtains elements from Vi if the condition rj ≤ pcr is satisfied, 
otherwise, the remaining elements of the trail vector Ui are 
obtained from  the corresponding Xi. 

To solve the VRP, a new cross strategy has been redesigned. 
The difference between this cross operation and basic cross 
operation is that if the condition rand(j)> pcr is satisfied, it is 
not simply copying from the corresponding target vector Xi, 
but filling in the remaining  vacant positions of Ui with the rest 
customer of Xi. An example of the mutation and crossover 
operators is explained in Fig. 5. Note that Ui cannot always 
represent a feasible schedule because some vehicle paths may 
not meet the capacity constraints. A trial individual Ui can be 
obtained by the crossover operator. 

In order to illustrate the cross operation, consider Vi = {[v4, 
v3, v6], [v5, v1,v2]}, Xi = {[v1, v3, v6], [v4, v2,v5]}, and pcr=0.5. 
The crossover operator is explained as follows: 
Step 1:    Arrange the permutation Vi and Xi in a row and 

produce customer sequence, i.e., Vi = {[v4, v3, v6], 
[v5, v1,v2]}, Xi = {[v1, v3, v6], [v4, v2,v5]}. 

Step 2:     Produce a set r ={ r1, r2, …, rn}. The random number 
set r is orderly as 0.3, 0.6, 0.4, 0.2, 0.7 and 0.8, i.e., 
r ={0.3, 0.6, 0.4, 0.2, 0.7, 0.8}. 

Step 3:     Apply formula (15) for Xi = {[v1, v3, v6], [v4, v2,v5]} 
and r ={0.3, 0.6, 0.4, 0.2, 0.7, 0.8} to produce 
elements of a mutant solution Ui. Set ui,j = vi,j, if rj ≤ 
pcr, j=1, 2,…,n i.e., ui,1 =v4, ui,3=v6 and ui,4=v5. 

Step 4:  Fill out the remaining empty elements of Ui with the 
rest elements of Xi in their original order. Set ui,2 =v1, 
ui,5=v3 and ui,6=v2, and then obtain a trail vector Ui = 
{[v4, v1, v6], [v5, v3,v2]}.              

Step 5:   Output the trail vector Ui. 

E. Selection Operation 
Following crossover operation, compute the function 

values of vector Ui and target vector Xi. If f(Ui)≤f(Xi) 
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condition is met , then Ui will replace the target vector Xi, i.e. 
Xi=Ui; otherwise, the vector Xi will be unchanged. The trial 
vector with the lower function value will survive to the next 
iteration. The selection scheme based on a greedy strategy is 
defined as follows: 
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 In which f(Ui) and f(Xi) denote the objective values of vector 
Ui and vector Xi, respectively. With regard to the 
minimization problem, the vectors with the lower function 
values have more choices to participate in the next iteration 
during the search process. The selection strategy has a 
shortcoming, that is, it will be easy to lead to local optimum. 
Hence, to overcome the shortcoming, we design a novel 
selection strategy with probabilistic escaping mechanism to 
choose whether trial vectors will be members of the next 
iteration. The selection strategy is determined as follows, 

 








−−<

≤
=

                              otherwise    
)/))()((exp(  if

                      )()(  if

i

iii

iii

i

X
TXfUfrU

XfUfU
X                 (17) 

 

Where T is temperature. Evaluate the function values of two 
vectors Ui, Xi, and determine whether to update Xi with Ui. If 
f(Ui)≤f(Xi), then Ui is accepted and update Xi with it. On the 
other hand, if f(Ui)>f(Xi) can be accepted with probability 
according to formula (14). By introducing this new selection 
strategy into DE algorithm, some solutions with poor quality 

may become members of the next iteration. Thus, the target 
vectors with large dispersion can be obtained by exploring the 
different regions, and this selection strategy can avoid the 
algorithm fall into local minimum.  

F. Pheromone Trail Updating 
In ACO, the pheromone trail updating is divided into local 

updating and global updating. Local trail is updated in the 
process of constructing solutions, and global trail is 
performed after solutions are built. The local updating is to 
avoid generating more pheromone on edges being chosen by 
other ants. The local pheromone trail is performed as follows:  

 
)()1( 0Lnijij ⋅+−= γτρτ                                                    (18) 

 
in which ]1,0[∈ρ  denotes a evaporation parameter, L0 
represents initial function value of a solution, and n means the 
customer number. 

Global pheromone updating is to enhance neighborhood 
search of the optimum solution. The global updating can not 
only converge faster by expanding differences search spaces, 
but also overcome the rapid enhancement of pheromones on 
optimal edges. In this ACO, the pheromone trails on the edges 
of the best solution should be updated as the following 
formula,  
 

best
ijij L

φτφτ +⋅−= )1(                                                           (19) 

 

In which φ∈[0,1] denotes a decay parameter, Lbest represents 
the distance of the best solution. 

 
 

 
 

Fig. 5.  An example of mutation and crossover. 
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G. Procedure of the ACO&DE Algorithm 
In this paper, we present a hybrid algorithm which 

hybridizes the ACO with DE algorithm to enhance the 
performance of the algorithm. The hybrid algorithm mainly 
consists of four stages.  For the first stage, generate initial 
solutions with different methods. In the second stage, DE 
algorithm is adopted to enhance solution quality to extend the 
search scope of ant colony algorithm. Finally, 2-opt heuristic 
and 2-exchange neighborhood is embedded in the ACO&DE 
to expand the local search ability. The steps of hybrid 
ACO&DE algorithm are as follows: 
Step 1:   Initialization. Input pheromone trails on all edges.  

Set population number as PopSize, and P={φ } as 
initial population set. Set iteration= 0 where 
iteration will be compared to terminal condition, 
i.e., the maximum number of iterations 
MaxIteration. Set initial temperature T=T0. 

Step 2:     Generate NP solutions with a greedy heuristic, each 
solution Xi, i = 1, 2, ..., NP, and put these solutions 
in the solution set P1, P1={X1, X2, …, Xi, …, XNP}. 
Then, add these solutions in the population set P, 
P=P∪P1. 

Step 3:     Generate |P|-NP solutions by executing construction 
solution procedure of ACO algorithm, and put these 
solutions in the solution set P2, P2={X1, X2, …, 
Xi, …, X|P|-NP}. Then, add these solutions in the 
population set P, P=P∪P2.  

Step 4:    Select randomly NP solutions from the population 
set P as target individuals.               

Step 5:   Mutation operation. Choose randomly three target 
vectors Xp1, Xp2, Xp3 from the population, p1, p2, 
p3∈{1, 2,…, NP}. A mutation vector Vi, i=1, 2, ..., 
NP, is produced according to formulas (11)- (14).  

Step 6:     Crossover operation. Produce a new trial vector, Ui, 
i=1, 2, ..., NP, by combining a target vector Xi with 
a relevant mutated vector Vi based on the formula 
(15).  

Step 7:   Selection operation. Compute the fitness function 
values of Ui and Xi, i=1, 2,…, NP. If f(Ui)<f(Xi) 
condition is met, then Ui will replace Xi , i.e. Xi=Ui; 
otherwise, a certain inferior solutions can be 
accepted with a probability according to Equation 
(17). 

Step 8:    Improvement solutions. After the new solutions are 
obtained, the 2-opt method should be used as an 
improved method within the route, and 2-exchange 
can be executed for the between two routes. 

Step 9:   Compute the function values of the solutions and 
update the best solution XB in population set. 
Record the best solution XB with the minimum cost. 

Step 10:  Update global pheromone trail on the edges of XB 
according to formula (19). 

Step 11: Update the population. Some individuals in the 
population are replaced with new offspring. 

Step 12:  Increase the number of iterations and decrease the 
temperature, i.e., iteration = iteration +1,T=T*k. 

Step 13:   Check whether the terminal condition is satisfied, if 
iteration<MaxIteration, repeat Step2-12 until the 
terminal criteria condition is satisfied, terminate the 

algorithm evolution process, and output the optimal 
solution.   

V. COMPUTATIONAL RESULTS 
In the section, we evaluated the effectiveness of the 

ACO&DE algorithm. We first present data set and parameter 
setting. Next, we compared ACO&DE with basic ACO and 
DE algorithms. Finally, ACO&DE and other methods were 
used for comparison 

A. Data set and Parameter Setting 
In this study, the ACO&DE algorithm as described in 

Section 4 was coded in the visual C++.  To test validity of 
ACO&DE algorithm, it has been implemented on benchmark 
instances selected randomly and obtained from the OR 
Library. The website is at available at 
http://neo.lcc.uma.es/vrp/. These instances introduced by 
Taillard et al. [4] include the A, B and C series. We select 12 
different instances to test the performance of our proposed 
method in the experimental data. The first 3 instances and the 
second 2 instances are respectively from A and B series 
presented by Augerat et al. and the remaining 7 instances are 
from C series proposed by Christofides. The instances are 
named as A1-A3, B1-B2, C1-C5, and C11-C12. In addition to 
the depot, the size of customers per instance is between 30 and 
199, and these instances have no service time and maximum 
length constraints. Table I lists a description of instances. In 
Table I, Instance denotes the test instance, n denotes the 
number of nodes, m is the size of vehicles, Q is vehicle 
capacity, and Best_known refers to the shortest distance 
reported in some literature.  

  There are several parameters in the ACO&DE algorithm, 
and their values have a certain impact on the final results. For 
small-scale cases, the algorithm can find optimal solutions. 
Therefore, some parameter values should been obtained on 
small-scale cases. Table II lists the parameter values used by 
ACO&DE algorithm. 

TABLE  I  
THE DESCRIPTION OF INSTANCES. 

No. Instance n m Q Best_known 

1 A1 31 5 100 784 

2 A2 32 5 100 661 

3 A3 32 6 100 742 

4 B1 30 5 100 672 

5 B2 33 5 100 788 

6 C1 50 5 160 524.61 

7 C2 75 10 140 835.26 

8 C3 100 8 200 826.14 

9 C4 150 12 200 1028.42 

10 C5 199 17 200 1291.45 

11 C11 120 7 200 1042.11 

12 C12 100 10 200 819.56 
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B. Comparison Results and Analysis 
To justify the performance of ACO&DE algorithm, the 

ACO&DE is compared with basic ACO and DE algorithms. 
The difference between basic ACO and DE algorithms lies in 
the different construction solution mechanism of population. 
The ACO uses construction solution mechanism of ACO 
algorithm, and the DE adopts a greedy construction solution 
mechanism. Each method run 10 times on one instance and 
then tables III listed the corresponding best and average 
distances and computational time obtained using three 
methods. In Table III, Best refers to the best solutions, and 
Mean to the average values of solutions for 10 runs. For each 
method, Best and Mean are adopted as the evaluation 
criterion to measure the performance of methods. For 
providing a fair comparison, the results of three algorithms 
are show in Table III. First, the ACO&DE algorithm is 
compared with basic ACO. With regard to Best and mean 
values, the Best value of the ACO&DE algorithm is smaller 
than that of basic ACO, and the Mean value of the ACO&DE 
algorithm is smaller than that of basic ACO. Thus, the 
ACO&DE is obviously superior to basic ACO method for the  

VRP. Second, the ACO&DE is compared with basic DE. The 
ACO&DE algorithm can obtain significantly better 
performance than the DE in terms of Best and mean values. 
Moreover, the comparison is between the ACO and basic DE 
can be made. Two methods of ACO and DE can achieve 
similar results in terms of Best and mean values. More 
precisely, the proposed ACO&DE algorithm is effective to 
reduce the computational time gave much better results 
regarding the computational time. 

Obviously, the proposed ACO&DE algorithm has much 
lower Best and Mean distances compared with basic ACO 
and ED method, and the results demonstrates its effectiveness 
for solving VRP. From the above analysis, we can draw such a 
conclusion that proposed ACO&DE algorithm can perform 
better than ACO and ED in terms of best and mean values of 
the solutions for almost all instances. The average best value 
is 841.64 and the average mean value is 862.89. With regard 
to obtaining the optimal solution, ACO and DE algorithms 
can achieve similar results to Best_known in only two 
instances. The ACO algorithm can obtain the optimal 
solutions in A1 and A2 instances, whereas the DE algorithm 
can obtain in A2 and B1 instances. Moreover, the ACO&DE 
method provides more optimal solutions compared to the 
ACO and DE methods for all instances, and it can obtain the 
optimal solutions on small scale instances (A1-A3, B1-B2, C1) 
with 30-50 nodes. Despite, for six instances (C2-C5, 
C11-C12), ACO&DE algorithm can not obtain optimal 
solutions, the solutions obtained for these instances are close 
to the best_known values. With regard to obtaining the 
optimal solution, three algorithms can obtain the optimal 
solutions for A2 instance with 32 nodes. Fig. 6 shows the 
optimal solution using these algorithms and Table IV lists the 
optimal routes visited by the respective vehicles for A2 
instance. The difference among the ACO, DE and ACO&DE 
algorithms is that the convergence speed is different. The 
convergence results are listed in Fig. 7. We can see that 
convergence speed of the ACO&DE is faster than the other 
two algorithms. ACO&DE algorithm is convergent within  

TABLE  II 
PARAMETER VALUES IN EXPERIMENTS. 

No. Terminology Symbol value  

1 Importance of distance β {3, 4, 5} 

2 Relative importance of 
exploitation  q0 0.60–0.85 

3 Pheromone evaporation  ρ 0.35–0.60 

4 Population number PopSize 20 

5 Target vector number NP 10 

6 Crossover parameter  pcr 0–1.0 

7 Max iteration MaxIteration 1000 

      

 
TABLE  III 

THE COMPARISON OF ACO&DE WITH ACO AND DE ALGORITHMS. 
          ACO DE ACO&DE No. Instance Best_known 

Best Mean Time(s) Best Mean Time(s) Best Mean Time(s) 

1 A1 784 784.00 786.27 7.18 792.15 794.24 6.31 784.00 784.00 6.22 

2 A2 661 661.00 684.87 8.16 661.00 671.32 7.24 661.00 664.26 6.84 

3 A3 742 756.23 763.26 8.52 750.54 758.43 8.04 742.00 746.65 7.35 

4 B1 672 682.15 686.73 7.80 672.00 686.18 6.80 672.00 680.65 6.50 

5 B2 788 795.24 818.36 8.75 792.37 816.58 8.12 788.00 796.47 7.66 

6 C1 524.61 533.15 550.26 13.20 536.24 546.13 10.42 524.61 542.62 9.78 

7 C2 835.26 860.26 883.13 17.37 854.63 878.25 15.28 841.38 876.34 13.24 

8 C3 826.14 840.51 860.16 26.56 837.43 862.56 22.34 832.62 854.61 20.22 

9 C4 1028.42 1073.00 1102.23 32.70 1078.51 1097.72 28.32 1048.33 1089.42 25.64 

10 C5 1291.45 1350.24 1376.28 90.16 1336.62 1378.45 86.43 1314.24 1372.67 80.35 

11 C11 1042.11 1073.00 1102.24 30.50 1078.53 1096.54 27.34 1056.26 1088.78 21.26 

12 C12 819.56 846.00 864.65 28.73 843.32 867.63 25.52 835.25 858.25 20.54 
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Fig. 6.  The optimal routes for A2 instrance. 

 
TABLE  IV 

THE OPTIMAL ROUTES VISITED BY VEHICLES FOR A2 INSTRANCE. 

Instance Vehicle Number of customers Customers sequence of each route 

Route 1 6 15→17→9→3→16→29 

Route 2 8 12→5→26→7→8→13→32→2 

Route 3 6 20→4→27→25→30→10 

Route 4 4 23→28→18→22 

A2 

Route 5 8 24→6→19→14→21→1→31→11 

 

 
Fig. 7.  The convergence results of three algorithms for A2 instance. 
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180 iterations, while ACO and DE algorithms do not 
converge until after 220 iterations.  

In order to further verify the performance of proposed 
ACO&DE algorithm, it is compared with other methods, 
including simulated annealing (SA) [6], genetic algorithm 
(GA) [7] and Tabu Search (TS) [6] for the VRP. The results 
are listed in Table V, in which the first column provides the 
description of instances, and the second column gives 
Best_known values that represent the shortest known solution 
distance reported in some literature. The next three columns  
give the best solutions and relative deviation using SA,  GA, 
and TS. In the last column, ACO&DE is our proposed 
algorithm as described above. In Table V, Best refers to the 
best solutions, and Gap is the relative deviation between the 
best value of each algorithm and Best_known, i.e., 
Gap=100*(f - f*)/f*, in which f indicates the distance of the 
best solution, and f* denotes Best_known value for each 
instance. The ACO&DE algorithm performs better than other 
methods. And in further comparisons to Best_known values, 
ACO&DE can perform well for the nine instances, and the 
result is very close to Best_known values during experiments. 
With regard to Gap values, the small the Gap value is, the 
higher the quality of the solution is. A zero gap means that the 
optimal solution can be found. From Table V, it’s easy to 
show that the GA, SA and TS methods can get large Gap 
values, and the Gap value of a few instances is more than 5%. 
From Table V, among the 12 instance, the ACO&DE 
algorithm can obtain small Gap values, and the Gap value of 6 
samples is equal to 0. The Gap value of 2 samples is less than 
1, and the Gap value of only 4 instances is between 1 and 2. 
Generally, the average Gap of ACO&DE is found to be only 
0.71% for all the instances tested, while the average Gap of 
TS is 3.46%, the average Gap of SA is 2.52%, and the average 
Gap of TS is 2.26%. Therefore, we can see that the ACO&DE 
algorithm has strong robustness and achieves excellent 
generalization performance. 

VI. CONCLUSION 
This article proposes ACO&DE algorithm based on the 

ACO and DE algorithm for the VRP in logistics 
transportation management system. The experiment results 
have shown that: firstly, the ACO&DE can make full use of 
advantages of the ACO and DE algorithms to make up for its 
own weakness, and it has achieved much improvement 
compared with basic ACO and DE algorithms. Secondly, to 
make the DE algorithm suitable for solving the VRP, three 
strategies of mutation operator, crossover operator and 
selection strategy have been redesigned to implement the 
discrete DE directly. In addition, the ACO&DE algorithm can 
obtain higher solutions than the other heuristics. Finally, 
because the DE algorithm can expand the search scope of the 
algorithm, it would effectively enhance the optimization 
performance of ACO algorithm. Thus, this methodology can 
be further extended in variants of the VRP and other logistics 
transportation fields. The limitation of this research is that the 
scale of instances is not large enough. Therefore, we will 
focus on a parallel version of the ACO&DE algorithm in the 
future, and thus this can cut down the calculation time greatly 
and enhance the performance of algorithms. 
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